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Abstract

Sudden cardiac arrest (SCA) is the sudden cessation of the heart’s effective 
pumping function, confirmed by the absence of pulse and breathing. Without 
appropriate treatment, it leads to sudden cardiac death, considered responsible for 
half of the global cardiac disease deaths. Cardiopulmonary resuscitation (CPR) is a 
key intervention during SCA. Current resuscitation guidelines emphasize the use of 
waveform capnography during CPR in order to enhance CPR quality and improve 
patient outcomes. Capnography represents the concentration of the partial pressure 
of carbon dioxide (CO2) in respiratory gases and reflects ventilation and perfusion 
of the patient. Waveform capnography should be used for confirming the correct 
placement of the tracheal tube and monitoring ventilation. Other potential uses of 
capnography in resuscitation involve monitoring CPR quality, early identification 
of restoration of spontaneous circulation (ROSC), and determination of patient 
prognosis. An important role of waveform capnography is ventilation rate monitor-
ing to prevent overventilation. However, some studies have reported the appearance 
of high-frequency oscillations synchronized with chest compressions superimposed 
on the capnogram. This chapter explores the incidence of chest compression artifact 
in out-of-hospital capnograms, assesses its negative influence in the automated 
detection of ventilations, and proposes several methods to enhance ventilation 
detection and capnography waveform.

Keywords: cardiopulmonary resuscitation, advanced life support, waveform 
capnography, ventilation, chest compression artifact

1. Introduction

In the past century, cardiac disease was declared as one of the leading causes 
of global death, comprising a 30% of the global mortality [1]. It is estimated that 
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sudden cardiac death is responsible for half of all cardiac disease deaths [1, 2], 
affecting more than 300,000 victims per year in the United States and around 
275,000 in the Europe [3–5]. About 80% of sudden cardiac deaths are caused by 
out-of-hospital cardiac arrests (OHCA) [1], defined as the sudden cessation of the 
heart’s effective pumping function confirmed by the absence of pulse and breathing 
and occurring in an out-of-hospital setting [6].

During OHCA, there are two prehospital life supporting emergency medical 
services (EMS): basic life support (BLS) and advanced life support (ALS). BLS 
treatment is provided by emergency medical technicians and includes early CPR 
and early defibrillation, usually delivered with an automated external defibrillator 
(AED). ALS treatment procured by clinicians during CPR usually includes manual 
defibrillation, advanced airway placement, and drug administration, together with 
CPR [7, 8].

Several studies have reported a strong correlation between the quality of CPR 
and the chance of successful defibrillation [9–11]. Thus, resuscitation guidelines 
[12, 13] globally recommend providing chest compressions with a rate in the range 
of 100 and 120 compressions per minute (cpm) and achieving a depth between 5 
and 6 cm. Ventilations should be provided with a 30 compressions-to-2 ventilations 
ratio before intubation. After intubation, ALS guidelines recommend continuous 
chest compressions and ventilations with a ventilation rate around 10 breaths per 
minute [7, 8]. Despite the fact that some studies have declared hyperventilation 
as harmful for patient outcome, by either high rate or volume [14, 15], excessive 
ventilation rates (as high as 30 breaths per minute) are common in resuscitation 
[16–18]. Many animal studies revealed that high ventilation rates increased intra-
thoracic pressures and decreased coronary perfusion and survival rates [16, 19, 20]. 
However, another recent animal study reported no adverse hemodynamic effects, 
although they did observe a decrease in maximum CO2 values [21].

In order to alleviate this problem and prevent inadvertent hyperventilation, 
resuscitation guidelines highlight the role of capnography for ventilation rate moni-
toring during CPR [7, 8]. Other advantages of capnography include assessment of 
the correct placement of the endotracheal tube [21], monitoring the quality of chest 
compressions [22], early identification of restoration of spontaneous circulation 
(ROSC) [23], and determination of patient prognosis [7, 24, 25].

This chapter analyzes the use of capnometry for ventilation monitoring during 
OHCA episodes. First, we briefly introduce the evolution of capnometry and the 
different technologies used in the field. Then, we characterize the capnography 
signal during ongoing CPR. The main conclusion of this analysis is that the appear-
ance of high-frequency oscillations superimposed on the waveform capnography 
is frequent during resuscitation. We then analyze the impact of these oscillations 
on out-of-hospital automated detection of ventilations. Finally, we propose two 
methods to improve ventilation detection during CPR by filtering the artifact from 
the capnography signal and a method to enhance capnography waveform in the 
presence of artifact.

