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Chapter

On the Deviation of the Lunar
Center of Mass to the East: Two
Possible Mechanisms Based on
Evolution of the Orbit and
Rounding Off the Shape of the
Moon
Boris P. Kondratyev

Abstract

It is known that the Moon’s center of mass (COM) does not coincide with the
geometric center of figure (COF) and the line “COF/COM” is not directed to the
center of the Earth, but deviates from it to the South-East. Here, we discuss two
mechanisms to explain the deviation of the lunar COM to the East from the mean
direction to Earth. The first mechanism considers the secular evolution of the
Moon’s orbit, using the effect of the preferred orientation of the satellite with
synchronous rotation to the second (empty) orbital focus. It is established that only
the scenario with an increase in the orbital eccentricity e leads to the required
displacement of the lunar COM to the East. It is important that high-precision
calculations confirm an increase e in our era. In order to fully explain the shift of the
lunar COM to the East, a second mechanism was developed that takes into account
the influence of tidal changes in the shape of the Moon at its gradual removal from
the Earth. The second mechanism predicts that the elongation of the lunar figure in
the early era was significant. As a result, it was found that the Moon could have
been formed in the annular zone at a distance of 3–4 radii of the modern Earth.

Keywords: Moon, displacement of center of mass, formation and evolution,
gravitation

1. Introduction

At the dawn of modern astronomy, Hevelius and Galileo established that the
optical libration of the Moon in longitude leads to a small (50–80) seeming (for
terrestrial observer) oscillations of the figure of our satellite in the East-West direc-
tion with a period in the anomalistic month. These oscillations disappear when the
Moon is at perigee and apogee. Oscillations of a different kind—optical oscillations

in latitude—occur with amplitude 60400 and a period of one draconic month with
the disappearance of the deviation, when the Moon is at the nodes of the orbit.
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If the Moon was absolutely spherically symmetric, these optical librations would
not have resulted in additional rotational oscillations of its body. But since due to
the interaction with the Earth, the lunar body has tidal bulges, this leads to the
appearance of moments of force from external celestial bodies. Newton [1]
predicted that deviations of an elongated body of the Moon from the direction to
the Earth must lead to real small rotational librations of the satellite relative to the
inertial reference system. These small oscillations are called the physical libration of
the Moon.

It is necessary to understand that when moving along the orbit of the Moon, its
main axis is not directed at the center of mass of the Earth-Moon system and, on the
average, at the second (empty) focus of the lunar orbit [2, 3]. The latter will play an
important role in our theory.

Due to the proximity of the Moon in our time, the movement of our satellite
is studied with such high accuracy that even a small asymmetry of its internal
structure must be taken into account. This asymmetry is manifested in that the
center of the Moon’s mass COM is offset relative to the geometric center of the lunar
figure COF.

This effect of shift is briefly mentioned in [4, 5]. Using astrometric data, an
approximate numerical evaluation of the offset was given in [6] and in a more
accurate version in [7]. A new approach based on the analysis of data obtained from
the Lunar Laser Ranging experiment allowed in [8] clarifies the parameters of the
shift of the Moon’s center of mass.

Note that the definition of COF depends on the adopted model (sphere, ellip-
soid, etc.), so that results of different researchers may be slightly different. How-
ever, according to many sources, it is reasonably safe to suggest that two points of
the centers on the Moon really do not coincide.

To consider the internal asymmetry of the mass distribution in the lunar body,
we introduce a coordinate system with the origin at the center of mass of the Moon,
where the X-axis is directed (approximately) to the Earth, the Y-axis to the left (if
viewed from the Earth), and the Z-axis—downward. Then, according to the United
Lunar Control Network (ULCN), which takes into account the findings of many
studies, including information from spacecraft [9], the displacement of the center
of the figure relative to the center of mass “COM/COF” is equal to [10]

Δx≈� 1:71 km, Δy≈� 0:73 km, Δz≈� 0:26 km: (1)

Based on the results of a study of the topography of the lunar surface using laser
altimetry from a satellite, the displacement of the “COM/COF” was determined
more accurately [11]:

Δx≈� 1:7752 km, Δy≈� 0:7311 km, Δz≈� 0:2399 km: (2)

