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Chapter

Visualization of ECG Data on 
Variant Maps
Zhihui Hou and Jeffrey Zheng

Abstract

This chapter presents variant maps for showing potential features in ECG data 
sets. The variant map is a visualization method different from a traditional ECG. In 
this chapter, the ECG data sets obtained by clinical ECG monitoring are used as 
the data source, and the corresponding variant maps are obtained by the variant 
statistics method. This chapter mainly introduces the variant statistics method 
about converting ECG data into variant maps. From sample results, various visual 
properties can be observed, and further explorations are required.

Keywords: variant maps, ECG data, visualization feature

1. Introduction

Today, people still are in a state of high cardiovascular disease incidence. The 
world is paying attention to cardiovascular diseases [1], mainly relying on the 
detection of ECG signals to promote the research of cardiovascular diseases. 
ECG signals are the product of a wide range of clinical ECG technologies. The 
electrocardiogram represents cardiac function and graphic signals [2], which are 
important means of diagnosing abnormal cardiac activity.

With the development of the information age, signal acquisition, data process-
ing, and information analysis have become the main theme of scientific and tech-
nological development. In recent years, ECG signal research methods have made 
significant progress, such as the use of machine learning [3], clustering [4], partial 
fractal dimension [5], wavelet transform [6], and other methods for classification 
of arrhythmia detection [7]. Among the emerging ECG signal research methods, 
the most typical representative is the ECG scatter plot [8–10]. The ECG scatter plot 
observes the ECG signal in a new perspective, complementing traditional ECG 
detection.

The variant method is an emerging method for dealing with the phase change 
of the signal phase. Now the variant method has formed the theory of variant 
theory, variant logic function, and variant visualization method. In the 1990s, 
the application of variant method in the processing of binary image classifica-
tion and conversion [11, 12]. In 2010, the variant method had been improved 
[13, 14]. So far, the variant method has been continuously developed and applied 
to different data samples, quantum sequences [15, 16], random sequences [17], 
noncoding DNA [18–20], bat echo signals [21], ECG signals [22, 23], and variant 
construction [24].

The variant method can process massive random sequences and extract sta-
tistical measurement features from them. The ECG sequence is a natural random 
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sequence. It is a good fit to apply the variant method to the statistical measure-
ment characteristics of massive ECG sequences. It has research value. The main 
purpose of this chapter is to study the visual characteristics of ECG signals and 
to mine valuable information in ECG signals. This chapter introduces the overall 
architecture, module function, and core algorithm of the variant measurement 
system. The results of this study show that the variant maps provide a new obser-
vation angle for ECG signal feature detection, and it shows the resolution of ECG 
data in visual effect.

The experimental data samples and experimental results in this chapter will be 
introduced in the fourth part. The overall structure and workflow of the variant 
measurement system are introduced in the second part. The third part introduces 
core module function and algorithm and finally summarizes the research.

2. Variant map for ECG

2.1 Overall structure

The variant measurement system is divided into five modules as a whole, which 
are an input data source module, a variant processing module, a segmentation 
measurement module, a state statistics module, and an output variant map module. 
The structure of variant measurement is shown in Figure 1.

It can be seen in Figure 1 that each module has its specific function. The input 
data source module is mainly used to read the ECG sequence. The main function 
of the variant processing module is to discretize the continuous ECG sequence. 
Segmentation measurement module is to segment the sequence. The main 
function of the state statistics module is to count the state of the pseudogene 
sequence.

2.2 Workflow chart

The five modules in the variant measurement system are independent and con-
nected. The workflow of the entire variant measurement system is shown in Figure 2.

As can be seen from Figure 2, the five modules of the variant measurement 
system are arranged in order. The output of the previous module is the input of the 
next module. The input and output of each module are as follows:

1.  Input data source module: The input data set, the output is the length of N ECG 
sequence.

2.  Variable value processing module: Input is ECG sequence of length N, and the 
output is pseudogene sequence of length N.

Figure 1. 
The structure of variant measurement.
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3.  Segmentation measurement module: Input segment length value “m,” input 
pseudogene sequence of length N, output is divided into M segment pseudogene 
sequence, where N = M*m.

