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Abstract

This chapter will present an overview of cyanobacterial harmful algal blooms (cyano-
HABs) and biotic and abiotic factors, as well as various aspects associated with these 
worldwide ecological bursts. The exact causes of the cyanoHABs are still not well 
defined, but eutrophication and climate change (temperature increase, light intensity 
variation, etc.) are the two assumed main factors that may promote the proliferation and 
expansion of cyanobacterial blooms. However, these premises need to be profoundly 
investigated as the optimal combination of all factors such as increased nutrient loading, 
physiological characteristics of cyanobacterial species, and climate effects which could 
lead to the blooming pattern will require robust modeling approaches to predict the 
phenomena. Negative issues associated with cyanoHABs are diverse including the toxic 
products (cyanotoxins) released by certain taxa which can damage the health of humans 
and animal habitats around the related watershed as well as generate a huge water qual-
ity problem for aquatic industries.

Keywords: cyanobacteria, cyanotoxins, freshwater ecosystems, mathematical modeling, 
ecotoxicity

1. Introduction

Freshwater ecosystems (lakes, rivers, and reservoirs) play an important role in regulating 

Earth’s climate and they are of high ecological and socioeconomic value, as well as a crucial 
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life-giving resource for humanity. However, these water bodies are fragile and anthropic 

pressures such as discharge of sewage, industrial pollutants, eroding soil, and deposition of 

effluents rich in nitrates and phosphorus cumulating by the tourist industry and urbanization 
have accelerated the rate and extent of their continuous eutrophication which has led to a 

loss of water quality and biodiversity. Worldwide, the massive proliferation of cyanobacterial 
harmful algal blooms (cyanoHABs) is among the major undesirable effects resulting of eutro-

phication [1–4]. To date, environmental factors identified as contributing toward their global 
expansion included increased nutrient inputs via anthropogenic activities and temperatures 

and CO
2
 concentrations due to changing global climate [5–10]. Nevertheless, these aspects 

need to be investigated in the future and the combination of increased nutrient loadings, 

physiological characteristics of cyanobacterial species, and climate change such as increase 

of temperature and variation of light intensity and quality will require robust modeling 
approaches to predict the blooming phenomena.

Since freshwater bodies around the world can be used as drinking water reservoirs or rec-

reational areas, the blooming phenomena have gained attention as possible health hazards. 
The problems associated with toxic cyanobacterial blooms in these different areas are diverse, 
from environmental asphyxiation due to excessive consumption of oxygen, to purely esthetic 

problems in recreational areas when the blooms are a colorful and often smelly scum on the 

surface of the water [5, 11, 12]. To these common problems are added productions by cer-

tain species of cyanobacteria of various secondary metabolites with a specific toxic potential 
(hepatotoxins, neurotoxins, and dermotoxins) causing water quality problems for fisheries, 
aquaculture, farming, and sanitary hazards to human and animal health [13–17]. This chap-

ter focuses on the cyanoHAB occurrence as well as on environmental factors favoring their 

proliferation, possible human and animal health outcomes associated with their toxins and a 

review of robust modeling approaches to predict the bloom pattern.

2. Involving factors in cyanoHAB pattern

2.1. Abiotic factors

Among the abiotic factors, nutrients, including inorganic nitrogen (N) and phosphorus (P), 

temperature, and light intensity, and hydrodynamic parameters of the water body (turbidity 

and residue time) have been reported as the most important factors in the proliferation of cya-

nobacteria [2, 4, 6]. The availability of nutrients such as N and P is essential for the growth of 

cyanobacteria. For example, field experiments by monitoring surveys of phytoplankton for 3 
years (2012–2014) in Lake Erie (U.S.A.) showed that inter-annual differences in the duration, 
intensity, and toxicity of cyanobacterial blooms in this area were considered related to in-lake 

and tributary nutrient (N and P) concentrations [2]. This ecosystem observation is consistent 

with other earlier field and laboratory studies which have shown that cyanobacterial bloom 
occurrence and cyanobacterial species growth in cultures, respectively, have been controlled 

by the availability of both inorganic nitrogen and phosphorus [18–21]. However, cyanobacte-

ria taxa such as N
2
-fixing (diazotrophic) and non-N

2
 fixing (nondiazotrophic) species have a 
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variety of mechanisms to compete for nitrogen. A strong relationship between the growth and 

toxin synthesis of diazotrophic and nondiazotrophic cyanobacteria and inorganic dissolved N 
in the medium has commonly been reported in the literature [22–25]. Efforts often focus on 
total nitrogen (TN) and there exist important gaps in the understanding of how N speciation 

