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Chapter

Mechanisms of Action of 
Multipotent Mesenchymal Stromal 
Cells in Tendon Disease
Janina Burk

Abstract

Multipotent mesenchymal stromal cells (MSCs) are a promising therapeutic tool 
to treat tendon disease. Aiming to establish successful treatment approaches and to 
fully exploit the regenerative potential of the MSC, it is crucial to understand their 
mechanisms of action. However, these can be multifaceted and strongly context-sen-
sitive and are still not well-understood in the context of tendon disease. This review 
aims to shed light on the different possible mechanisms, including engraftment, teno-
genic differentiation, extracellular matrix synthesis and remodeling, immunomodu-
lation, pro-angiogenetic effects, trophic support, and protection of resident tendon 
cells. Evidence from experimental and clinical (veterinary) case studies was compiled 
and interpreted in conjunction with the respective in vitro and animal models used.

Keywords: MSC, ASC, progenitor cell, tendon, mechanism of action, engraftment, 
differentiation, extracellular matrix, remodeling, immunomodulation, trophic 
support

1. Introduction

Tendinopathy is a common cause of recurring pain and long-term impairment 
in leisure and professional athletes, increased age being an additional risk factor. 
The prevalence of clinically manifest conditions in risk groups is high: in a cohort of 
football players, 21% suffered from Achilles tendon problems [1]. Moreover, even in 
clinically healthy volunteers, ultrasonographic evidence of Achilles tendon altera-
tions was found in 16% [2]. This indicates that clinical manifestation is only the 
tip of the iceberg, the basis of which is a long-term interplay of inflammatory and 
degenerative changes.

Tendons have to withstand high mechanical loads and serve as an energy storage 
with elastic properties. The required biomechanical properties are provided by 
the extracellular matrix (ECM) [3], which is largely composed of hierarchically 
structured, cross-linked, and crimped collagen type I fibrils. The tenocytes, while 
representing only 5% of the tissue volume, maintain the ECM structure by constant 
remodeling. This normally enables biochemical and biomechanical adaptations to 
exercise [4]. Recurrent overuse impairs this physiological adaptation.

The onset of tendinopathy is currently understood as the result of a failed 
healing response to repeated tissue trauma. Microruptures, oxidative, mechani-
cal, and heat stress activate resident cells and trigger a cascade of inflammation 
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and degeneration, culminating in ECM deterioration. Key molecules involved 
include vascular endothelial growth factor (VEGF), interleukin (IL)-1, tumor 
necrosis factor (TNF)-α, prostaglandin (PG)E2, glutamate, and substance P 
[5, 6]. These mediators foster the ingrowth of blood vessels and nerves and the 
activation of nociceptive pathways. They are also implicated in the upregula-
tion and activation of matrix metalloproteinases (MMP) and downregulation 
of their endogenous inhibitors (tissue inhibitors of matrix metalloproteinases; 
TIMP) [7]. This entails ECM degradation which successively alters and weakens 
the ECM structure [6]. When the accumulated damage and sensitization reach 
a threshold, clinical manifestation of tendinopathy comprises classical signs of 
inflammation including pain. Furthermore, provoked by new overload events, 
massive tissue trauma can occur. The resolution of inflammation is crucial to 
limit tissue damage, yet this mechanism often fails. Promoting fibrosis, a lack 
of pro-resolving signals, and persistence of macrophages entails the continuing 
activation of fibroblasts [8, 9]. Furthermore, macrophages could further contrib-
ute to ECM degradation via MMP secretion. Once at a diseased state, the intrinsic 
regenerative capacity of tendons is poor. Although endogenous mesenchymal 
stem-like cells with high tenogenic potential reside within tendons [10–12], these 
are susceptible to damage and suffer age-related changes [13, 14]. In pathological 
states, they could even contribute to fatty degeneration, fibrosis, and heterotopic 
ossifications [15, 16].

Treatment of tendinopathy still represents an unsolved challenge. Mainly, the 
use of strict rehabilitation exercise regimens is sufficiently evidence based [17, 18]. 
Anti-inflammatory drugs are frequently used, but they do not only counteract the 
active inflammation but also its resolution [19]. Biologicals such as platelet rich 
plasma have also received much attention, but clinical evidence is not convincing 
[17, 20, 21]. Research also focuses on the potential of endogenous tendon progeni-
tor cells [22], which may be a promising strategy but will not be addressed in this 
review.

Multipotent mesenchymal stromal cells (MSCs) represent a therapeutic tool 
which might meet the clinical need of an adaptive treatment that simultaneously 
addresses different aspects of the disease. MSCs reside in virtually any tissue, in 
close proximity to the vasculature [23, 24]. MSCs derived from bone marrow and 
adipose tissue (BMSC and ASC, respectively) have been most extensively character-
ized [25, 26]. The fibroblast-like cells have been defined by a set of inclusion and 
exclusion antigens, their plastic-adherence, and trilineage differentiation potential 
in vitro [26]. While their differentiation potential into mesenchymal cell types, 
including tenocytes [27], has led to their extensive use in tissue engineering, it has 
become evident that their therapeutic potential by far exceeds cell replacement 
[24, 28]. While proof of MSC engraftment is often lacking, MSC-based cell therapy 
has shown beneficial effects in diverse scenarios in animal models, mostly medi-
ated by immunomodulatory and trophic mechanisms [29–33]. Particularly, the 
immunomodulatory potential is extensively being researched and already exploited 
clinically, e.g., for treatment of graft-versus-host disease [34–36].

The use of MSC for tendon repair was first suggested in 1998 [37] and, interest-
ingly, has been published as a case report on an equine patient as early as 2003 [38]. 
Since then, several experimental animal studies—the recent ones being reviewed 
here—and case series in equine patients [39–41] have raised hope that local 
implantation of MSC into acute tendon defects improves healing. However, trans-
lational progress into human orthopedics is underwhelming, and although equine 
patients are being treated and few first-in-man clinical trials have been performed 
or initiated [42–44], convincing evidence from randomized, controlled clinical 
studies has neither been obtained in equine nor in human patients so far [45]. This 
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may in part be due to our still limited understanding of the MSC mechanisms of 
action in tendon healing, which delays the development of targeted treatment 
approaches.