2. Evolution of capnometry

Since 1943, capnometry has become an essential component of standard anes-
thesia monitoring [26]. Capnometry represents the numerical value of the carbon 
dioxide (CO2) partial pressure measurement in exhaled respiratory gases. The 
maximum CO2 concentration at the end of the exhalation, known as end-tidal CO2 
(ETCO2), reflects cardiac output and pulmonary blood flow. Preventing hypoxia, 
i.e., deprivation of adequate oxygen supply, during anesthesia is the primary goal of 
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anesthesiologists. Improvements with capnometry in this field currently allow the 
early identification of harmful situations before hypoxia leads to irreversible brain 
damage. Because of these improvements, the use of capnography has spread from 
the operating room into emergency medicine environment and even into out-of-
hospital emergency settings.

Several methods have been used to determine the presence and concentration 
of CO2 over the years. The simplest form of CO2 detection available is colorimetric 
capnometry. This technology is based on a paper that changes in color in the pres-
ence of CO2, but its inability to detect breath-to-breath changes prohibits the use of 
this device to guide ventilation. Later, semiquantitative capnometers (Figure 1a) 
that provide a rough estimation of the ETCO2 concentration have been developed. 
The technology behind these devices reports the ETCO2 value in a series of stacked 
colors rather than providing a numerical value, being useful to confirm correct 
airway placement.

More recently, quantitative capnometry involving infrared spectrophotomet-
ric analysis of expired gases (Figure 1b) has led to the most accurate method to 
measure ETCO2 values. This technology provides an end-tidal value for each breath, 
allowing an optimal control of ventilation. Improvements in the field allowed the 
graphical representation and recording of the CO2 concentration throughout the 
breath (i.e., waveform capnography, Figure 1c).

Two different methods of gas sampling, illustrated in Figure 2, are used to mea-
sure quantitative capnometry and waveform capnography: mainstream and side-
stream. The main difference is that mainstream is directly placed in the main flow 
of exhaled gases, while in sidestream little samples are aspirated with a capillary 
sampling tube. During the last two decades, improvements in high-flow sidestream 
capnometers turned into Microstream™ capnometers, with an aspiration flow rate 
of 50 ml min−1. This technology uses a highly CO2-specific infrared source where 

Figure 1. 
Evolution of capnometry in out-of-hospital emergency settings. (a) Semiquantitative capnometer,  
(b) quantitative capnometer, and (c) waveform capnography. Courtesy of Medtronic and Masimo.

Figure 2. 
Brief schemes of quantitative capnometry to acquire the capnography signal, mainstream and sidestream.
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the IR emitter exactly matches the absorption spectrum of the CO2 molecules. This 
facilitates the sample cell to use a much smaller volume that permits a low flow rate, 
being less likely to aspirate water and secretions.

The evolution and morphology of CO2 concentration in the respiratory cycle 
of a normal capnogram are depicted in Figure 3. The initial rapid decrease of CO2 
concentration named as phase 0 represents the inspiration segment, where the 
lungs are filled with CO2-free respiratory gases until a zero level is reached, defining 
the baseline of the capnogram. The following phases represent the expiration seg-
ment: during phase I, the CO2-free gas in the anatomical dead space (between the 
alveoli and measurement device) is exhaled; in phase II a mixture of gases from the 
anatomical dead space and the alveoli quickly rises the level of CO2 concentration; 
finally in phase III, CO2-rich gases coming from the alveoli slowly raise the CO2 
concentration until a peak level is reached, corresponding to the ETCO2 value [28].

3. Capnography signal during ongoing chest compressions

The initial use of capnographs during resuscitation was initially proposed by 
the International Liaison Committee on Resuscitation (ILCOR) in 2010, and since 
2015 it is becoming a standard of care in advanced high-quality CPR [24, 29, 30]. 
Among the several advantages of waveform capnography during CPR emphasized 
in current resuscitation guidelines, but one of its most important roles is to monitor 
ventilation rate, helping to avoid overventilation.

For a reliable clinical analysis, either visual or automated, of the waveform 
capnography, its morphology is essential. All phases of the respiratory cycle must 
by identifiable during CPR, and the measurement of ETCO2 should be possible. 
However, issues related to the capnograph as well as to the ongoing resuscitation 
efforts may distort the waveform capnography [29, 31, 32]. Moreover, the appear-
ance of fast oscillations induced in the waveform capnography at different rates and 
with varying amplitude has been reported in several studies [33–35], often com-
pletely distorting the real tracing of the respiratory cycle as shown in Figure 4b.