(NO
3
− and NH

4
+) influences cyanobacterial blooms and cyanotoxin synthesis. For example, in 

lakes showing symptoms of N limitation during late summer, numerous studies reported that 

cyanobacteria such as Microcystis, a non-N
2
 fixing genus, have been shown to become dominant 

by rapidly assimilating recycled ammonium [26–29]. Indeed, laboratory and in situ studies have 

shown that cyanobacteria appear to out-compete other algal species for reduced N forms such 

as ammonium and urea [26, 27, 30]. For example, Donald et al. [31] reported that fertilization of 
the lake Wascana (Canada) with ammonium increased total algal abundance about 350% and 
cyanobacterial biomass over 500%. In a recent study examining the effects of different forms of 
N (nitrate, ammonium, and urea) in Lake Erie (U.S.A.), Chaffin et al. [32] have shown that the 

ammonium enrichment resulted in greater cyanobacterial biovolume than in the nitrate and 

urea enrichments. While nitrate is generally the most abundant form of nitrogen in freshwater 
ecosystems, it is the least preferred form of nitrogen, since its uptake by cyanobacteria requires 
multiple steps of intracellular reduction to ammonia [32–34]. Hence, while nitrogen (N) plays a 

primary role in shaping the relative abundance of cyanoHABs in a freshwater ecosystem, phos-

phorus (P) likely acts and interacts to influence these populations as well. The ability of cells 
to store phosphorus as polyphosphates [35] allows them to double several times even in phos-

phorus-limiting conditions [36]. Phosphorus affinities are higher in cyanobacteria compared to 
eukaryotic algae [37]. The concentration of phosphorus around 0.03 mg L−1 is enough for the 

sufficient growth of the cyanobacteria [38]. Therefore, phosphorus is commonly considered to 

be the limiting nutrient in freshwater ecosystems, and high concentrations of this nutrient often 

correlate to the occurrence of cyanobacterial blooms worldwide [2, 6, 39–42]. In contrast, instead 

of considering the effects of N and P separately, numerous studies highlight the importance 
of the ratio of TN to TP (TN:TP) in determining cyanobacterial growth [42, 43]. For example, 

several studies in many freshwater bodies showed that when the ratio TN:TP decreased, a shift 

has been reported in phytoplankton assemblages toward cyanobacteria dominance [2, 12, 44].

Light intensity and quality are other important factors in phytoplankton growth. Phytoplankton 
can photosynthesize, using the pigments chlorophyll-a (Chl-a) and -b, therefore at a certain 
light intensity, depending on the species, the algae will be at maximum productivity. The 

pigments are also sensitive to specific wavelengths: blue and red light. Using two species as 
an example, Aphanizomenon flos-aquae is less light dependent than Dolichospermum flos-aquae, 

so in situations where there is less light, Aphanizomenon flos-aquae would be at maximum 

production. The cyanobacterial light harvesting mechanism is different from that of the 
eukaryotic algae and contains phycobiliproteins, which allows cyanobacteria to absorb light 

from a wide light spectrum [36]. In the fast-changing light environment, cyanobacteria have a 

photoadaptation mechanism, which reduces the number of harvesting mechanisms and turns 

the energy into the heat [36]. There is also a photoprotective mechanism that cyanobacteria 

use: energy dissipation mechanism [36]. They have a UV photoprotection mechanism as well: 

mycosporine-like amino acids (MAAs) and scytonemin that absorbs UV light and helps them 

to survive with high level of irradiance [45].
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Water temperature leads to cyanobacterial bloom development and plays a critical role in 
buoyancy and assimilation of essential nutrients and synthesis of toxins [46–48]. For example, 

Kosten et al. [19] by examining 143 lakes along a latitudinal transect ranging from subarctic 

Europe to southern South America found that temperature and TN concentrations were the 

strongest explanatory variables for cyanobacterial biomass. This finding is also consistent 
with that reported by Beaulieu et al. [20] who examined the proliferation of cyanobacteria in 

1147 lakes and reservoirs of different trophic status in the United States and showed that the 
best linear multiple regression model for predicting these events was based on TN and tem-

perature of the lake water. Therefore, in terms of global climate change, it is obvious that the 

increase of water temperature will be observed, and cyanobacteria will have the prevalence in 

the growth rate compared to the other phytoplankton.

Turbidity is another factor that influences algal growth. The particulate matter in the water 
column affects light penetration and temperature of the water. An excess of sediments in the 
water would decrease the light penetration, which in turn may prevent large algal blooms. 

The sediments also aid in lowering the amount of temperature fluctuations in the water. A 
more consistent and possibly lower temperature would help prevent large algal blooms [49]. 