The aim of this review was to collect the evidence for the different possible MSC 
mechanisms of action in the treatment of tendon disease. In vitro and in vivo stud-
ies published within the last 5 years were screened and their results were compiled, 
focusing on MSC-based cell therapy using BMSC or ASC.

2. Tendon regeneration and defect models

2.1 In vitro and ex vivo models

In vitro and ex vivo models relevant to MSC mechanisms of action in tendon 
regeneration comprise two major groups, with some overlap (Figure 1). The 
first includes the wide range of models for tenogenic differentiation [10, 46–94]. 
Among these, approaches in three-dimensional dynamic cultures appear most 
representative for MSC mechanisms in vivo [57, 58, 64, 70, 74, 77, 79, 83, 84, 86, 87]. 
Typically assessed parameters following tenogenic differentiation include the 
expression of tenogenic transcription factors (scleraxis and, in the more recent 
studies, mohawk), the transmembrane glycoprotein tenomodulin, as well as the 
expression and deposition of extracellular matrix components (e.g., collagen I, 
collagen III, decorin, and tenascin-C) and biomechanical parameters in case of 
tissue engineered constructs. Upregulation of matrix components such as collagen 
I or tenascin-C and improved construct strength do not only suggest tenogenic dif-
ferentiation but also indicate ECM-modulating activities of the MSC. However, it 
should be acknowledged that no truly specific tendon marker has yet been identi-
fied, and that only expression patterns of combined marker sets, e.g., collagen I, 
scleraxis, and tenascin-C, discriminate healthy tendon from diseased tendon or 
other musculoskeletal tissues [95].

The second group includes models investigating the interaction of MSC with teno-
cytes and/or the tendon ECM, using co-cultures of MSC and tenocytes, their respec-
tive conditioned media, or tendon explants [48, 69, 74, 75, 88, 91, 92, 94, 96–105]. 

Figure 1. 
In vitro models.
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Outcome parameters assessed in these studies are more diverse and include cell 
viability, proliferation, and metabolic parameters, expression and/ or release of growth 
factors, cytokines, MMPs and TIMPs, expression of ECM receptors and cytoskeleton 
formation, ECM protein release or deposition, or modulatory effects on immune cells 
(e.g., macrophage M1/M2 switch). Consequently, these studies provide insight into 
MSC trophic effects, immunomodulatory, or matrix-modulatory mechanisms.

The figure gives an overview of the in vitro models included in this review, illus-
trating the overlap between tenogenic differentiation models and coculture models, 
and summarizes the most commonly assessed outcome parameters. Note that in 
this context, the term “coculture” is used to summarize the models investigating the 
interplay between tenocytes and MSC, thus it does not exclusively refer to cocul-
tures of different cell types but also includes cell culture models using conditioned 
media or tendon explants.

2.2 In vivo models

In vivo studies on MSC-based tendon therapies need to be discriminated with 
respect to the animal model used (small vs. large, type of disease or defect model) 
and the treatment approach (strategy for MSC delivery, possible adjuvant treat-
ments, timing of treatment, MSC source, and cell numbers applied).

Animal species used comprise small (rats [54, 106–118] and rabbits [119–122]) 
and large animals (dogs [123–126], sheep [127–129], and horses [130–141]). 
Interestingly, there appears to be a fair balance between small and large animal 
studies. This suggests preclinical progress, but it is also due to the interest in the 
equine species within the veterinary community. The tendon defects were created 
surgically in the majority of studies, with full thickness transections or segmental 
defects (mostly in the Achilles tendon) used in small animals or dogs and surgically 
created core lesions in the superficial digital flexor tendons in the equine model. 
Although there is reason to believe that enzymatical induction of tendon lesions 
better mimics the ECM degeneration and inflammation in tendon disease, only few 
among the recent studies used collagenase-based tendinopathy models [106, 108, 
110, 129, 137, 139]. Still, neither surgical nor enzyme-based approaches fully reflect 
the complex tendon pathophysiology. In this light, providing particularly valuable 
information, some studies in the equine species were performed using horses suf-
fering from naturally occurring tendinopathy [134, 138, 141] (Figure 2).

Figure 2. 
In vivo models.
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The diagram displays the numbers of studies performed in different animal 
species which were included in this review and indicates the types of tendon defect 
models used in the respective species.

Approaches for MSC implantation include local delivery of MSC suspensions, 
mostly via (ultrasound-guided) injection [106–112, 119, 120, 127–133, 136–141], 
coating of suture materials with MSC [113], MSC delivery in fibrin-based vehicles 
[54, 114, 124] or cell sheets [54, 123, 125, 126], and the use of diverse constructs of 
MSC and scaffold materials [115–118, 121, 122]. Interestingly, while the delineation 
between MSC-scaffold constructs for MSC delivery and for tendon replacement 
is sketchy, it is remarkable that construct-based approaches are almost exclusively 
used in small animals. This indicates that translational progress using these 
approaches is poor, possibly due to their incapability to meet the biomechanical 
demands in large animals or humans.

Further aspects of the treatment approach are likely to influence MSC mecha-
nisms of action and complicate the coherent interpretation of findings from 
different studies. Adjuvant treatments, e.g., simultaneous growth factor delivery, 
or pre-treatment of the MSC, such as pre-differentiation or inflammatory licens-
ing before cell delivery, may support certain mechanisms synergistically but may 
negatively interfere with other mechanisms. For example, bone morphogenetic 
protein (BMP)-12 promotes MSC tenogenic differentiation but reduces their 
immunomodulatory potential [93]. Next, the timing of the treatment is of great 
importance as different mechanisms of action of MSC are likely to be relevant dur-
ing different stages of tendon healing. Furthermore, the dosage, i.e., the numbers 
of MSC applied, may not only play a role with respect to treatment efficacy but 
also with respect to supporting specific mechanisms of action [120]. For example, 
interactions between MSC and immune cells depend on the ratio of MSC to leuko-
cytes present [142].