To the best of our knowledge, studies assessing the incidence and origin of this arti-
fact are sparse. A preliminary abstract published by Idris et al. [33] in 2010 analyzed a 
dataset of 210 patients and detected the presence of this artifact in 154 episodes, report-
ing an incidence greater than 70%. Several studies found that provided chest compres-
sions generate passive ventilations of low inspiratory tidal volumes [33–35]. Deakin 
et al. [34] found that generated low tidal volumes during ongoing chest compressions 
were considerably lower than the anatomical dead space (150 ml). Recently, Vanwulpen 
et al. [35] conducted a similar out-of-hospital study, and their results were in line with 
the ones reported by Deakin et al., but they found lower inspiratory volumes. Therefore 
generated gas exchange is insufficient to properly ventilate the patient [36].

Figure 3. 
The normal capnogram. Capnography waveform representing the variation of CO2 concentration during the 
respiratory cycle. Segments and phases follow the nomenclature proposed by Bhavani-Shankar and Philip [27].
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Our first approach was to assess the origin of the artifact, so we performed time-
domain and spectral analyses on a large set of out-of-hospital capnograms. Readers 
are encouraged to consult reference [37] for further details. As an example, Figure 5  
depicts a distorted capnogram interval (top-left panel), the concurrent chest 
compression depth (CD) signal (bottom-left panel), and the normalized power 
spectral density (PSD) estimated (right panel) for both the waveform capnography 
signal (solid blue) and for the CD signal (dotted red). The PSD analysis of the 
waveform capnography reveals a low-frequency peak that represents the ventilation 
rate (shadowed in gray) and a high-frequency peak corresponding to the artifact 
oscillation frequency. The latter exactly overlaps with the fundamental frequency 
peak of the CD signal. Thus, the induced artifact presents a sinusoidal pattern with 
a fundamental frequency that matches the frequency of the chest compressions.

The appearance of the artifact induced by chest compressions can negatively 
affect the quality of CPR in three different aspects: first, causing misdetection of 
ventilations and consequently giving an incorrect feedback in the estimation of ven-
tilation rate; second, impeding reliable and stable ETCO2 measurements as reported 
by Raimondi et al. [38]; and third, interfering with CPR providers’ waveform 
capnography interpretation.

4. Impact of chest compression artifact on ventilation detection

This section briefly describes the conducted analysis to characterize the 
morphology of the chest compression-induced oscillations and assess its impact 
on automated ventilation detection during ongoing CPR. First, we describe the 
process followed to collect the OHCA episodes used in the study, as well as the steps 
followed to annotate each ventilation instance. Then, we describe an algorithm 
designed to automatically detect ventilations in the capnogram. Finally, we assess 

Figure 4. 
OHCA waveform capnography signal segments. (a) Nondistorted waveform and (b) capnogram distorted by 
fast oscillations.

Figure 5. 
Time-domain and spectral analyses of the oscillations present in a capnogram segment (top left). CD signal 
(bottom left). Normalized PSD analysis (right) of the distorted capnogram (solid blue) and of the CD 
signal (dotted red). The high-frequency peak around 2 Hz matches the average chest compression rate of 116 
compressions per minute.
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the impact of the artifact on the reliability of ventilation detection by testing the 
performance of the detection algorithm. For a more detailed description of the 
database used and the methods followed, see Ref. [37].

4.1 Data collection and annotation

In order to perform the analysis, a dataset of 301 episodes was selected from 
a large database collected between 2011 and 2016 as part of the Resuscitation 
Outcomes Consortium (ROC), collected by the Portland Regional Clinical Centre 
(Oregon, USA). The data collection was approved by the Oregon Health and Science 
University (OHSU) Institutional Review Board (IRB00001736). No patient private 
data was required for this study. Episodes were recorded using Heartstart MRx 
monitor-defibrillators (Philips, USA), equipped with real-time CPR feedback tech-
nology (Q-CPR) and sidestream waveform capnography (Microstream, Oridion 
Systems Ltd., Israel). Ventilation was provided with a bag valve mask (BVM), 
endotracheal tube (ETT), or the King LT-D supraglottic airway (SGA).

Three biomedical engineers participating in the study visually reviewed and 
manually annotated each OHCA episode. Episodes were classified as distorted 
if evident chest compression-induced oscillations were found during more than 
1 min of the total chest compression time. In the case of distorted episodes, experts 
annotated the location of the artifact with respect to the capnogram segment to 
characterize its morphology. Otherwise, episodes were grouped as nondistorted. 
Episodes and intervals with unreliable data caused by excessive noise or disconnec-
tions were discarded.