As follows from the analysis of observational data (1) or (2), the effect of
displacement of the center of the figure relative to the Moon’s center of mass
includes not only the shift of the center of mass toward the Earth 0:001 � R
(R ¼ 1737:10 km� the average radius of the Moon) but also the spatial deviation of
the line “COM/COF” to the North-West. Note that in the literature it often also
speaks of the displacement of the center of mass of the Moon relative to the center
of its figure; for the observer from the Earth, this shift of the center of mass occurs
down (to the South) and to the left (to the East). Then, all the signs in (1) and (2)
are reversed. According to (2), the total displacement of the lunar COM is equal to
Δ≈ 1:935 km:
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Besides, the shifts (1) and (2) of the center of the Moon’s mass are global in
nature, and, ultimately, they already include many different factors (see, e.g., [12]).
Therefore, in particular, it is impossible to interpret the displacement of the center
of mass only as a displacement of the lunar core alone.

Despite the seemingly geometric simplicity of the problem, the offset of the
center of the Moon’s mass remains an unexplored problem in the lunar science. The
importance of this problem is that the Moon is close enough to the Earth and the
accuracy of observations of its spin-orbital motion by the method LLR is now so
much high that for correct interpretation of these movements it is necessary to take
into account many celestial mechanical disturbances, including the indicated inter-
nal asymmetry of the Moon’s body.

Here, we study the problem of the shift of the Moon’s center of mass to the East.
To do this, we consider two geometric mechanisms that allow us to explain this
important feature of the internal structure of the Moon and shed light on some of
the currently controversial features of its evolution and origin (see also [13–15]).

2. Optical libration of the Moon for the observer from the second focus

Instead of the term “the direction of the Moon’s surface” often used in refer-
ences, it is more accurate to speak of the direction of the main lunar axis of inertia,
which only in two cases—at the position of the Moon at apogee and perigee—is
directed to the center of mass of the Earth-Moon system. To do this, we first
consider the optical libration of the Moon in longitude and place the observer in the
point of the second (empty) focus of the orbit [2].

Recall that in the first approximation the Moon moves on ellipse (now the
eccentricity of the orbit is e ¼ 0:0549 ), and this motion is synchronous, since there
is the resonance 1:1 of periods of axial rotation and revolution of the Moon around
the Earth. According to the Kepler’s first law, the motion is described by the formula

r ¼ p

1þ e cos υ
, p ¼ a1 1� e2

� �

: (3)

Here, a1 is the main semiaxis, and e is the eccentricity of an ellipse. The angle of
the true anomaly υ is associated with the angle of the eccentric anomaly E

cos υ ¼ cosE� e

1� e cosE
: (4)

The time that has elapsed since the Moon was at perigee (E ¼ 0, υ ¼ 0), until the
moment when the angles are equal E; υð Þ, is equal to

t ¼ E� e sinEð Þ
2π

T, (5)

where T is the period of revolution on the ellipse. Since the lunar axial angular
velocity Ω must be equal the mean motion n ¼ 2π

T , the rotation angle δ of the major
axis of inertia of the Moon (see Figure 1) in the time t will be

δ ¼ t �Ω ¼ t � n ¼ Tn

2π
E� e sinEð Þ ¼ E� e sinE: (6)

From the triangle f 1MC (Figure 1) follows that
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dC f 1

sin χ
¼ r

sin υ� χð Þ , δþ χ ¼ υ, (7)

so

dC f 1
¼ r � sin χ

sin υ� χð Þ ¼ r
sin χ

sin δ
:

Then, the distance Δ ¼ dC f 2
¼ 2a1e� dCf 1

is

Δ

a1
¼ 2e� 1� e2

1þ e cos υ

sin χ

sin δ
¼ 2e� 1� e2

1þ e cos υ
sin υ ctg δ� cos υf g: (8)

Here, ctg δ is the function of the angle E (or true anomaly υ)

ctg δ ¼ ctg E� e sinEð Þ ¼
1þ

ffiffiffiffiffiffiffi

1�e2
p

sin υ
eþ cos υ � tg e

ffiffiffiffiffiffiffi

1�e2
p

sin υ
1þe cos υ

h i

ffiffiffiffiffiffiffi

1�e2
p

sin υ
eþ cos υ � tg e

ffiffiffiffiffiffiffi

1�e2
p

sin υ
1þe cos υ

h i : (9)