Last not least, the MSC source is likely to influence their mechanisms of action, 
which is an issue with equal relevance for in vitro findings. On the one hand, this 
applies to the choice of donor in terms of age and health status [143] and in terms 
of autologous, allogeneic or, in case of many small animal models, even xenogeneic 
use of MSC. On the other hand, the tissue origin of MSC as well as the donor spe-
cies impact on the cell characteristics [57, 140, 144] and thus potentially on their 
mechanisms of action. Therefore, mainly studies focusing on the well-characterized 
BMSC and ASC were included and their tissue origin discriminated where appro-
priate. Furthermore, it was attempted to compile only studies which enabled the 
discrimination of MSC effects from those of possible additional treatments. In this 
line, in vivo studies using genetically engineered MSC for other purposes than cell 
tracking were not included in this review.

3. Engraftment and tenogenic differentiation

The assumption that MSC engraftment and their tenogenic differentiation after 
implantation into a tendon lesion lead to the replacement of damaged tenocytes 
dates back to the earlier days of MSC research and mirrors the general conception 
of MSC at that time [27, 38]. In the following years, the fact that MSC persistence 
at the site of tissue damage could not be achieved in models for a wide variety of 
diseases led to the assumption that differentiation and cell replacement might not 
even contribute to the regenerative effects observed after MSC transplantation 
[28]. This hypothesis was fostered by the compelling finding that paracrine factors 
released by the MSC can lead to similar beneficial effects as the MSC themselves, 
leading to the concept of cell-free MSC-based therapies [145]. Still, the situation 
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might be slightly different in tendon pathologies, and at the moment, it cannot 
be excluded that tenogenic differentiation of engrafted cells could contribute 
to regeneration, perhaps as a basis for further trophic and ECM-modulatory 
mechanisms.

3.1 In vitro evidence

An extensive body of recent literature describes the tenogenic differentiation of 
MSC in response to a wide range of stimuli, although unfortunately, no generally 
accepted in vitro model or standard tenogenic differentiation assay exists. Current 
concepts of tenogenic differentiation are reviewed in detail elsewhere [146, 147]. 
The most commonly used stimuli to induce tenogenesis in MSC include growth fac-
tors, scaffolds with specific topography, and cyclic mechanical loading, with most 
studies combining two or more of these approaches, based on earlier studies in the 
field of tissue engineering [37, 148–150].

Growth factors used for induction of tenogenic differentiation mainly 
include transforming growth factor-β family members (TGF-β [47, 51, 53, 60, 
66, 86, 88] and the growth differentiation factors GDF-5/BMP-14 [60, 67, 68, 
70, 82, 151], GDF-6/BMP-13 [72], GDF-7/ BMP-12 [56, 60, 80, 93], and GDF-8 
[71, 78]) but also fibroblast growth factors (FGF) [49, 89, 90], insulin-like 
growth factor-1 [53], vascular endothelial growth factor (VEGF) [60], or 
epidermal growth factor [49]. A promising stepwise differentiation approach 
has also been reported using TGF-β1 followed by connective tissue growth 
factor (CTGF) [54]. Growth factors are commonly delivered as culture medium 
supplements, but, e.g., FGF-2-transduced MSCs have been used as well [89]. 
Further tenogenic differentiation approaches based on genetic modifications 
include the forced expression of the tenogenic transcription factors scleraxis 
[10, 152] or mohawk [52, 116].

Currently used scaffolds comprise decellularized tendon matrices [57, 58, 64, 
65, 83, 84, 88] and (synthetic) scaffolds with specifically designed topography 
and stiffness [59, 61–63, 68, 70, 72–75, 79, 81, 87], both being used based on evi-
dence that physical cues such as scaffold anisotropy and stiffness direct MSC fate. 
Decellularized tendon matrices provide biochemical cues at the same time. A differ-
ent approach to exploit the natural tendon biochemical composition is to use tendon 
ECM or tenocytic extracts as a culture supplement [46, 47, 91].

Mechanical loading of cell cultures, typically MSC-seeded scaffolds, is 
performed in bioreactors, most commonly by uniaxial cyclic stretching [46, 57, 
58, 64, 66, 70, 74, 77, 79, 83, 84, 86, 87]. Different frequencies and strain rates 
have been used. While results are consistent in that cyclic stretching supports 
tenogenic differentiation, there is a discrepancy regarding the extent of stretch-
ing, with some studies highlighting moderate strain rates of 2 or 3% as beneficial 
for tenogenic induction [58, 77], while others support the use of higher strain 
rates (e.g. 10%) [55, 153]. Further approaches to tenogenic differentiation by 
physical stimulation include the use of extracorporeal shock waves [76], pulsed 
electromagnetic fields [85], and the activation of mechanosensitive membrane 
receptors [50].

In addition to using growth factors, scaffolds, and mechanical loading, teno-
genic differentiation of MSC has also been reported in co-cultures with tenocytes 
[48, 69, 74, 75, 92] or in tenocyte-conditioned medium [48].

This overview illustrates that a wide range of stimuli can induce a tenogenic 
phenotype in MSCs (BMSCs as well as ASCs), although the quality of differen-
tiation cannot be directly compared between studies and certainly varies. With 
respect to possible MSC tenogenic differentiation in vivo, the studies relying 
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on physiological stimuli, such as mechanical loading, biomimetic scaffolds, or 
cross-talk with tenocytes, are most insightful. In contrast, the use of growth 
factors (typically at concentrations exceeding those found in vivo) or genetic 
modifications is suitable for mechanistic studies and may be helpful for teno-
genic pre-differentiation prior to MSC implantation but does not reflect the 
in vivo situation. To understand if physiological stimuli could promote the same 
distinct tenogenic phenotype as artificial TGF-β concentrations, it would be 
helpful to gain further insight into the downstream signaling networks and their 
possible interfaces. So far, however, tenogenic signaling has mainly been inves-
tigated following growth factor stimulation [67, 82, 89, 90]. Only few studies 
have attempted to elucidate the signaling pathways activated in MSC in response 
to mechanical load or scaffold topographical cues, focusing on the role of rho/
ROCK [154, 155].