The higher the pH, the higher diversity of cyanobacteria can be found with a prevalence of 

nonfixers (Microcystis spp.), while N-fixers are more dominant at low pH [50]. The structure 

of the lake plays the accessory role in bloom formations. The depth of a water body, speed 

of flow, and presence of small coves make every water body unique and need additional 
attention.

Abiotic factors described above are not the only ecological factors influencing the occurrence 
and frequent dominance of cyanobacteria in the phytoplankton. Their widespread represen-

tation in freshwaters depends also on biotic factors such as buoyancy, allelopathic effects, and 
zooplankton grazing among others that will be examined in the next section.

2.2. Biotic factors

Cyanobacterial species have numerous physiological adaptations that permit them to exploit 

nutrients and light differentially. Some species belonging to the genera Microcystis, Anabaena 
(renamed Dolichospermum), Planktothrix, Aphanizomenon, and Cylindrospermopsis among others 

possess gas vesicles that provide them buoyancy and vertical movement through the water 

column and can therefore effectively dominate other pelagic planktonic algae for available 
sunlight and nutrients [51]. This physiological capacity confers a substantial ecological advan-

tage to these species, as they can congregate at a dense mass in the water column of stratified 
lakes and move up and down in the water column to maximize photosynthesis in the surface 
layers where there is more photosynthetically active radiation and to take up nutrients in dark 

deeper layers where the concentration of nutrients is higher. In addition, the ability of these 

genera to fix and assimilate dissolved nitrogen gas when the external concentrations of dis-

solved nitrate and ammonia fall to low levels is a supplementary biotic factor that offers them 
an ecological advantage over other phytoplanktonic species [52, 53]. Moreover, the resistance 

of the larger, gas-vesicle colony-forming cyanobacteria such as Microcystis to sinking loss or 

consumption by grazers can provide a significant advantage when this factor operates against 
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small, nonmotile unicellular phytoplankton [54–56]. In addition, some species of cyanobac-

teria produce allelopathic substances that prevent the growth of submerged vegetation and 

other algae [57, 58], as well as increased resistance to predation by zooplankton, reducing the 
diversity of grazing species, and therefore the formation of blooms [59]. Besides zooplankton 
grazing, fish activities, benthic fauna, bacteria relationship, and viral lyses are considered as 
supplementary biotic factors that control algal blooms [7].

3. Mathematical modeling: a necessary approach for studying 

cyanoHAB proliferation

3.1. General context

As we notice from previous parts, relationships between the bloom patterns and involved fac-

tors are highly complex, therefore appropriate prognostic techniques to forecast blooms and 
evaluate their spatio-temporal evolution are indispensable. However, due to the complicity 

and nonlinearity of the phenomenon, none of the research on predictive approaches seems 

accurate and none has performed well to date. Moreover, no existing research could help to 

identify the very important factor: thresholds of blooms under the environmental conditions. 

This part of the chapter will review some mainstreams of mathematical models used in the 

bloom prediction.

3.2. Deterministic versus probabilistic

With the development of super-powerful computers and computational techniques, many 
mathematical models for predicting the algal growth have been developed in recent years. 

There are two main families of mathematical models which are commonly used: determin-

istic and probabilistic (or stochastic). The deterministic approach can be chosen when the 

nature of problem and dataset have well determined, repeatable, and fixed outputs for the 
same inputs. This means they have a precise cause-effect relationship. Conversely, a stochastic 

approach is preferable when a system has some inherent randomness and we must estimate 

possible outcomes with their occurrence probability to define its behavior. Stochastic models are 
fundamentally built based on the randomness and uncertainty of the nature of bloom pattern, 
reflected through a large amount of field data. These data are indispensable for the modeler to 
validate and test the precision and accuracy of their models. Among the category of stochastic 

models, machine learning techniques provide many powerful tools to solve some relevant 
difficulties in predicting HAB. Machine learning techniques were developed for quantita-

tive finance, enabling researchers to tap huge datasets. There are many publications in recent 
years in which diverse Supervised Machine Learning (SML) models have been applied to 

solve a wide range of problems, including the Artificial Neural Network (ANN) and Support 
Vector Machine (SVM). ANN is a SML approach widely used to predict the algal abundance 

[60–64] while SVM is used much less in algal research [65–67]. Some studies used genetic 

algorithms (GA) to create prediction model [68, 69]. The basic concept of these models lies in 

the combined effects of a set of explanatory variables (Xi) on one or some target variables (Yi), 
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and then classification or regression decision depending on the nature of Yi. The variables Yi 
(outputs of the study) in most of the models target the pigment Chl-a, which stands for the 

growth of algal communities, biomass (algal abundance) quantity, and the number of algal 
cell counts.