Figure 6 shows an example of the ventilation annotation process. The com-
pression depth (CD) signal (top panel) was used to determine whether chest 
compressions were provided or not. The position of each single ventilation was also 
annotated using the TI signal as a reference. Provided ventilations provoke slow 
fluctuations in the TI signal [39–41]. The raw TI signal was low-pass filtered to 
enhance the slow fluctuations caused by ventilations (middle panel, blue line). Each 
ventilation was annotated at the instant corresponding to a rise in each impedance 

Figure 6. 
CD signal measured with Q-CPR technology (top panel), raw TI signal acquired through defibrillation pads 
(middle panel, gray line) and waveform capnography (bottom panel). Using the low-pass filtered TI signal 
(middle panel, blue line), ventilations were annotated at the rise of a TI fluctuation, corresponding with a CO2 
rapid decay to zero.
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fluctuation (vertical red line). The capnogram depicted in the bottom panel allows 
visual confirmation of the presence of ventilations. Resulting annotations were used 
as the gold standard to evaluate the performance of an automated capnogram-based 
ventilation detection algorithm.

4.2 Method for an automated capnogram-based ventilation detection

There is remarkably little knowledge about how the proprietary algorithm of a 
commercial capnometer works. In 2010, Edelson et al. [41] proposed the first algo-
rithm to automatically detect ventilations in the capnogram during CPR. For this 
study, we designed a new algorithm for ventilation detection, based upon certain 
assumptions about the nature of the CO2 waveform.

A simplified scheme of the algorithm performance is shown in Figure 7. The 
algorithm searches for series of consecutive upstrokes (tup) and downstrokes (tdw) in 
the capnogram. These abrupt changes are detected when the amplitude of the cap-
nogram exceeds or goes below a fixed threshold, Thamp (mmHg). Then the algorithm 
extracts two features, the duration between consecutive abrupt changes, considered 
as an estimation of expiration and inspiration intervals, Dex and Din. Classification 
of potential true ventilations is done according to a simple decision tree based on 
Thex and Thin thresholds. If both duration features are greater than these thresholds, 
the ventilation is annotated at the instant when the downstroke occurs (tdw).

The performance of the algorithm was evaluated in terms of its sensitivity (Se) 
and positive predictive value (PPV). Se was defined as the proportion of annotated 
ventilations that were identified by the algorithm and PPV as the proportion of 
detected ventilations that were true ventilations. Ventilation detection instances 
were matched with the gold standard annotations if they were within ±0.5 s of one 
another. The algorithm was first trained with a subset of 30 nondistorted episodes 
obtaining the maximizing Se while assuring a PPV >98%. Ventilation detection 
performance was reported for the remaining episodes (test set), consisting of a 
mixture of distorted and nondistorted episodes.

In order to assess how the ventilation rate estimation is influenced by the chest 
compression artifact, we computed, for each episode in the whole set, the number 
of ventilations given during every minute, using a 1-minute sliding window with an 

Figure 7. 
The ventilation detection scheme is described in the top panel. Applying a fixed amplitude threshold Thamp, 
the algorithm searches consecutive upstrokes (tup) and downstrokes (tdw) in the waveform capnography signal 
(bottom-left panel). Then, it extracts the duration of the intervals Dex and Din. Finally, features greater than 
the fixed duration thresholds Thex and Thin are classified as true ventilations. Detected ventilations are depicted 
with vertical red dotted lines (bottom-right panel).
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overlap factor of 1/6. Hence, ventilation rate value was updated every 10 s. Then, we 
compared the ventilation rate measurements estimated from the ventilation detec-
tions with those computed from the gold standard annotations. Using the computed 
ventilation rate per minute measurements, we also calculated the overventilation 
alarms obtained for a 10 min−1 threshold. Then, we tested the ability of our algo-
rithm to correctly detect overventilation.

Results were reported as mean (±SD) if they passed Lilliefors normality test and 
as median (IQR) otherwise. Distribution of Se and PPV per record and distribu-
tions of the percent error in the estimation of ventilation rate were depicted with 
box plots, which graphically report median, IQR, and possible outlier values.

4.3  Characterization of chest compression artifact and ventilation detection 
performance

From the original dataset of 301 episodes, 23% were discarded (69 records) due 
to unreliable waveform capnography or TI signals. Permanent signal disconnection 
or saturation, capnograms without respiratory cycle variations or under 5 mmHg 
during the whole episode (32 records), and inability to observe ventilation fluctua-
tions in the filtered TI signal (20 records) were some of the reasons for elimination. 
Remaining 232 episodes had a mean duration of 30 (±9.5) min per episode.

A total of 98 episodes (42%) were annotated as distorted. The artifact was 
classified into three types: type I, observed primarily during the expiratory plateau; 
type II, in the capnogram baseline; and type III, spanning from the plateau to the 
baseline. No induced chest compression oscillations were found in the slopes of 
phases 0 and II. Figure 8 depicts, for each artifact type, examples of capnogram 
intervals observed during ongoing chest compressions. The ventilation annotation 
process yielded a total of 52,654 ventilation instances, with a mean of 227 (±118) 
ventilations per episode. Nondistorted episodes comprised 30,814 ventilations and 
distorted episodes 21,840 ventilations (type I, 10,119; type II, 5228; and type III, 
6493).