Yet, although physiological stimuli have repeatedly been shown to induce 
tenogenic differentiation in MSC, it should not be anticipated that this mechanism 
is analogously activated when MSCs are implanted into a tendon lesion. Self-
evidently, the tendon lesion does not provide a physiological but rather a patho-
physiological environment, which may have an entirely different impact on the 
MSCs. Unfortunately, this issue is still underrepresented in the current literature. 
Recently, we investigated ASC tenogenic properties in response to physiological 
tenogenic and simultaneous inflammatory stimulation [84]. This study demon-
strated that ASC tenogenic properties are compromised not only in the presence 
of the pro-inflammatory cytokines IL-1β and TNF-α but also in the presence of 
leukocytes. Similarly, IL-1β and IL-6 inhibited tenogenic differentiation in tendon-
derived stem cells [156, 157]. Furthermore, again in tendon-derived stem cells, stiff 
matrices impeded tenogenic differentiation [158]. Together, these findings suggest 
that MSC tenogenic differentiation may be impaired in a pathophysiological in vivo 
environment, which can comprise inflammatory stimuli as well as stiff (fibrotic) 
ECM, depending on the stage of disease.

3.2 In vivo evidence

Although extensively investigated in vitro, there is no distinctive evidence of 
tenogenic differentiation following MSC implantation in vivo. One conceivable 
explanation is that MSC differentiation is in fact impaired in the pathophysi-
ological lesion environment. Nevertheless, in contrast to studies in other disease 
models, MSCs have been repeatedly localized in treated tendon lesions, provid-
ing a basis for long-term regenerative effects, possibly including differentiation 
and cell replacement. Furthermore, there is some evidence of homing of MSCs 
to tendon lesions, although not unambiguous. The mechanism of homing may 
be of minor importance with respect to cell delivery at the macroscale, as the 
cells are almost exclusively delivered locally in MSC-based tendon therapies. 
Yet, the capability of homing is still indicative of MSCs that are capable of iden-
tifying regions of tissue damage at the microscale, where they would actively 
integrate.

None of the small animal studies included in this review specifically 
addressed MSC homing to tendon lesions. However, when bursal tissue was 
implanted in rotator cuff tendon lesions in a rat model, the green fluorescent 
protein-labeled mesenchymal stem cells from this tissue infiltrated the healing 
tendons [159], demonstrating the presence of homing signals. Accordingly, 
ASC infiltration into the tendons was also evident when cell sheets were used as 
delivery vehicle in a canine model [126]. However, when injected into  
the tendon sheath, BMSC homed to synovial structures but were not attracted  
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to the tendon lesions in an ovine model of intrasynovial tendon healing [127]. 
In the equine large animal model, homing of MSC to tendon lesions has been 
addressed in more detail. Scintigraphic short-term in vivo tracking of tech-
netium-labeled BMSC showed that the cells homed to the tendon lesion after 
administration by regional limb perfusion, although local administration by 
direct intralesional injection was more effective, and no homing was observed 
after intravenous administration. These findings were consistent between 
artificial tendon lesions [135] and natural tendinopathy [134]. Interestingly, 
intraarterial limb perfusion showed greater accumulation of BMSC in the 
lesion on day 10 after surgical lesion induction than on day 3 [135]. This find-
ing illustrates that the stage of tendon disease is of importance to MSC homing 
mechanisms. However, scintigraphic tracking also revealed that even after local 
injection, only a relatively small proportion of the injected BMSC remains at the 
injury site (24% after 24 h) [134]. In accordance with this, we and others dem-
onstrated that ASCs are distributed via the bloodstream within the first few days 
after their injection into equine tendon lesions, possibly as they are washed away 
before they can home and attach [136, 139]. We additionally observed that the 
ASCs were subsequently also found in nontreated tendon lesions, indicating their 
capability of homing [139].

Engraftment of MSC within treated tendon lesions was demonstrated in several 
studies, albeit results are not conclusive as to the numbers of surviving cells in 
relation to the cell numbers administered. In rat Achilles tendon defects, BMSC or 
ASC could be identified histologically at 2, 4, and 8 weeks after cell implantation 
(injection) [107, 109, 112], as well as 3 weeks after implantation of a BMSC-seeded 
collagen scaffold [116]. Complementing these small animal studies, MSCs have 
been traced in large animal studies, including longitudinal in vivo cell tracking. In 
sheep, green or red fluorescent protein-labeled BMSCs were detected histologically 
at 1, 2, 3, 4, and 6 weeks following their implantation [128, 129]. In the equine  
model, we and others could trace superparamagnetic iron oxide-labeled ASC by 
magnetic resonance imaging during follow-up periods of up to 24 weeks after 
implantation into artificial tendon lesions [132, 139] and umbilical cord tissue-
derived MSCs during a follow-up period of 8 weeks in naturally occurring tendi-
nopathy [138]. In the experimental tendon lesions, histological results confirmed 
the presence of the simultaneously fluorochrome-labeled ASC until week 24 [132, 
139]. This provides evidence for a remarkable long-term persistence of part of the 
locally injected MSC, yet it has neither been proved nor disproved whether these 
cells commit to a tenogenic fate.