Wei et al. [61] suggested a model to predict the timing and magnitude of four different types 
of algae: Microcystis, Oscillatoria, Synedra, and Phormidium. Algal blooms responded to the 

orthogonal combinations of water temperature, light penetration, dissolved oxygen, chemical 

oxygen demand, total nitrogen (TN), total phosphorus (TP), zooplankton, and pH value. This 
study used backpropagation ANN; data in this study were collected monthly during 15 years 

from 1982 to 1996 and these data were divided randomly into two sets: training dataset and 

testing dataset. This study also analyzed the sensitivity of the model in which pH played a 
key role in the blooming of algae and all four types of algae are more sensitive to TP than TN.

Another study conducted by Wilson and Recknagel [60] used feedforward ANN to predict 

the bloom of algae in Australia. They suggested a regression model between four inputs 

(phosphorus, nitrogen, underwater light, and water temperature) and one main output (bio-

mass) was designed. In 30-day-ahead model, beside algae biomass, they added the second 

output chlorophyll-a and used time delay neuron network structure where inputs are one-

time step (e.g., 30 days) in the past relative to output variables. Fernández et al. [70] suggested 

a model to predict the presence of cyanotoxins in fresh water in Spain. A group of six inputs 

consisting of both biological and chemical factors is used and the output is the presence of 

cyanotoxins (μg L−1). The most significant aspect of this model is the product of the concentra-

tion of M. aeruginosa and W. naegeliana, followed by turbidity, total phosphorus, alkalinity, 

and water temperature. This model used generic algorithm (GA) and multivariate adaptive 

regression spline (MARS) techniques in which 10-fold cross validation was used to train and 
validate the model. Park et al. [62] developed an early-warning model for freshwater algal 

bloom based on Chl-a concentration using ANN and SVM. These authors used the weekly 

data in 7-year period (from 2006 to 2012) to design a 7-day interval prediction model for two 

lakes in Korea. Five water quality parameters including Chl-a, orthophosphate as phosphorus 
(PO

4
-P), ammonium nitrogen (NH

3
-N), nitrate nitrogen (NO

3
-N), water temperature, and two 

meteorological data (solar radiation and wind speed) are inserted as inputs and output for 

ANN and SVM models.

Recently, Nelson et al. [71] used the Random Forest algorithm to characterize and quantify 
relationships between 10 different conditions and five dominant cyanobacteria genera. All 
explanatory variables were lagged by 1-month step to reflect the division rates of cyanobac-

teria in natural environments. Outputs are the biomass values of five different types of cya-

nobacteria genera.

As approaches using the probabilistic models are limited due to their complex concepts and 

high randomness levels, especially due to the needs of a large amount of data to validate 

them, which use various factors that influence cyanobacterial growth, the deterministic strate-

gies will allow the evaluation of the risks associated with cyanobacteria in the context of “less 

data needed” and moreover, many physical parameters could be incorporated in coupling 

with biochemical factors. Various deterministic approaches [72–78] have been used in the 
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understanding of the distribution of cyanobacteria. The Lagrangian deterministic model fol-

lows the cyanobacterial colony in the water column so that a mathematical model can be 

created to describe bloom density. The Kromkamp and Walsby [72] model is only used to 

estimate settling velocities and the Visser et al. [76] model is an improved model, which 

incorporates the irradiance-response curve of density change and proposed an equation that 
describes the rate of density change in the dark. The Lagrangian approach is used for study-

ing movement of cells in a laboratory setting, but an Eulerian approach enables exploration 
of full-scale spatial distribution of cells at specific times. Bruggeman and Bolding [79] built a 

framework called the Fortran-based framework for aquatic biogeochemical models where the 
biochemical model was connected to a physical model. Then a self-contained complex bio-

logical model was combined with a hydrodynamic model by the Fortran-based framework 

for aquatic biogeochemical model. This model was used to calibrate physiological parameters 
for the phytoplankton. Recently, the work of Ndong et al. [80] has shown a sophisticated 2D 

Eulerian frame model to evaluate the phototactic behavior effect of cyanobacteria, as well as 
the effects of light and wind on the distribution of cyanobacteria and estimate coupled effects 
of biological and physical factors on cyanobacteria.