Therefore, the required distance Δ

a1
from the point f 2, which is a continuation of

the lunar major inertia axis that crosses the apsidal line, is not, generally speaking,
zero and equal to

Δ

a1
¼ eþ cosE� ctg δ

ffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p

sinE (10)

Expanding in powers of a small eccentricity gives

Δ

a1
¼ � cos υ

2
e2 � 1

3
1þ cos 2υ

2

� �

e3 � cos υ

8
7 � 4 cos 2υ
� �

e4 þ…; Δ≤0;

Δ

a1
¼ � cosE

2
e2 þ 1

3

1

2
� 2 cos 2E

� �

e3 � cosE

24
1þ 8 cos 2E
� �

e4 þ…; Δ≥0:

(11)

The results of calculations using formula (10) are shown in Figure 2.

Figure 1.
The large ellipse is the orbit of the Moon M (for clarity, the ellipticity is exaggerated), and P and A are the
points of perigee and apogee. The point of active focus f 1 is the center of mass of the Earth-Moon system, and f 2 is
the point of the second (passive) focus.
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It is important to emphasize that, according to formula (11), the effect of the
deviation Δ

a1
is already in the first approximation proportional to the square of the

eccentricity of the Moon’s orbit.
Thus, when the Moon is moving on the ellipse around the Earth, the end of the

major axis of inertia will be approximately directed to the point of the second focus.
Strictly speaking, this end of the axis will perform (without taking into account the
very small physical libration of the Moon in longitude) oscillatory motions in the
vicinity f 2 in the interval

�1:5933 � 10�3
≤

Δ

a1
≤ 1:4275 � 10�3: (12)

In our era, in a linear measure, this is approximately

�612km≤Δ≤ 548km: (13)

The results of calculations (12) and (13) show a small asymmetry oscillations
(� 11%) relative to the right and left sides of the point f2. Emphasize that the
physical libration of the Moon in longitude has a very small amplitude and with a
large reserve of fits in the interval (13).

3. Resolution alternatives to choose between two options for the lunar
orbit evolution

Since Darwin [16], many efforts were made to examine the secular evolution of
the Moon’s orbit,

but so far it has not been established whether the orbit of the Moon in the past
more or less oblate than now. In the literature, this issue is still under discussion. In
this regard, the study of the shift of the Moon’s center of mass to the East may shed
some light on this important issue.

Many researchers agree that gravitational differentiation of the Moon occurred
in the early era (see, e.g., [17]), with the result that the Moon’s center of mass is
slightly � 0:001 � Rð Þ shifted toward the Earth. We shall not discuss here the ques-
tion of the gravitational differentiation of the Moon and just to note that one of the
reasons for the displacement of the Moon’s center of mass to the Earth can be
some asymmetry of tidal forces from the Earth into two hemispheres of the Moon

Figure 2.
Graph of deviation Δ

a1
as a function of the true anomaly υ.
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(Sect. 4.1). One of the manifestations of the offset center of mass can be a different
thickness of crust in the near side and the far side of the Moon [18].

Thus, the core of the Moon was formed during the gravitational differentiation,
and then under the influence of a small asymmetry of tidal forces, the process of
displacement of the lunar center of mass toward the Earth began to occur. This offset
COM for the Earth observer can be characterized by the orientation angle E between

the line }COF=COM} and the direction to the center of the Earth (Figure 3b).

3.1 On the difference on tidal forces from the Earth in near and far lunar
hemispheres

Assuming that the differentiation of the Moon occurred (according to cosmo-
gonic times) rather quickly, it is necessary to require that the shift of the lunar
center of mass toward the Earth occurred even before the Moon hardened.

The real cause of the displacement of the Moon’s center of mass to the Earth
could be some asymmetry of tidal forces. Let us perform the required calculations.
After the capture of the Moon in resonance 1:1, it was possible to talk about near and
far of its hemispheres. It is clear that the forces in the nearest and farthest points
are, respectively, equal to

F1 ≈ 
2GM⊕

R2
0

x 1þ 3

2
x

� �

,

F2 ≈ 
2GM⊕

R2
0

x 1� 3

2
x

� �

, x ¼ R

R0
,

(14)

Figure 3.
(a) Orientation of the displaced center of mass S of the young Moon after the differentiation of the substance of
its body. A large circle is the orbit of the Moon in the early epoch, and a small ellipse is the cross section of the
Moon. Since the orbit is circular, the focuses f1 and f2 coincide with the center O. Relative sizes are not respected.