4. Extracellular matrix modulation

The restoration of the ECM architecture and functionality is a major goal in 
regenerative tendon therapies. Based on the early hypothesis of MSC engraftment 
and tenogenic differentiation, it was assumed that the differentiated cells would 
subsequently synthesize new tendon ECM. Indeed, MSCs are capable to synthesize 
a considerable amount of extracellular matrix even in an undifferentiated state 
[160]. Furthermore, the composition of the ECM synthesized by differentiated 
MSC reflects the respective tissue lineage, which is well-established for their chon-
drogenic or osteogenic differentiation. Corresponding in vitro data exist for the 
differentiation into the tenogenic lineage, although not always consistent between 
studies. There is also in vivo evidence that MSC transplantation improves tendon 
ECM structure. However, this is not necessarily due to ECM synthesis by the MSC 
themselves but might also be a consequence of protective and stimulatory effects on 
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tenocytes, which in turn might be capable to synthesize the new ECM. Moreover, 
importantly, there is not simply a lack of ECM in tendinopathy but rather a dysfunc-
tional ECM composition and structure, due to the imbalance of remodeling activi-
ties. Particularly, in later stages of the disease, chondroid degeneration and fibrosis 
impair ECM functionality, thus effective ECM regeneration would also comprise 
its remodeling and the restoration of physiological remodeling activity within the 
tendon.

4.1 In vitro evidence

As most tenogenic differentiation studies investigated the expression and/
or deposition of tendon-specific extracellular matrix molecules as a marker 
for successful differentiation, there is quite extensive evidence that the ECM 
synthesis by MSC is altered during tenogenic differentiation. However, there 
is some discrepancy between different studies as to whether the ECM molecule 
expression pattern of tenogenic MSC truly corresponds to that of healthy tendon 
tissue.

Collagen I, the most abundant protein in healthy tendons, was shown to 
be upregulated by ectopic mohawk or scleraxis expression [52], in response to 
treatment with TGF-β superfamily growth factors [60, 67, 88, 93] or scaffold 
stiffness and alignment [61–63, 74, 81], as well as in three-dimensional dynamic 
cultures with uniaxial cyclic loading [58, 64, 77, 87]. Furthermore, co-culture 
with tenocytes in hypoxic conditions or integration of integrin-binding peptides 
in the scaffold increased collagen I expression on mRNA as well as protein level 
[69, 72]. However, in other studies, no collagen I upregulation was observed in 
response to growth factors such as TGF-β [49] or cyclic loading in two-dimen-
sional ASC or BMSC cultures, respectively [66]. Data are particularly conflicting 
with regard to whether the presence of tendon ECM components promotes or 
counteracts collagen I expression [46, 47, 58, 64, 65, 83, 84, 88]. Furthermore, 
even if collagen I is upregulated, which would enable the MSC to contribute to 
tendon ECM synthesis, this often occurs in conjunction with the upregulation of 
other extracellular matrix molecules, such as collagen III, decorin, tenascin-C, 
or cartilage oligomeric matrix protein [60, 61, 69, 70, 72, 74, 77, 83]. While these 
molecules are important components of native tendon ECM, contributing to 
collagen organization and fibrillogenesis, their increased presence is also indica-
tive of tendon degeneration or fibrosis [161–163]. Therefore, in order to achieve 
a beneficial ECM replacement by MSC, their ECM synthesis would have to be 
highly balanced. It is not yet sufficiently proven that this can be achieved by 
inducing tenogenic differentiation.

With respect to the hypothesis of active ECM remodeling by MSC, com-
paratively few data exist so far. Treatment with BMP-12 induced an enhanced 
secretion of MMP-1 and -8 by ASC [93]. Similarly, ASC culture in collagen 
scaffolds increased MMP-1, -2, -8, -9, and -13 gene expression and MMP activity 
compared to two-dimensional culture [46]. For tendon-derived stem cells, it was 
also found that cyclic mechanical loading did not only upregulate ECM-related 
genes but also the integrins α1, -α2, and -α11, as well as MMP-9, -13, and -14 
[164]. Thus, tenogenic stimuli may increase expression and activation of MMP 
by MSC. Furthermore, it was found that BMSC inhibits MMP activity in the cell 
culture medium through secretion of TIMP-1 and TIMP-2, even in an inflamma-
tory environment [165], but that BMSC as well as ASC accumulate active MMP at 
their cell surface [166]. Although these latter two studies did not focus on tendon 
therapies, they suggest that MSCs could contribute to matrix remodeling in a 
highly targeted manner.
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Some studies also provide first insight into the interplay of MSC and tenocytes/
tendon ECM in matrix remodeling and will therefore be addressed in more detail. 
In direct co-cultures of ASC and tenocytes, a different temporal regulation of 
MMP and ECM components was observed compared to tenocytes alone [105]. 
This included the upregulation of collagen I and tenascin-C gene expression at day 
7 and downregulation of tenascin-C and collagen III at later time points (14 and 
21 days, respectively) and a higher collagen I to collagen III ratio on protein level 
at day 7. MMP-1, -2 and -3, as well as TIMP-1 gene expression, increased over time 
in tenocytes alone but showed a different temporal regulation pattern in the co-
cultures with a significantly increased MMP-3 expression at day 7 [105]. A different 
study from the same group investigated the indirect co-culture of ASC and tendon 
explants [104]. Here, total protease activity was increased in the co-cultures at day 
3, as were the collagenases (putatively MMP-1 and -14) but not the stromelysins 
MMP-3 and -10. Furthermore, collagen III and tenascin-C deposition by ASC were 
reduced at day 7. Histology also suggested that ASCs had protective effects on the 
explant structure, but this was not consistent between donors [104]. However, 
seemingly in contrast to these findings, MMP-8, -9, and -13 expression by ASC in 
collagen scaffolds was lower upon stimulation with tendon ECM extract [46], and 
microvesicles from amniotic membrane mesenchymal cells induced a downregula-
tion of MMP-1, -9, and -13 in tenocytes [101]. Thus, while it can be assumed that 
MSC actively contribute to and/or modulate tendon ECM remodeling, the exact 
temporal regulation and context-sensitivity of this mechanism need to be addressed 
in future studies.