The new tendency of research based on the deterministic approach is using remote sensing 

data or satellite imagery in the detection of the spatiotemporal patterns of blooms and explains 
how they change under the environmental conditions. The issue with this imagery is that the 

movement patterns of cells in the water column may be missed. The response to light intensity, 
nutrient levels, and temperature also needs to be considered, which means that numerical data 

along with imagery are required to complete the data. Agent-based models have been used to 
observe the 2D and 3D transport trajectories of cyanobacteria. These models are coupled with 

an Eulerian model, which allows the cyanobacteria to drift in the model [81–83].

3.3. Future perspectives

The overall and common goal of all models was to attempt to explain the risks of algal/ 
cyanobacterial blooms and to study their evolution under environmental conditions leading 

to the improvement or decision process used to monitor cyanobacteria. However, as previ-

ously mentioned, almost all existing models have focused on the target variables such as Chl-a 

concentration development, cell count numbers of taxa or genera, biomass, etc.; from them, 

authors could conclude about the bloom situation. There are therefore two main directions 

of modeling among many others that should be developed: (1) determination of biophysical 

threshold for blooms and (2) quantifying and modeling the toxin concentration released by 
toxic species.

Remote sensing data combined with machine learning algorithm are also an encouraging 
perspective. But one of the potential pitfalls for machine learning strategies is the extremely 

low signal-to-noise ratio. Machine learning algorithms will always identify a pattern, even if 
there is none. In other words, the algorithms can view flukes as patterns and hence are likely 
to identify false strategies. Every model regardless of what category it belongs to can have its 

weak and strong points and need a serious validation step to be universally applicable, useful, 

and accurate.
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4. Dominant taxa found in cyanoHABs in freshwater

Although cyanobacterial blooms are a worldwide phenomenon, there are differences in 
typical genera found in temperate and tropical regions (Table 1). Microcystis was the most 

frequently occurring bloom genus throughout the world, while Cylindrospermopsis and 

Dolichospermum (Syn. Anabaena) blooms occurred in various tropical areas such as Australia, 

America, and Africa.

5. Negative outcomes from cyanoHABs

5.1. Cyanobacterial toxins and their environmental concentrations

Cyanotoxins are classified according to their mode of action into three families: neurotoxins 
(nervous system), hepatotoxins (liver), and dermotoxins (skin) [4, 17, 91]. Blooms formed 

by cyanobacteria producing hepatotoxins (microcystins and cylindrospermopsin) are more 

widespread than neurotoxic blooms [4, 92–95] and therefore, they are considered priority for 

biomonitoring, especially in drinking and recreational waters.

Cyanotoxins are intracellular toxins that are released into water only during cellular senes-

cence or death and lysis or through water treatment processes such as application of algaecide 

[96, 97]. Therefore, total concentrations (intracellular plus extracellular) of microcystins, the 

Region Dominant species References

Africa Microcystis flos-aquae, M. wesenbergii, Oscillatoria sp., Dolichospermum sp., Lingbya sp.,  

Anabaenopsis sp.

[3, 48, 84, 85]

Western Asia Planktothrix rubescens, M. aeruginosa, Nodularia spumigena, Aphanizomenon 

ovalisporum, P. agardhii, Synechocystis sp., Dolichospermum sp.

[84, 86]

Southern Asia Dolichospermum sp., Aphanizomenon sp., Microcystis sp., Cylindrospermopsis sp., 

Planktothrix sp.

[84, 86]

Eastern Asia Dolichospermum sp., Microcystis sp., Aphanizomenon sp., Merismopedia sp., 

Cylindrospermopsis sp., Nostoc sp., Planktothrix sp.

[7, 84, 85]

Oceania D. planctonicum, D. circinale, Aphanizomenon tenuicaulis, C. raciborskii,  

A. ovalisporum, A. issatschenkoi, P. rubescens, Kamptonema formosum, M. aeruginosa, 

M. panniformis

[48, 84–86]

South and 

Central America

M. aeruginosa, Cylindrospermopsis sp., Dolichospermum sp., Nodularia sp., Lingbya sp. [7, 48, 84, 85]

North America M. aeruginosa, M. viridis, M. wesenbergii, Aphanizomenon schindleri, D. flos-aquae,  

D. planctonicum, D. circinale, D. lemmermani, D. smithii, D. viquiera, C. raciborskii,  

P. rubescens, Lyngbya majuscula, L. wollei, Phormidium sp., Woronichinia naegeliana

[7, 87–89]

Europe Microcystis sp., Dolichospermum sp., Aphanizomenon sp., Planktothrix sp., Nodularia sp.,  

Cylindrospermopsis sp., Phormidium sp., Anabaenopsis sp., Gloeotrichia sp.