Global Se was 96.4% and PPV was 95.0% for the whole test subset. Reported 
performance for nondistorted episodes was higher, Se was 99.6%, and PPV was 
99.0%. However, performance decreased for the distorted subset, with values of 
Se and PPV of 91.9 and 89.5%, respectively. This phenomenon is highly noticeable 
in the case of type III episodes, where performance was drastically affected by the 
artifact, reporting values of Se and PPV of 77.6 and 73.5%, respectively. Figure 9 
(left panels) shows the performance results of the automated ventilation detection. 
Figure 9 (right panel) shows the distribution of the unsigned percent error in the 
estimation of ventilation rate per episode. For the nondistorted episodes, median 
error was 0.9 (0–1.9)%. For the distorted subset, error was 6.3 (1.7–16.9)%. For type 
III episodes, error increased to 19.6 (7.7–40.3)%.

Table 1 shows the relation between the artifact type and the airway system, and 
the algorithm performance in the detection of overventilation alarms. Overall, type 
I artifact appeared in 48% of the distorted cases, type II in 21%, and type III in 31% 

Figure 8. 
Intervals of chest compression oscillations observed in OHCA capnograms during ongoing CPR: type I, located 
in the plateau; type II, located in the baseline; type III, spanning from the plateau to the baseline.
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of them. Artifact was not present where BVM ventilation was used, although the 
sample was small. However, all types of artifact appeared in both advanced airways, 
with a higher incidence for SGA cases. In ETT cases, incidence of type III artifact 
was more prevalent, whereas in SGA cases, type I was more prevalent.

There was a 56.4% (17,901/31,760) of 1-minute overventilation annotated 
intervals. Overventilation was accurately detected in the case of nondistorted 
episodes, but performance decreased in the distorted group (type III), particularly 
with respect to PPV.

4.4 Discussion

There is a lack of evidence about the incidence and origin of the chest compres-
sion artifact. One prior study has reported the impact of these induced oscillations 
on the capnogram during OHCA CPR. In this work, published as a conference 
abstract, Idris et al. [33] reported the appearance of oscillations in 154 episodes 
from a total of 210 OHCA records (73.3%). In our study, with a similar number 
of OHCA episodes (232 vs. 210), we found a lower incidence of distorted capno-
grams (42%). This could be explained by a different criterion for distorted episode 
classification.

Ventilation rate guidance is one of the emphasized advantages of capnography 
during OCHA episodes. However, the presence of fast oscillations in the capnogram 
during ongoing CPR may limit rescuers since distorted capnograms are difficult 
to interpret. Performed analyses demonstrated the negative impact of this artifact 

Figure 9. 
Automated ventilation detection performance and error in the estimation of ventilation rate. Results are 
provided for all categories: non-D, nondistorted; I, type I; II, type II; and III, type III.

Group Total Ventilation type Gold standard Alarm detection

BVM ETT SGA NA nvr nov Se (%) PPV (%)

Total 232 7 149 73 3 31,760 17,901 99.1 92.6

Non-D 134 7 90 35 2 17,413 10,511 99.7 98.0

Distorted 98 0 59 38 1 14,347 7390 98.2 85.8

Type I 47 0 19 28 0 7167 3398 98.9 90.8

Type II 21 0 15 6 0 2826 1837 99.8 96.6

Type III 30 0 25 4 1 4354 2155 95.5 72.1

Non-D, nondistorted; BVM, bag valve mask; ETT, endotracheal tube; SGA, supraglottic airway; NA, not available; 
nvr , number of ventilation rate per minute measurements annotated in the gold standard; nov , number of annotated 
overventilation alarms.

Table 1. 
Distribution of episodes according to artifact and airway type and algorithm performance in the detection of 
overventilation alarms.
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in the detection of ventilations. Se and PPV were above 95%, and ventilation rate 
estimation errors were minimal for all the nondistorted episodes, but detection 
performance significantly decreased in the presence of oscillations. Thus, a reliable 
ventilation guidance would not be feasible for those OHCA patients.

Overventilation was common in our database: 56.4% of the annotated ventila-
tion rates were above the recommended 10 breaths per minute. Sensitivity for alarm 
detection was high for all episodes (nondistorted and distorted). However, the algo-
rithm showed a tendency to overestimate ventilation rate in the presence of chest 
compression oscillations, where PPV values were low. Induced oscillations spanning 
from the plateau to the baseline impeded a reliable detection of true ventilation CO2 
concentration changes. Hence, the presence of artifact in the waveform capnogra-
phy caused many false ventilation detections.