The line O
0
S is directed straight to the Earth; therefore, the Earth’s observer would see both points coinciding

with each other from Section 2, the motion on the ellipse the line passing through the center of the Moon’s figure
and its center of mass be directed to the second (empty) focus of the orbit. Therefore, in our era, when the
eccentricity of the lunar orbit has increased to its current value e ¼ 0:0549, we will observe the picture as in b.
(b) The orientation of the lunar center of mass S in our era in the first version of the evolution of the Moon’s
orbit. The large ellipse is the orbit of the Moon, and the small ellipse is the cross section of the Moon. The Earth is
in the first focus f1 of the lunar orbit. The angle E characterizes the orientation of the Moon COM S relative to
the direction to Earth.
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where R0 is the distance between the centers of the Earth-Moon and R is the
distance from the center of the Moon to the near (far) points of its surface. The
difference of these forces will be

ΔF⊕ ¼ F1 � F2 ≈ 
6GM⊕

R2
0

x2: (15)

In the era of its formation, the Moon could be much closer to Earth than in our
era (see, e.g., [16, 18, 19]). Due to the proximity to the Earth of the young Moon,
the difference in tidal forces (15) in both lunar hemispheres was much more in the
early era than it is now. In the era of the differentiation of the Moon, it was this
difference in tidal forces (15) that caused the displacement of the center of mass of
the Moon toward the Earth. Based on these provisions, we note that the very
solution to the question of the displacement of the Moon’s COM to the East is closely
related to the further secular evolution of its form and orbit. In particular, to find
out how the lunar COM would be located relative to the Earth’s observer in the
modern era, when its orbit evolved and eccentricity acquired modern significance,
consider two possible options with the initial eccentricity of the young Moon orbit.

3.2 The first version: the evolution of the lunar orbit with increase in its
eccentricity

First, suppose that in the early epoch the orbit of the Moon was more circular
than in our epoch. Consequently, during the secular evolution, the Moon’s orbit
became more and more eccentric, up to its modern value of eccentricity e ¼ 0:0549:

Recall now that the Moon’s COM, already shifted toward the Earth, after the
solidification of the lunar body will be fixed relative to its main axes of inertia. Since in
the early epoch the orbit of the Moon was almost circular, the line connecting the
geometrical center of the figure of the Moon and its center of mass was directed
exactly to the Earth (Figure 3a).

However, since in this version of the secular evolution the orbit of the Moon
becomes more eccentric, two foci appear (Figure 3b). In accordance with the laws
of celestial mechanics, as we know

From Figure 3b, it can be seen that, for the observer from the Earth (point f1),
the center of mass S will now be located on the left (to the East) from the direction
to the center of the Moon (see also Figure 5). Thus, in the first variant of the evolution
of the Moon’s orbit, the modern Earth’s observer, in accordance with Figure 3b, will see
the Moon’s center of mass displaced to the left (to the East) from the direction to the center
of the figure. It is this location of the center of mass of the Moon relative to the center of its
figure that we observe in our era.

The contribution of this mechanism to the displacement of the Moon’s center of
mass to the East will be made in Section 4.

3.3 The second version of the evolution: from more flattened to less flattened
lunar orbit

If we assume that the orbit of the young Moon was more eccentric in the early
era than it is now, that is, during the secular evolution, the Moon’s orbit was
rounded; then in our era, when the orbital eccentricity decreased to the current
value e ¼ 0:0549, instead of Figure 3b, we will see the location of the center of
mass of the Moon, as shown in Figure 4.

Thus, Figure 4 shows that in the second version of the evolution of the orbit a
modern observer from the Earth would see that the center of mass of the Moon is
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shifted to the right (to the West) from the direction to the center of the figure.
However, this is contrary to observations, so the second version of the evolution must be
discarded.

4. Correction factor to mechanism of orbit evolution

Let us consider again (Figure 1) the motion of a satellite in an elliptical orbit
around a body of greater mass. The equation of an ellipse is given by formula (3).
From the triangle O0f 1 f 2 by the sine theorem, we find the relation

Figure 4.
The final configuration of the location of the lunar COMS in the second version of the evolution of its orbit. The

line O
0
f 1 sets the direction (for the Earth observer) to the center of mass of the Moon in the early era, and the line

O
0
f 01 sets the direction to the center of the figure of the Moon for the observer from the Earth in our time. In this

version, the observer would see that the center of mass of the Moon S is shifted to the right (to the West, as
indicated by the arrow) from the average direction to the center O0 of the figure of the Moon.