[7, 84, 86, 90]

Table 1. Dominant cyanobacterial taxa recorded worldwide.
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most common cyanotoxins, vary from trace to several milligrams per liter [91, 98]. For exam-

ple, very high concentrations have been reported up to 8428 μg L−1 in Southwest wetlands, 

Australia [99], 19,500 μg L−1 in Lake Suwa, Japan [41], 23,718 μg L−1 in Dam Nhanganzwane, 
South Africa [100], 29,200 μg L−1 in Lake Oubeira, Algeria [101], or 36,500 μg L−1 in Lake 

Horowhenua, New Zealand [102]. Messineo et al. [103] reported that in several Italian lakes, 

concentrations of total cylindrospermopsin varied from nondetectable values up to 126 μg L−1. 

However, neurotoxins are less common in the freshwater ecosystems. For example, Rapala 
et al. [104] reported up to 1070 μg L−1 of saxitoxin in Finnish lakes. Anatoxin-a was detected 

in two shallow reservoirs (Konstantynów and Kraśnik) in Poland at concentrations ranging 

from 0.03 to 43.6 μg L−1 during a bloom of D. flos-aquae [105]. Recently, Roy-Lachapelle et al. 
[106] reported that the concentrations of the BMAA in 12 different lake waters in Canada 
ranged between 0.009 and 0.3 μg L−1.

5.2. Ecotoxicological effects of cyanotoxins

Cyanotoxins such as hepatotoxins and neurotoxins target in humans and animals the liver 

and nervous system, respectively, but they often have important side effects too. When pres-

ent in freshwater ecosystems, they may also affect organisms at different trophic levels, espe-

cially those having identical or similar target organs, tissues, or cells.

5.2.1. Acute effects

The occurrence of cyanoHABs in aquatic ecosystems is often associated with fish mortal-
ity (Figure 1). In addition, terrestrial organisms such as livestock, dogs, and birds that are 

associated with these freshwater ecosystems in which cyanoHABs occur may also be at risk 

of cyanotoxins exposure from preying on toxic aquatic prey and/or drinking contaminated 
water. For example, Georges Francis was the first in 1878 to implicate cyanobacteria in the 
poisoning of farm animals, in Alexandrina Lake, Milang, Southern Australia [107]. Since then, 

a significant number of cases of animal poisonings attributable to cyanotoxins have been 
documented worldwide [108–111]. Fish and invertebrates which are exposed over their entire 

life cycle to cyanotoxins are the most aquatic organisms affected, followed by birds, livestock 
and poultry, and dogs [111]. Acute ecotoxicity data of cyanotoxins were compiled by several 

studies [112–114]. The most documented cyanotoxin effects are those on microcystins due to 
their occurrence at high concentrations up to 28 mg L−1 and the dominance of cyanobacterial 

species producing them [91]. In addition, depending on their mechanism of action as potent 

and specific inhibitors of protein phosphatases and inducer of oxidative stress, microcystins 
can affect a range of invertebrate and vertebrate organisms [109, 114, 115]. Therefore, they 

cause changes in the trophic levels and adverse impacts on the functioning of freshwater eco-

systems. This begins with the zooplankton community, which has its composition changed, 
especially by the mortality of certain species resulting therefore in the reduction of their diver-

sity [59, 109, 116, 117]. For example, the copepod Diaptomus birgei was the most sensitive to 

microcystins with a lethal concentration (LC
50

) at 48 h of 0.45 to 1.0 μg mL−1 followed by the 

cladoceran Daphnia pulex, D. hyaline, and D. pulicaria with LC
50

 at 48 h of 9.6, 11.6, and 21.4 μg 

L−1, respectively [109].
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However, mollusks and decapods appeared to be relatively tolerant to microcystins [109, 111]. 

For example, the LC
50

 at 96 h for microcystin-LR equivalent in the decapod Kalliapseudes schu-
bartii [118] and the crayfish Procambarus clarkia [119] is 1.58 and 0.567 mg L−1, respectively. 

Similarly, bivalves bioaccumulate high concentrations of microcystins without symptoms of 

acute toxicity [120].

Mass mortalities of fish have also been attributed to microcystins [14, 111, 121]. However, 

some studies suggested that most of fish mortalities can also be attributed to hypoxic condi-
tions resulting from bloom respiration and senescence and not only to cyanotoxins [122, 123]. 

Like bivalves, fish appear to be less sensitive to toxin’s short-term exposure than zooplankton. 
For example, experimental investigations on the rainbow trout have been shown that this fish 
species appeared to be relatively tolerant to high concentrations of microcystin-LR and death 
was recorded only at 1000 μg kg−1 bw [124]. Several studies reported that the dose inducing 

the mortality of the half of the test population (LD
50

) of microcystin-LR in fish ranges from 20 
to 1500 μg kg−1 body weight [125].