4.2 In vivo evidence

Several in vivo studies have investigated the effect of MSC treatment on 
tendon ECM composition and structure, as well as on tendon biomechanical 
parameters. In most of these studies, including an equine large animal study 
with a follow-up of 45 weeks, the ECM composition was improved by BMSC 
and ASC treatment, with higher expression of collagen I on gene and/or protein 
level [106, 114, 120, 122, 140]. Collagen III expression was found to be decreased 
after ASC implantation [110, 125, 126] but increased after BMSC implantation 
[106, 122]. Tenascin-C and decorin were found to be increased following BMSC 
and ASC treatment [112, 114, 140], and glycosaminoglycans were decreased after 
BMSC treatment [141]. Based on these data, MSCs appear to increase collagen 
I deposition in healing tendons. Furthermore, as an increase of human-specific 
collagen I and tenascin-C was demonstrated in a rat model after human ASC 
implantation, there is also some evidence that MSCs actively contribute to the 
synthesis of new ECM [114]. The contribution of collagen III, tenascin-C, and 
decorin synthesis/modulation to tendon healing is to be considered controver-
sially, as illustrated above, and certainly depends on its balance with regard 
to other ECM components. Yet, beyond mere collagen I synthesis, BMSC and 
ASC have also repeatedly been shown to improve the structural organization of 
healing tendons, again including the study with a 45-week follow-up, as well as 
an experimental trial in horses with naturally occurring tendinopathy [108, 115, 
121, 140, 141]. In conjunction with the synthesis and protection of desired ECM 
components such as collagen I, this could be due to active ECM remodeling and 
the contribution of synthesized small ECM molecules to collagen fibrillogenesis. 
Still, it should be acknowledged that some studies in the equine model could 
demonstrate only few compositional or structural improvements 5 months after 
ASC treatment [133, 137]. Moreover, despite generally improved ECM structure 
and collagen I synthesis, collagen II deposits and areas staining positive for 
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alizarin red were found in BMSC-treated tendons [106], suggesting that errone-
ous MSC differentiation toward the chondrogenic and osteogenic lineage had 
occurred. Nevertheless, functional testing of BMSC- and ASC-treated tendons 
indicated an improvement of functional parameters in the majority of studies 
[107, 108, 112–115, 117, 119, 121, 122], which represents a beneficial effect that 
can be attributed to ECM regeneration [3].

So far, very few in vivo studies have investigated the effect of MSC on the 
presence and activation of matrix-remodeling enzymes and their endogenous 
inhibitors. In the equine model, MMP-13 activity was decreased 6 months after 
BMSC treatment [141], and MMP-3 gene expression was upregulated in the heal-
ing tendons 45 weeks after BMSC treatment [140]. Together, these results might 
suggest that collagen degradation could be inhibited while degradation of small 
ECM components is promoted. However, there is much overlap regarding MMP 
substrates [167], and other studies found no significant differences in MMP and 
TIMP expression due to ASC treatment [112]. Further studies have to substantiate 
this hypothesis.

When MSCs were combined with tenogenic growth factors, conflicting results 
were reported. Treatment with ASC and GDF-5 decreased MMP-2 and TIMP-2 
expression and resulted in inferior biomechanical properties compared to ASC 
treatment alone [112]. Treatment with ASC and BMP-12 promoted ECM degrada-
tion, which was interpreted as a side effect of the fibrin-based delivery vehicle 
[124], but improved tendon ECM regeneration when delivered as cell sheets 
without fibrin [123]. Interestingly, the latter study showed that this may have been 
mediated by modulating the ECM remodeling activity of macrophages [123]. A 
further study from the same group demonstrated beneficial effects of combined 
ASC and CTGF treatment, although not evaluating effects of ASC alone [125]. A 
different study showed that predifferentiated BMSC sheets, induced by stepwise 
stimulation with TGF-β1 and CTGF, resulted in superior tendon regeneration, 
including improved biomechanical properties than BMSC alone [54]. However, in 
this study, again, fibrin was used for delivery of noninduced cells, which may have 
contributed to the differences observed. Thus, although some data suggest that the 
additional use of growth factors potentiates the beneficial effects of MSC on ECM 
regeneration, more evidence supporting this hypothesis is required. It should also 
be acknowledged that growth factor supplementation might impair other regenera-
tive mechanisms of MSC at the same time [93].

5. Immunomodulation

There is a substantial body of evidence that demonstrates the immunomodula-
tory potential of MSC. While not all underlying mechanisms have been elucidated 
in detail yet, it is well-understood that MSCs suppress T cell proliferation and 
promote the modulatory M2 macrophage phenotype [168]. Furthermore, small 
ECM molecules synthesized by the MSC, such as tenascin-C and decorin, could 
contribute to immunomodulation [163, 169]. Therefore, it is likely that immuno-
modulation plays an important role in MSC-based tendon therapies. Against that 
background, it appears surprising that relatively few studies have addressed the 
interplay between MSC and the immune system in the context of tendon disease. 
This may be due to the long-existing perception that inflammation is absent 
during most stages of tendon disease, which, however, has been changing [5, 170]. 
While so far existing findings are summarized in the following, immunomodu-
lation in the context of tendon disease will remain a promising field of future 
research.
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5.1 In vitro evidence

In vitro evidence for MSC immunomodulation in tendon disease is scarce. 
The most comprehensive study investigated whether ASCs influence the effects 
of differently polarized macrophages on tenocytes in a tri-culture system [98]. In 
co-cultures of M1 macrophages and tenocytes, release of inflammatory mediators, 
such as PGE2 and IL-1β, was increased compared to M1 macrophage cultures alone 
or compared to co-cultures with M0 or M2 macrophages, suggesting inflammatory 
tenocyte activation. When ASCs were directly co-cultured with the macrophages 
for 5 days, with the tenocytes added for the last 24 h, tenocyte activation was 
decreased, with significantly lower release of TNF-α and IL-1β in tri-cultures with 
M1 macrophages. At the same time, the presence of ASC had increased CD206 
expression in M0 and M1 macrophage populations, indicating a switch toward the 
anti-inflammatory M2 macrophage phenotype and providing insight into the sup-
pressive mechanism. However, ASCs did not effectively counteract inflammatory 
activation of tenocytes by IL-1β, even when ASCs had been primed with IFN-γ [98].