Figure 5.
Elongated figure of the Moon in the early era (its cross section of the plane x2 ¼ 0 is shown by the ellipse with the

semiaxes a1. a3). The arrows represent the directions from the center O
0
of the Moon to both foci f1 and f2 of its

orbit around the Earth (the Earth in focus f1), as well as to the center of the mass S of the Moon. The angle α
between the line on S and the line to f1 measures orientation of the Moon’s center of mass, and the angle E
between the directions to the first focus f1 and second focus f2 measures the deflection of an ellipse from a circle.
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sinE ¼ 2e sin υ 1þ e cos υð Þ
1þ e2 þ 2e cos υ

: (16)

Then, the average angle E is given by the integral

Eh i ¼ 1

π

ð

π

0

arcsin
2e sin υ 1þ e cos υð Þ
1þ e2 þ 2e cos υ

� �

: (17)

In particular, for the Moon’s orbit, the current value of eccentricity is equal
e≈0:0549, and formula (17) gives

Eh i≈ 0:0700: (18)

Taking into account (18), in the framework of the first variant of the evolution
mechanism of the lunar orbit from the circle to the ellipse with the modern value

of eccentricity, we find that the ratio of the average angle Eh i to the angle arctg Δy
Δx

will be

κ ¼ Eh i
arctg 0:7311=1:7752ð Þ ≈ 0:18: (19)

Therefore, the first orbital evolution mechanism helps to explain approximately
18% of the observed current Moon’s offset COM to the East. In the linear measure,
it is

Δyj j≈ 0:132 km: (20)

We emphasize that the conclusion of the theory that evolution of the orbit of the
Moon occurred with increasing eccentricity is consistent with the fact that at the
present time the eccentricity of the orbit of the Moon is really growing and, there-
fore, in the past it was less than today [20, 21] (see also [22–25]).

Besides, the following should be noted. As is well known, due to perturbations,
all elements of the lunar orbit are subject to periodic perturbations [20, 26]. Thus,
for several thousand years, the eccentricity of the Moon’s orbit changes due to solar
perturbations in the range from 0.0255 to 0.0775. However, here we do not consider
the periodic perturbations: throughout in this chapter, we are talking about tidal
secular change in the average eccentricity of the Moon’s orbit, which is now equal
e≈ 0:0549:

5. Second mechanism of displacement of the Moon’s center of mass
to the East

Because of proximity of the Moon to Earth during an early era, which is offered
by many researchers, the main factor of formation for the Moon is a tidal force from
our planet. In the tidal field of the Earth, the figure of the early Moon stretched out,
which was also facilitated by its capture in spin-orbit resonance 1:1. Therefore, for
our approximate calculations, we can simulate the figure of the Moon using the
elongated (toward the Earth) spheroid with the semiaxes a1. a2 ¼ a3. The equation
of the surface of this spheroid in Cartesian coordinates Ox1x2x3 is

x21
a21

þ x22 þ x23
a23

¼ 1: (21)
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The main symmetry semiaxis a1 of this spheroid was initially directed exactly to
the Earth.

Let us consider Figure 5. Due to the small orbit eccentricity, the angle E between
the main axis of the Moon’s figure and the direction to f1 was also initially small.
However, in the evolution of the Moon’s orbit from the less eccentric to the more
eccentric, as was shown in the first mechanism, the angle E will increase monoton-
ically. This factor changes the orientation of the figure of the Moon relative to the
observer on the Earth, and the angle α will also increase. From a geometrical point
of view, during the evolution of the lunar orbit, the angle E can change only in the
interval of values 0≤E≤ 2e≈ 0:11: Moreover, taking into account the averaging
performed above (see form. (18)), the right part of the interval will be adjusted

0≤E≤0:070: (22)

In addition, although the angle α can vary from zero (in the early era of lunar
evolution) up to the current value α0 ¼ arctan 0:7311

1:7752

� �

≈ 0:39, but also taking into

account the action of the first mechanism, the interval will be changed:

0≤ α≤ α0, (23)

where

α0 ¼ arctan
0:7311� 0:1243

1:7752

� �

≈ 0:329: (24)

We emphasize that because of inequalities (22) and (23), the center of mass of
the Moon will have that arrangement which is shown in Figures 3b and 5.