For the other classes of alkaloid cyanotoxins such as cylindrospermopsin and neurotoxins 

(anatoxins and saxitoxins), there are few or no studies that have examined their acute toxic-

ity on aquatic organisms. For example, Ferrão-Filho et al. [126] reported that the exposure 

of three cladoceran species (Daphnia gessneri, D. pulex, and Moina micrura) to a saxitoxin-

producer strain (T3) of Cylindrospermopsis raciborskii at cell densities of 103 and 104 cells/mL 
for 24 h resulted in a complete paralysis of D. pulex; however, D. gessneri was not sensitive 

and M. micrura was intermediate in sensitivity. Osswald et al. [127] demonstrated that when 

common carp Cyprinus carpio larvae were exposed to a lyophilized suspension (107 cells/mL) 
of a strain of Anabaena sp. producing anatoxin-a, all fish died between 24 and 29 h.

5.2.2. Subchronic and chronic effects

Aquatic organisms are continuously exposed over long periods of time or even their entire life 
cycle to cyanotoxins; therefore, evaluation of chronic effects of these toxins is important for 
an accurate environmental risk assessment. Several studies have shown that aquatic organ-

isms that are exposed in the long term to cyanotoxins through the diet may die or display 

impaired feeding, immunosuppression, increased susceptibility to disease, avoidance behav-

ior, physiological dysfunction, abnormal development, and reduced growth and reproduction  

Figure 1. Microcystis sp. bloom associated with fish mortality (photo: N.Y. Benayache).
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[109, 125]. For example, chronic exposure of parent Daphnia magna to either microcystin-LR at 
5 or 50 μg L−1, or to cyanobacterial crude extract containing the same amount of total micro-

cystins, resulted in the decrease of the survival of offspring or cessation of eggs and reduced 
number of neonates and deformations of neonates such as incomplete development of the 

antennae [128]. Moreover, several studies have shown that when embryos and larvae of dif-

ferent species of fish including chub (Leuciscus cephalus), common carp (Cyprinus carpio), loach 

(Misgurun smizolepis), rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio) were 

immersed in solutions of 0.5–50 μg microcystins/L for up to 30 days, it resulted in interferences 
with hatching, developmental defects, liver damage, and/or increased mortality [129–132]. In 

another chronic study, Ernst et al. [133] by investing the effect of a high microcystin concentra-

tion on eggs and larvae of whitefish (Coregonus lavaretus) exposed to blooms of Planktothrix sp. 

during winter 1998 and 2000 in a Lake Ammersee (Germany) hatchery reported malformations 

of eggs and disturbances of reproduction success, suggesting that the disappearance of some 

coregonid age groups observed in this lake may be a result of these development effects of 
microcystins. In a laboratory study, oral subchronic exposure of the common carp (mean body 

weight of 322 g) to Microcystis by feeding with bloom scum at a dose of 50 μg microcystins/kg 
body weight for 28 days resulted in inhibition of growth, severe damage in hepatocytes, and 

significant increase of some plasmatic enzyme activities such as alanine aminotransferase and 
aspartate aminotransferase [134].

5.2.3. Ecotoxicity of cyanotoxin mixtures

Aquatic organisms are most likely subject to acute, subchronic, and chronic impacts resulting 
from exposure to a mixture class of cyanotoxins and not to individual toxins. Cyanobacterial 

species producing different toxins such as hepatotoxins, neurotoxins, and dermotoxins have 

been shown to coexist in blooms [91], therefore making the exposure to toxin mixtures a 

plausible scenario. To investigate this scenario with considering the possible synergistic 

toxicity of complex matrices, Esterhuizen-Londt et al. [135] tested the effects of two artifi-

cial toxin mixtures containing cyanobacterial hepatotoxins (microcystin-LR, -YR, and -RR), 
cyanobacterial hepatotoxins (microcystin-LR and cylindrospermopsin), and the neurotoxin 
β-N-methylamino-l-alanine hydrochloride, respectively, versus a crude cyanobacterial bloom 

extract (dominated by Microcystis aeruginosa with minor proportions of Anabaena sp. and 

Oscillatoria sp.) on the oxidative status of Daphnia pulex. The results showed that the cyano-

bacterial extract elicited higher oxidative stress response on D. pulex compared to exposure 

with the two artificial toxin mixtures. According to these studies, authors suggested that other 
unidentified compounds present in the cyanobacterial extract with synergistic effects may 
enhance the toxic effects. In fact, previous studies found stronger developmental effects of 
cyanobacterial extracts containing microcystins [136, 137] on the African clawed frog Xenopus 

laevis embryos and anatoxin-a [138] on common carp Cyprinus carpio larvae than their respec-

tive purified toxins.