5. Suppression of chest compression artifact during CPR

In Section 2 we quantitatively confirmed the nature of the oscillations, with a 
single frequency matching the chest compression rate, suggesting that the artifact 
is directly caused by ongoing chest compressions during CPR. In this context, we 
hypothesized that automatic ventilation detection would improve if the oscillations 
induced by chest compressions could be successfully removed from the capnogram. 
Our next step was designing chest compression artifact suppression techniques, 
exploring different alternatives.

5.1 Frequency domain filtering techniques

The following section describes the filtering techniques used for the suppres-
sion of the chest compression oscillations induced in the capnogram. We studied 
three different alternatives: a simple fixed-coefficient filter and two computation-
ally intensive adaptive filtering techniques. To assess the goodness of the filter, 
we computed the performance using an automated capnogram-based ventilation 
detector after filtering OHCA capnograms. We also evaluated the improvement 
in ventilation rate measurement and in overventilation alarm detection. Then, we 
compared these results with those obtained before filtering, described previously in 
Section 4.4.

5.1.1 Fixed-coefficient filter

The spectral analysis performed on OHCA capnograms (see Section 3, Figure 5)  
suggests that a sensible strategy to suppress the oscillations induced by chest 
compressions in the capnogram would be to use a simple fixed-coefficient filter that 
suppresses the spectral content of the capnogram above 1 Hz (compression rate 
above 60 cpm). To that end, after analyzing the spectral characteristics of several 
waveform capnography and CD signals, we developed a digital infinite impulse 
response low-pass Butterworth filter (8th order, cutoff frequency of 1.5 Hz).

5.1.2 Adaptive filtering

Efficacy of the fixed-coefficient filter may be affected by the variability of chest 
compression and ventilation rates during CPR [17, 18, 30, 42]. In the literature, 
filters adjusted in time, according to the varying characteristics of the artifact, have 
been extensively used to suppress oscillations in the electrocardiogram induced 
by chest compressions [43–46]. In this study, we designed two adaptive filtering 
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configurations, an open-loop and a closed-loop adaptive filter [47]. Both techniques 
used the annotated chest compression instances, obtained from the CD signal as a 
reference to adjust the parameters of the adaptive filters. To do so, chest compres-
sion instances were annotated at the local minima as shown in Figure 6 (top panel), 
corresponding to the maximum depth achieved for each chest compression. For 
more details of the adaptive filters, see Ref. [48].

Open-loop adaptive filter. This technique is based on the adaptive adjustment 
of a stop-band Butterworth filter whose central frequency is adaptively adjusted 
to the chest compression rate. Average chest compression rate was estimated in 2-s 
nonoverlapped windows, using the annotated chest compression instances. Thus, 
filter parameters were updated every 2 s.

Closed-loop adaptive filter. In our approach, the required reference signal was 
modeled as a pure cosine wave of time-varying amplitude and phase, estimating the 
instantaneous chest compression rate from the chest compression instances. In this 
configuration, the artifact is adaptively estimated and subtracted from the capno-
gram, resulting in an equivalent notch filter capable of adaptively tracking the chest 
compression oscillation frequency.

5.1.3 Results

The three proposed filter schemes performed similarly, reporting favorable 
global Se and PPV values well above 97 and 96%, respectively, for the distorted epi-
sodes, and maintaining the performance for nondistorted episodes. For this reason, 
and trying to keep this section as simple as possible, results for the closed-loop filter 
are reported. These results are representative of the three approaches. Readers are 
encouraged to see full results in Ref. [48].

Globally, Se/PPV improved from 96.4/95.0% before filtering to 98.2/98.3%. 
Performance improvement for type III episodes was remarkably higher, with Se/
PPV improving from a low 77.6/73.5% to 95.5/95.5%. Figure 10 (left panels) shows, 
for each artifact type, the distribution of Se and PPV per episode, before and after 
filtering. In the case of type III episodes, the high dispersion in performance was 
drastically reduced after artifact suppression. Box plots in Figure 10 (right panel) 
show the distribution of error in the estimation of ventilation rate before and 
after filtering. In the same way, estimation error for type III episodes noticeably 
decreased after filtering.

Table 2 shows the performance improvement in the detection of overventila-
tion. Globally, Se/PPV improved from 99.1/92.6% before filtering to 97.9/98.0% 

Figure 10. 
Se and PPV distribution per episode before and after filtering (left). Distribution of the unsigned error in the 
ventilation rate estimation (right). Results are provided for each artifact category: I, type I artifact; II, type II 
artifact; and III, type III artifact.
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after filtering. Although the improvement for the distorted group was noticeable in 
all cases, improvement was remarkably higher for type III episodes, with Se/PPV of 
95.5/72.1% before and 94.8/94.2% after filtering.