The problem consists in studying dependence between the angle α and the
changing form of the Moon during the secular evolution in the gravitational tidal
field of the Earth.

6. Differential equation for evolution of the angle α

As you know (see, e.g., [27]), a change in the shape of an ellipsoidal body can be
described by a linear velocity field. In particular, the evolution of the prolate
spheroid (21) in the moving frame of reference, whose axes coincide with the main
axes of this body at any time, can be represented by the velocity field:

u1 ¼
_a1

a1
x1, u2 ¼

_a2

a2
x2, u3 ¼

_a3

a3
x3: (25)

Here, the point above denotes the time derivative d
dt. Since for incompressible

figures the condition of volume preservation should be fulfilled (in this case—for
the volume of the prolate spheroid (21)), we have the additional ratio

div u ¼ _a1

a1
þ 2

_a3

a3
¼ 0: (26)

In the velocity field (25), the Moon’s shape will always remain a second-order
surface, and the streamlines will be represented by pieces of hyperboles (Figure 6).

Owing to symmetry, the elongation of the spheroid (21) is described by the only
polar oblateness ε ¼ 1� a3

a1
. Consider changing ε for the Moon’s shape. In this case

10
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two components (first and third) of the velocity field in (25) taking into account a
condition of incompressibility (26) will take the form

u1 ¼ γx1, u3 ¼ � 1

2
γx3; γ ¼ 1

a1

da1
dt

: (27)

In the plane Ox1x3, the condition x2 ¼ 0 is satisfied, and expressions for angles E
and α, (see Figure 5) will be equal:

E ¼ �arctg
x3
x1

, E� α ¼ �arctg
x03
x01

: (28)

Here, x1; x3ð Þ and x01; x
0
3

� �

are the coordinates of the points of intersection of

the Moon’s surface by the rays O0f 1 and O0S, respectively. Therefore,

α ¼ arctg
x03
x01

� arctg
x3
x1

: (29)

Differentiating expression (29) with respect to time t, we find

_α ¼
x01 _x

0
3 � x03 _x

0
1

x021 þ x023
� x1 _x3 � x3 _x1

x21 þ x23
; (30)

By substituting in (30) the components of the velocity field (27), we obtain

_E ¼ � 3

4
γ sin 2E; _E � _α ¼ � 3

4
γ sin 2 E� αð Þ: (31)

Thus, the derivative of the angle α will be equal to

_α ¼ � 3

4
γ sin 2E� sin 2 E� αð Þ½ �: (32)

More convenient than (32), below will be the next form of differential equation:

dα

dt
¼ � 3

2
γ sin α � cos 2E� αð Þ: (33)

Figure 6.
Streamlines at deformation of the Moon’s shape (the section is shown by ellipse). Arrows depict the direction of
deformation at the stage of rounding the figure in the early era of evolution.
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7. Solution of Eq. (33)

Let us turn to the analysis of the differential equation (33) and transform the

derivative dα
dt :

dα

dt
¼ dα

dε

dε

dt
: (34)

As

dε

dt
¼ d

dt
1� a3

a1

� �

¼ a3 _a1 � a1 _a3

a21
, (35)

therefore, in agreement with (34),

dε

dt
¼ 3

2
γ 1� εð Þ: (36)

Substituting (36) in (34) and then the result in (33), we have

_α ¼ 3

2
γ 1� εð Þ dα

dε
¼ � 3

2
γ sin α cos 2E� αð Þ: (37)

As a result, the differential equation for the angle α takes the form

dα

dε
¼ � sin α cos 2E� αð Þ

1� ε
: (38)

Separating the variables in (38) and integrating and taking into account the
auxiliary formula

ð

dα

sin α cos 2E� αð Þ ¼
1

cos 2E
ln

sin α

cos 2E� αð Þ , (39)

we obtain a solution for equation (38) in the form

1

cos 2E
ln

sin α

cos 2E� αð Þ ¼ Cþ ln 1� εð Þ, (40)

where C is the integration constant. Potentiating expression (40), we find the
solution in the form

ε α;Eð Þ ¼ 1� C � exp sin α

cos 2E� αð Þ

� � 1
cos 2E

( )