In addition, in natural environments, cyanotoxins could interact with other anthropogenic 

micropollutants present in aquatic ecosystems and therefore, could attenuate or potentiate 
their adverse effects on aquatic organisms. For example, combined influence of microcystin-
LR and a pesticide, carbaryl, was investigated on Daphnia pulicaria [139]. The results showed 
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that the interaction between carbaryl and microcystins was highly significant and the two 
chemicals in a combinatorial exposure induced synergistic effects with frequent premature 
offspring delivery with body deformations including dented carapax or undeveloped heart. 
Furthermore, Cazenave et al. [140] observed less pronounced teratological effects within 24 h 
as well as nonsignificant increase in the activity of glutathione S-transferase (GST) in embryos 
of zebrafish (Danio rerio) exposed to either microcystin-LF or microcystin-RR in combination 
with natural organic matters compared to embryos exposed to pure toxins.

5.3. Bioaccumulation of cyanotoxins in food web and impacts on animal and human 

health

Zooplankton have been clearly identified as the best bioaccumulator of cyanotoxins and may 
transfer them to higher trophic levels in the aquatic food web [141–144]. Mollusks have also 

been shown to accumulate high concentrations of cyanotoxins with hepatopancreas being the 

organ presenting the highest concentrations followed by the intestines [115, 145]. As with inver-

tebrates, fish can also accumulate high concentrations of microcystins but on average 3.5 times 
lower in planktivorous fish than in zooplankton [115]. For example, the highest concentrations 

of microcystins were found in the liver of the planktivorous fish Osmerus eperlanus reaching up 

to 874 μg microcystins/g dry weight [146]. However, in another planktivorous fish such as the 
silver carp Hypophthalmichthys molitrix, the highest concentrations of microcystins were found 

in the intestines reaching up to 137 μg g−1 DW [147]. Carnivorous fish, meanwhile, accumulate 
less microcystins with the maximum concentration up to 51 μg g−1 DW measured, for example, 
in the liver of perch Perca fluviatilis [146]. Overall, carnivorous fish, as superior predators, had 
lower mean microcystin content than planktivorous and omnivorous fish, suggesting transfer 
and bioaccumulation of microcystins, however without biomagnification in the food chain. 
In contrast, fish may act as an efficient vector of cyanotoxins to upper trophic levels such as 
birds and humans. In fact, numerous bird deaths have been reported in which most deaths 

are associated with the consumption of toxic prey, for example, fish or mollusks that have 
consumed or otherwise bioaccumulated cyanobacterial toxins [109, 110, 148, 149]. For humans, 

Chen et al. [150] confirmed for the first time the presence of microcystins in serum samples 
(average 0.39 ng/ml) of fishermen at Lake Chaohu, China. According this study, daily intake 
by the fishermen was estimated to be in the range of 2.2–3.9 μg MC-LR equivalent, whereas the 
provisional World Health Organization tolerable daily intake (TDI) for daily lifetime exposure 
is 0.04 μg kg−1 or 2–3 μg per person. However, as has been described previously, the different 
species of fish accumulate microcystins mainly in the intestine and liver/hepatopancreas; this 
poses no risk to human health if these organs are taken from animals before consumption.

6. Conclusions

The chapter has sketched a general overview on cyanoHABs which recently become a real 

worrisome issue at the global scale due to their effects on water resources and animal and 
human health. They will cause ongoing issues as they will certainly reoccur over and over the 

coming years, especially under the promoting factors of climate changes and global warming 

effects, as much as the abuse of all watersheds due to anthropogenic actions.
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Different research studies around the world have highlighted the complex relationships 
between cyanobacterial growth and environmental factors. The cyanoHAB dominance can 

result from a variety of interactions among biotic and abiotic components. The presence of 

toxic cyanobacteria can influence the human society at all scales, such as direct effects on 
drinking and recreational water resources, as well as the transfer of their toxins to higher 

trophic levels, resulting in fish kills and threats to all animal and human health.

Keeping our water resources clean, healthy, and safe for current and next generations becomes, 

therefore, a big challenge for our planet. The task of monitoring and managing cyanobacterial 

blooms and their negative outcomes including toxins released is a pressing concern for all. 

The chapter hence will serve to increase awareness of common challenges and existing capaci-

ties as well as lay the foundation for ongoing discussion and research on various subjects 

related to CyanoHABs that will be needed for effective management for the years to come.
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