Interestingly, it has also been shown that tenogenic differentiation of BMSC 
induced by GDF-5 involves arachidonic acid production and signaling pathways 
[67], suggesting a link between differentiation and inflammatory processes. In 
this line, addition of BMP-12 increased IL-6 secretion by ASC and attenuated 
the suppressive effect of ASC in a mixed lymphocyte reaction [93]. Microvesicles 
from amniotic membrane mesenchymal cells downregulated TNF-α expression in 
tenocytes but in contrast to conditioned medium, they had no effect on peripheral 
blood mononuclear cell proliferation [101, 171]. These studies provide preliminary 
insight into the modulation of inflammatory tenocyte activation by MSC, while 
they also suggest that their immunomodulatory potential may be higher when 
not tenogenically differentiated. Yet, MSC immunomodulation is highly context-
specific and influenced by a variety of factors including three-dimensional culture 
environments as well as inflammatory priming/licensing [172, 173]. Therefore, it 
remains crucial to perform further studies specifically mimicking aspects of tendon 
pathophysiology.

5.2 In vivo evidence

The most insightful studies were performed by the same group, shedding light 
on ASC-mediated immunomodulation in tendon healing in the canine model 
[123–126]. Corresponding to the group’s in vitro findings, ASC alone, delivered via 
cell sheets, stimulated the anti-inflammatory M2 macrophage phenotype in heal-
ing tendons and reduced total mononuclear cell infiltration. The M2 macrophage 
markers CD163, MRC1, and CD204 were increased on mRNA and/or protein 
level, as well as IL-4, prostaglandin reductase-1, and VEGF [123, 126]. Combined 
administration of ASC and BMP-12 promoted these effects, particularly with 
respect to IL-4 expression [123]. Furthermore, combined treatment with ASC and 
CTGF decreased IL-1β, IL-6, and IFN-γ and increased IL-4 expression [125]. These 
latter findings challenge the hypothesis that tenogenic differentiation decreases 
the MSC immunomodulatory potential. However, when the inflammatory reac-
tion at the tendon repair site was promoted by a fibrin-based delivery vehicle, ASC 
and BMP-12 further fostered these unwanted effects [124]. This might indicate 
that strong inflammation alters the MSC immunomodulatory properties toward 
a proinflammatory phenotype. In contrast, priming with TNF-α increased the 
anti-inflammatory effects of BMSC: While nonprimed as well as primed BMSC 
increased IL-10 and reduced IL-1α, primed BMSC also reduced IL-12 and the num-
bers of M1 macrophages and increased IL-4 and the numbers of M2 macrophages in 
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rat Achilles tendon defects [118]. Further evidence of anti-inflammatory effects of 
BMSC in tendon healing was demonstrated in a rat model, in which TNF- 
α, IFN-γ, and IL-1β were reduced, along with an increase of IL-2 and growth 
factors, including VEGF [111]. Apparently in contrast to most of these findings, 
however, we observed that clinical signs of inflammation were increased by ASC 
treatment in the equine model, although this effect was transient [137]. This again 
illustrates that MSCs can also adopt a pro-inflammatory phenotype and raises ques-
tions as to how and whether this should be controlled. When addressing this issue, 
it should be acknowledged that a certain extent of inflammation is required to drive 
resolution. In this respect, macrophages and their M2 polarization driven by MSC 
may play a particularly important role.

6. Trophic support and pro-angiogenetic effects

In addition to the direct effects of MSC on ECM composition and immune cells, 
trophic support and protection of resident cells are likely to contribute to beneficial 
effects of MSC in tendon healing. Tenocytes and tendon stem cells rescued by the 
MSC may be enabled to promote ECM regeneration and counteract inflammation. 
Furthermore, a MSC-mediated increase in vascularity may be beneficial at least 
in some stages of tendon healing, as it would improve energy and oxygen supply, 
as well as disposal of metabolites, thus reduce oxidative and metabolic stress. The 
presence of vascular endothelial cells, as well as the combination of tenogenic 
growth factors with VEGF, has also been shown to promote tenogenic differentia-
tion [60, 74]. However, increased vascularity is also associated with tendinopathy 
pathogenesis and may foster neurogenic inflammation [6], thus this issue is dis-
cussed controversially.

Trophic effects on tenocytes were demonstrated in vitro, when ASC and BMSC, 
as well as BMSC-conditioned medium, promoted the proliferation of tenocytes 
[94, 102, 103]. Furthermore, ASC as well as BMSC-conditioned medium promoted 
tenocyte migration [102, 103], and ASC promoted healing in a microwound model 
[92]. In vivo, results are inconsistent as to whether BMSC and ASC decrease [137, 
141] or increase [117] cellularity within healing tendons. However, the rate of 
apoptosis was lower following BMSC treatment [107], suggesting protective effects 
of the MSC. Moreover, ASC combined with CTGF locally increased the numbers of 
CD146-positive tendon stem cells, suggesting an activation and possible rescue of 
this endogenous cell population [125].

Pro-angiogenetic effects were observed in small, as well as large animal studies, 
which demonstrated that BMSC and ASC implantation increased vascularity [106, 
129, 131], likely mediated by an increase in VEGF (see below). Yet, the opposite 
effect was observed in horses suffering from naturally occurring tendinopathy 
following implantation of BMSC [141].