: (41)

8. Analysis of the solution (41) and estimation of the elongation of the
lunar figure in early era

In formula (41), the constant integration C is defined by the known observa-
tional data. As in the modern epoch of tidal evolution of the Moon the
supplemented relations
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ε≈ 0:0125, E ¼ 0:07, α ¼ arctan
0:7311� 0:1243

1:7752
≈ 0:32937, (42)

then the formula (41) gives

C≈ 0:713: (43)

Thus, the solution of equation (41) will get in the form

ε α;Eð Þ ¼ 1� 0:713 � exp sin α

cos 2E� αð Þ

� � 1
cos 2E

 !

: (44)

Formula (44) represents the solution of the problem: it describes the change in
the Moon’s oblateness ε during the tidal evolution and establishes the dependence
between ε and the angle α. Recall that α is the angle between the directions (from
the center of the Moon) to the first focus of the orbit and the Moon’s COM. As we
already know, in the course of evolution, the angle α varied (in radians) within the
limits given in (23).

The graphic image of the function of two variables from (44) is shown in
Figure 7.

Graphs for the two extreme values of the angle E are shown in Figure 8. As seen
in Figure 8, the oblateness ε of the figure is very little depending on the angle E.
Moreover, in the initial era, ε for all E has the same value and could not exceed the
value

ε ¼ 1� a3
a1

≈ 0:285: (45)

Figure 7.
3D image of the function ε α;Eð Þ. The angle α is set in radians. The oblateness of shape of the Moon ε α;Eð Þ in the
early era very little depends on the value of the parameter E, and its value does not exceed ε≈0:285.

13

On the Deviation of the Lunar Center of Mass to the East: Two Possible Mechanisms Based on…
DOI: http://dx.doi.org/10.5772/intechopen.84465



Thus, the second mechanism explains both the displacements of the center of mass of
the Moon to the East and predicts that the oblateness of the Moon in the early era could
not exceed the value ε≈ 0:285:

9. Some consequences: how close to the earth could theMoon be formed

Above we established that on the known shift of the Moon’s center of mass to the
East, we can find the oblateness (45), which the Moon could have in the epoch of its
formation. The corresponding spheroid eccentricity will be equal to

e≈ 0:70: (46)

Proceeding from (46) and using the theory of tidal equilibrium figures, it is
possible to estimate how close to each other might be the Earth and the Moon in
the early era. For this purpose, without loss of generality, we assume that the
satellite is uniform (at the Moon, as we know, and now concentration of
substance very small), and its mass in comparison with the mass of the Earth can be
neglected. Then, in the tidal approach for the potential of the Earth, the equation of
hydrostatic equilibrium of the satellite with synchronous rotation has the first
integral [28]:

p

ρ
þ const ¼ φþ 1

2
Ω

2 3x21 � x23
� �

; Ω
2 ¼ GM⊕

R3
⊕

: (47)

Figure 8.

The dependence of the oblateness ε of the Moon shape from the angle α between the line }COM=COF} of the
Moon and the mean direction to the Earth. The graph shows the change ε during the tidal evolution. Two
extreme angle values E ¼ 0:0 (upper curve) and E ¼ 0:07 are taken for comparison. The beginning and the
end of the evolutionary process correspond to the values α≈0 and α≈0:329.
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Here, p is the pressure, ρ is the density, φ is the quadratic internal gravitational
potential of the satellite, Ω is the angular velocity rotation of the satellite, and R⊕ is
the distance between the centers of the Earth and the Moon. For satellite with the
form of the prolate spheroid (21), we have [27]

φ ¼ πGρ I � A1x
2
1 � A3 x22 þ x23

� �	 


;

A1 ¼
1� e2

e3
ln

1þ e

1� e
� 2

1� e2

e2
;

A3 ¼
1

e2
� 1� e2

2e3
ln

1þ e

1� e
:

(48)

The internal pressure of the equilibrium figure should also be a quadratic func-
tion from the coordinates

p ¼ p0 1� x21
a21

� x22 þ x23
a23

� �

: (49)

From the first integral (47) is possible to find a square of angular velocity
rotation of satellite

Ω
2

πGρ
¼ 2

A1 � 1� e2ð ÞA3

4� e2
: (50)