A graphical example of the closed-loop filtering approach is illustrated in Figure 11.  
The raw capnogram is depicted by the solid gray line and the resulting waveform 
capnography after filtering by the solid blue superimposed to the raw capnogram. 
Each vertical dashed red line indicates a detection of ventilation given by the 
automated ventilation detector.

5.1.4 Discussion

The presented filtering techniques were designed to preprocess the raw capnogram 
before applying the ventilation detection algorithm with the aim of improving auto-
mated ventilation detection. Although the closed-loop approach showed a great balance 
in Se and PPV improvement, none of the techniques showed a distinctive superiority in 
terms of performance. Since chest compression rates tend to vary during CPR, one could 
expect that adaptive filters would present better results than a simple fixed-coefficient 
filter, but this was not the case. This could be explained in part because chest compres-
sion rate is usually ten times greater than ventilation rate; thus spectral information is 
far away from one another. The selection of the filtering strategy could be analyzed in 
terms of simplicity and computational burden. Consequently, applying a simple fixed-
coefficient filter to remove the chest compression artifact seems to be adequate.

As illustrated in Figure 11, resulting waveform capnography obtained after 
filtering approximates the mean peak-to-peak amplitude of the artifact. After 

Figure 11. 
Example of filtering performance. Original capnogram with clean and distorted respiration cycles is depicted 
by the solid gray line. Filtered capnogram (in blue) superimposed to the original capnogram. Detected 
ventilations are depicted with vertical dashed red lines.

Group Gold standard Before After

nvr nov Se (%) PPV (%) Se (%) PPV (%)

Total 31,760 17,901 99.1 92.6 97.9 98.0

Nondistorted 17,413 10,511 99.7 98.0 98.9 98.9

Distorted 14,347 7390 98.2 85.8 96.3 96.6

Type I 7167 3398 98.9 90.8 98.0 97.0

Type II 2826 1837 99.8 96.6 95.2 98.3

Type III 4354 2155 95.5 72.1 94.8 94.2

nvr , number of ventilation rate per minute measurements annotated in the gold standard; nov , number of annotated 
overventilation alarms.

Table 2. 
Performance in the detection of overventilation alarms before and after filtering.
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filtering, output capnogram waveform hinders the ETCO2 measurement and a 
reliable analysis of ETCO2 trends. Thus, clinicians may still find the capnogram dif-
ficult to interpret. Removing the artifact to improve ventilation detection and at the 
same time preserving the capnogram tracing, which favors clinical interpretation, 
require the development of new suppressing techniques.

5.2 Time-domain artifact suppression technique

In the previous section, we proposed a solution to suppress chest compression 
artifact from the waveform capnography using different filtering approaches. 
Although the automated detection of ventilations was improved, filtered capno-
grams were far from being clinically reliable.

This section explores an alternative method to remove chest compression 
oscillations from the waveform capnography signal. This technique was designed 
to improve ventilation detection focusing on the real tracing preservation. Again, 
performance metrics previously described in the chapter were used for quantita-
tively assessing the goodness of the method. This study was conducted using the 
test subset described in Section 4.4.

5.2.1 Envelope detection algorithm

The principle of this artifact suppression technique relies on the hypothesis 
that the envelope of the waveform capnography signal could be a clinically reli-
able estimation of the CO2 concentration tracing produced by ventilations. Due to 
artifact morphology and location variability reported in Section 4, the algorithm 
determines how to extract the envelope of the waveform capnography dividing its 
operation into low and high CO2 concentration intervals.

A graphical explanation of the method’s performance is given in Figure 12. To 
extract the upper envelope of the capnogram (dashed blue line), the algorithm 
detects the local maxima values (downward arrowheads) during the plateau phase 
and applies a smoothing filter. Then, in order to extract the lower envelope (dotted 
blue line), local minima values (upward arrowheads) are detected during the cap-
nogram baseline. A detailed explanation of the algorithm is provided in Ref. [49].

5.2.2 Results

Globally, performance of the automated ventilation detection in terms of 
Se/PPV improved from 96.4/95.0% to 98.5/98.3% after artifact suppression. 