With respect to possible growth factor signaling, in vitro, higher TGF-β bio-
activity was found in the BMSC secretome compared to tenocytes [100]. Upon 
tenogenic differentiation of ASC using BMP-12, VEGF secretion was significantly 
increased, although no effect on TGF-β was observed [93]. First in vivo evidence 
regarding the contribution of growth factors in tendon healing following BMSC or 
ASC implantation was obtained in rat models, in which VEGF, TGF-β, and hepa-
tocyte growth factor expression were increased in the MSC treatment groups [106, 
111, 112]. Yet, these studies did not comprehensively reveal whether these factors 
were released by the MSC or other cells within the tendon lesion.

The brevity of this subsection illustrates that the insight into trophic and protec-
tive mechanisms, as well as growth factor release by MSC, in the context of tendon 
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therapies is still limited. Further research is crucial to improve our ability to exploit 
these effects and, last not least, to prevent potential negative effects associated with 
some growth factors, such as hypervascularization in response to VEGF or fibrosis 
in response to TGF-β.

7. Discussion

This review aimed to compile the evidence supporting specific mechanisms of 
action that may contribute to tendon regeneration in MSC-based cellular thera-
pies. The analysis of the recent literature demonstrated an imbalance between 
the numbers of studies investigating tenogenic differentiation in vitro and ECM 
regeneration in vivo and the numbers of studies elucidating other potential 
mechanisms. This is conceivable as most studies investigating MSC in the context 
of tendon disease did not specifically aim at clarifying the mechanisms of action. 
Particularly, the in vivo studies mostly addressed MSC efficacy, at which ECM 
characteristics are reasonable outcome parameters. Still, despite the overlap with 
tissue engineering, the overrepresentation of tenogenic differentiation studies 
may reflect a delay in the field of tendon research. Tendon pathophysiology itself 
is still not well-understood, making it challenging to transfer the rapidly chang-
ing perception of MSC into experimental settings relevant to tendon disease in a 
timely manner. Yet, it can be anticipated that the general understanding of MSC 
mechanisms will be successively incorporated into tendon research in the follow-
ing years.

Taking into account the existing data, the best-evidenced beneficial effect of 
MSC in tendon regeneration is the improved ECM regeneration. MSCs may also 
protect and rescue resident tendon cells, but only few data support this hypothesis 
so far. Both, ECM regeneration and tendon cell protection, are likely to be medi-
ated by a range of mechanisms acting in concert. These may be active over long 
periods of time, as the engraftment of MSC within tendon lesions was repeatedly 
demonstrated.

The possible mechanisms mediating ECM regeneration include ECM 
synthesis and targeted remodeling by the engrafted MSC, inhibition of MMP 
over-activation, modulation of immune cells with suppression of macrophage-
mediated matrix degradation, and modulation of growth factor signaling. Last 
but not least, the rescue of resident tendon cells could prevent ongoing ECM 
degeneration, and their trophic support and stimulation by MSC-derived growth 
factors could re-initiate ECM synthesis and a healthy state of ECM remodeling 
driven by the tenocytes. A varying extent of evidence supports these differ-
ent mechanisms, with the collectively most convincing data available for ECM 
synthesis, immunomodulation, and VEGF-mediated angiogenesis. Figure 3 
illustrates the possible interplay between the different mechanisms and their 
potential synergies.

The figure summarizes the currently known mechanisms of MSC that may con-
tribute to tendon regeneration. Mechanisms for which there is conclusive evidence 
from in vivo studies are designated in bold typeface.

However, there may also be antagonisms between different mechanisms, 
although the evidence is not yet entirely conclusive. Perhaps, tenogenic differentia-
tion and immunomodulation may not occur at the same time. Tenogenic differen-
tiation was shown to interfere with the immunomodulatory potential of MSC [93], 
and inflammatory environment compromised tenogenic MSC properties [84]. Yet, 
some in vivo studies revealed anti-inflammatory effects of combined MSC and 
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tenogenic growth factor administration [123, 125], although it remained unclear if 
the MSCs had undergone tenogenic differentiation. It is possible that the context, 
i.e., the stage of tendon disease, may favor one mechanism over the other. For 
example, immune cells such as macrophages are not predominating during sub-
clinical stages [6], and the macrophage polarization pattern is distinct in acute vs. 
chronic disease [8], which will certainly impact on the activation of MSC immuno-
modulatory mechanisms.

A range of limitations impedes a coherent interpretation of the existing data. 
These include the different treatment approaches chosen and models used, 
which make it difficult to elucidate specific reasons for contradictory findings. 
Inter-donor variability is a further issue that may obscure clarity of findings in 
studies using human or large animal MSCs [100, 143]. Furthermore, although 
tenogenic differentiation has extensively been studied, there is neither a consen-
sus on differentiation protocols nor have specific markers for tenogenic dif-
ferentiation been used consistently. Next, the limited understanding of tendon 
(patho)physiology makes it difficult to judge whether certain effects observed 
are beneficial or rather detrimental, e.g., with respect to MMP or TGF-β activ-
ity. Last but not least, the illustrated imbalance between evidence levels for 
particular mechanisms makes it difficult to draw a comprehensive picture at the 
moment.

Figure 3. 
Mechanisms of action of MSC in tendon healing.



Tendons

16

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Author details

Janina Burk
Institute of Veterinary Physiology and Saxon Incubator for Clinical Translation, 
University of Leipzig, Leipzig, Germany

*Address all correspondence to: burk@rz.uni-leipzig.de

8. Conclusion

This review demonstrates progress but also substantial weaknesses which still 
exist in our understanding of MSC-based cellular tendon therapy and the MSC 
mechanisms of action in tendon healing. Therefore, considering the low level of 
clinical evidence, at the moment, MSC-based treatment of tendinopathy appears 
only justified in the framework of clinical studies. Otherwise, although clinical 
translation appears temptingly close, it may be wiser to slow down the pace and 
focus on research into MSC mechanisms in relevant disease models to eventually be 
able to coax the MSCs toward targeted tendon regeneration.
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