Since

Ω
2

2πGρ
¼ M⊕

2πρR3
⊕

¼ κ

x3
, (51)

where we have identified the following characters

x ¼ R⊕

R⊕

; κ ¼ 2

3

ρ⊕

ρ
≈ 1:09875, (52)

the ratio (51) can be represented as

κ

x3
¼ A1 � 1� e2ð ÞA3

4� e2
: (53)

Substituting the value e from (46) into the right-hand side (53), we obtain the
cubic equation

κ

x3
¼ 0:0324, (54)

from which we find the required distance

x≈ 3:24: (55)

Thus, the Moon with oblateness (45) could form at a very close distance from
the Earth: at a distance of only three and a quarter of the mean radii of the modern
Earth. This result slightly corrects the one we received earlier [15].

Note that the prolate spheroid with meridional eccentricity (45) is a stable figure
of equilibrium. In fact, the instability of this type of figure occurs only when
e≥0:883 (see, e.g., [28]).
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10. Discussion and conclusions

Here, it is necessary to add the following. As is well known, in the problem of
secular perturbations, the perturbation function is replaced by its secular part. The
influence of the Sun leads only to periodic perturbations of the eccentricity of the
lunar orbit, which we do not take into account here. In this chapter, we ignore
periodic oscillations and consider only tidal secular changes in the average eccen-
tricity of the lunar orbit.

As for the tidal influence of the Sun on the figure of the Moon, it turns out to be
insignificant compared to the influence of the Earth. Indeed, the ratio of force ΔF⊙

to force ΔF⊕ from (15) is equal to

ΔF⊙

ΔF⊕

¼ M⊙

M⊕

R⊕

R⊙

� �4

≈ 10�5:

Therefore, to solve the posed problem within the framework of our model, the
influence of the Sun can be neglected.

In the theory of the tidal evolution of the Moon’s orbit and its form, we encoun-
ter problems that are difficult to give exact answers. Above, we examined some of
the conclusions from those observational facts that the center of mass of the Moon
is slightly shifted to the East. Two geometrical mechanisms have been developed to
explain this shift.

The first mechanism considers the secular evolution of the Moon’s orbit, using
the effect of the preferred orientation of the satellite with synchronous rotation to
the second orbital focus. According to this mechanism, only the scenario of secular
evolution of the orbit with the increase of eccentricity leads to the desired offset of the
center of the Moon’s mass to the East. It is important to note that this conclusion that
the evolution of the Moon’s orbit occurred with an increase e is consistent with the
fact that at present the eccentricity of the lunar orbit is indeed increasingly, and
therefore in the past, it was less than today [20, 21] (see also [22–25]).

To fully explain the displacement of the center of the Moon’s mass to the East, a
second mechanism was developed, which takes into account the influence of tidal
changes in the shape of the Moon as it gradually moves away from the Earth. The
essence of the second mechanism is fully consistent with the fact that the distance
between Earth and Moon is now really increasing and the Earth’s spin is slowing in
reaction.

In addition, the second mechanism predicts that the Moon’s figure flattening in
the early era was very significant and reached the value of ε≈ 0:285: In turn, based
on the theory of tidal equilibrium figures, it allowed us to estimate how close to
Earth could the Moon be formed as an astronomical body. According to formula
(55), the Moon was formed in the ring zone at a distance of 3–4 medium radii of the
present Earth. This result seems to be consistent with the modern view that the
Moon was formed as a result of a gigantic impact in the immediate vicinity of the
proto-Earth.

Since the formation of the Moon as a celestial body and so far the Earth-Moon
system has been and remains a binary planet, the physical laws of its development
have always been the same. In the early era, however, the tidal forces between the
Earth and the Moon were much more important. Indeed, now the tidal force has
very little effect on the Moon, because of which it is removed from the Earth for
only 3.8 cm per year. However, studying the evolution of the moon still requires a
great effort of researchers.

In summary, we can say that the method presented here really allows to take
into account additional observational facts in the structure of the Moon. We have
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shown that from the hidden fact that in our era there is a slightly shift of the center
of the Moon’s mass to the East, and not to the West, you can get valuable informa-
tion about the evolution of the orbit of the Moon and its shape. This finding
supports the scenario [29] that the Moon could be formed about 4.5 billion in the
surrounding “donut” from the hot gas that appeared after the collision of Theia with
proto-Earth.
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