Figure 12. 
Chest compression artifact suppression example. A distorted capnogram interval is depicted by the gray line. 
The blue line illustrates the waveform capnography envelope extraction process. Upper envelope (dashed blue 
line) is extracted through the detection of each local maxima (downward arrowheads), and lower envelope 
(dotted blue line) is extracted through the detection of each local minima (upward arrowheads). Detected 
ventilations are depicted with vertical red arrows.
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Performance for nondistorted episodes stayed stable, whereas Se/PPV for distorted 
episodes increased noticeably, from 91.9/89.5% to 98.0/97.3%. As it happens with 
previous filtering methods, performance improved more in type III episodes, 
with Se/PPV increasing from 77.6/73.5% to 97.1/96.1%. Figure 13 (left panels) 
depicts trough box plots, for each artifact type, the distribution of Se and PPV per 
episode given by the automated ventilation detector. In general, median values 
of both performance metrics increased after artifact suppression, and dispersion 
was reduced for all groups. These improvements were more noticeable for type III 
episodes. Performance regarding ventilation rate estimation is shown in Figure 13 
(right panel), in which box plots depict the distribution of the error before and after 
applying the suppression method. Errors were reduced in all groups, but again, 
improvements in case of type III episodes were noticeably higher.

Results after artifact suppression in the detection of excessive ventilation rates 
are reported in Table 3. In this case, Se stayed almost stable with a higher increase 
for PPV values. For the distorted subset, Se/PPV was 98.8/86.7% before and 
98.4/96.3% after suppressing the artifact, implying a reduction in false overventila-
tion alarms. Once again, most remarkable results were obtained for type III epi-
sodes, with a slight increase in Se, but with PPV increasing from 73.9 to 93.6% after 
artifact suppression.

Finally, performance of the suppression method is illustrated in Figure 14. The 
raw capnogram is depicted by a solid gray line and the resulting waveform capnog-
raphy by a solid blue line superimposed to the raw capnogram.

5.2.3 Discussion

Filtering methods to remove the oscillations from the capnogram, described in 
Section 4, improved ventilation detection accuracy. However, filtered capnograms 
do not accurately represent the CO2 concentration in intervals where the artifact 
appeared. In this section, a method that tries to preserve the waveform capnography 
has been proposed. Automated detection of ventilation instances, as well as estima-
tion of ventilation rate and detection of overventilation, improved after artifact 
suppression. Results obtained with this method were similar or even better than the 
result reported for several filtering methods (Section 4).

The idea of “preserving the capnogram waveform” refers to the extraction of 
a clinically useful capnogram. We visually analyzed several capnogram segments 
in our database showing consecutive intervals with nondistorted and distorted 
ventilations (Figure 14). In most cases, the envelope of the distorted capnogram 

Figure 13. 
Se and PPV distribution per episode before and after artifact suppression method (left). Distribution of the 
unsigned error in the ventilation rate estimation (right). Results are provided for each artifact category: I, type I 
artifact; II, type II artifact; and III, type III artifact.



15

Waveform Capnography for Monitoring Ventilation during Cardiopulmonary Resuscitation…
DOI: http://dx.doi.org/10.5772/intechopen.84430

resembled the CO2 tracing observed in the preceding and following undistorted 
respiratory cycles. Therefore, this method could enhance capnographs not account-
ing for the chest compression artifact effect.

6. Conclusions

Current resuscitation guidelines emphasize the use of waveform capnography 
during CPR in order to enhance CPR quality and improve patient outcomes. 
However, the first study presented in this chapter showed that ventilation rate 
and overventilation prevention were compromised by the high incidence of chest 
compression artifact. The appearance of artifact during ongoing CPR is unpredict-
able, and thus suppression algorithms that continuously process the raw capnogram 
could be a great approach for waveform capnography enhancement. All artifact 
suppression approaches yielded good performance in terms of sensitivity and 
positive predictive value figures of merit. However, the time-domain alternative 
was the only one that enhanced the capnogram tracing, favoring its interpretation 
during CPR. The implementation of artifact suppression techniques in current 
capnographs could increase the use of capnography in OHCA episodes, which could 
in turn contribute to improving CPR quality.
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Group Total Gold standard Before After

nvr nov Se (%) PPV (%) Se (%) PPV (%)

Total 202 25,833 15,237 99.3 93.1 98.9 97.8

Nondistorted 119 14,889 8873 99.7 98.2 99.3 98.9

Distorted 83 10,944 6364 98.8 86.7 98.4 96.3

Type I 42 5823 2961 99.1 90.7 98.7 97.2

Type II 16 2160 1570 99.8 97.8 97.5 97.7

Type III 25 2961 1833 97.2 73.9 98.7 93.6

nvr , number of ventilation rate per minute measurements annotated in the gold standard; nov , number of annotated 
overventilation alarms.

Table 3. 
Overventilation alarm detection performance before and after applying the artifact suppression method.

Figure 14. 
Examples of artifact suppression method performance. Original capnogram with clean and distorted respiration 
cycles is depicted by the solid gray line. Filtered capnogram (in blue) superimposed to the original capnogram.
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