4.  State statistics module: Input the pseudogene sequence with length M 
(N = M*m), and output the corresponding variable measure value.

5.  Variable value graph output module: Input variant measure, output variant ECG 
scatter plot.

3. Core module

3.1 Variant processing module

The core function of the module is to process successive ECG sequences into 
discrete 4-primary pseudogene sequences.

The variant processing module includes three submodules, a parameter setting 
submodule, a data discretization submodule, and a variant processing submodule. 
The three submodules are closely related, and the workflow of the module is shown 
in Figure 3.

As can be seen from the workflow chart of the variant processing module, the 
input and output relationship of the module is:

Parameter setting:
Sliding window value “W,” ; threshold “R,” R is a natural number 

greater than 0.
Input:
The base sequence value of length N: , where N is a positive 

integer.
Procedure:
A conversion sequence of length N: , where N is a positive 

integer.
Output:
Pseudogene sequence of length N: , N belongs to a 

positive integer,  and  is an element in .
The above is the overall workflow of the variant processing module. Since the 

variant processing module includes a parameter setting submodule, a data dis-
cretization submodule, and a variant conversion submodule, the functions of each 
submodule and its core algorithm will be specifically described below.

3.1.1 Parameter setting submodule

The parameter setting is to set the sliding window value “W” and the thresh-
old “R” two parameters. It should be noted that the parameters have dynamic 
adjustability.

Figure 2. 
The workflow of variant measurement.
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3.1.2 Data discretization submodule

The specific variable discretization algorithm is divided into three steps: the first 
step calculates the average sequence corresponding to the base sequence, the second 
step calculates the truncated average sequence corresponding to the base sequence, 
and the third step calculates the conversion sequence corresponding to the base 
sequence. The calculation of these three steps is as follows:

1.  The first step is to calculate the average sequence corresponding to the base 
sequence. In the sliding window value, the sliding window is sequentially moved 
from the first position of the base sequence, one bit at a time, and the average 
value in the sliding window value obtained by each movement is calculated. The 
calculation process is:

Input:
The base sequence value of length N is , N is a positive 

integer; the sliding window value is “W,” .
Processing:
Here is an example of the process of calculating a sliding window. Suppose the 

base sequence in the sliding window value “W” is ; then the average 

value of the sequence is .

Output:
The average sequence of length N is .

Figure 3. 
The workflow of variant processing.
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2.  The second step calculates the truncated average sequence corresponding to the 
base sequence. In the sliding window value, the sliding window is sequentially 
moved from the first position of the base sequence, one bit at a time, and the 
truncated average value in the sliding window value obtained by each movement 
is calculated. The calculation process is:

Input:
Base sequence value of length N: , N is a positive integer; 

threshold “R,” R is a natural number greater than 0.
Processing:
Here is an example of the process of calculating a sliding window. Suppose the 

base sequence in the sliding window value “W” is ; then the maxi-

mum value of the elements in the sequence is , the minimum value is 
, then the truncated mean of the sequence is .

Output:
Truncated average sequence of length N: .

3.  The third step calculates the conversion sequence corresponding to the base 
sequence:

Input:
Threshold “R,” R is a natural number greater than 0;
the base sequence of length N is ;
the average sequence of length N is ; and
the truncated average sequence of length N is .
Processing:
For example, calculation of the i-th element  in the base sequence to the i-th 

element  in the conversion sequence: .
Output:
Conversion sequence of length N is , where N is a positive 

integer.

3.1.3 Variant processing submodule

The variant processing submodule is for processing the conversion sequence 
into a corresponding pseudogene sequence. The conversion rule is based on the 
threshold value, dividing the number axis into four intervals, and the four inter-
vals correspond to the four primitives of the gene sequence: A, G, C, and T. When 
the conversion value is greater than or equal to the threshold, the conversion value 
is defined as A. When the conversion value is less than or equal to the negative 
threshold, the conversion value is defined as T. When the conversion value is 
greater than 0 and less than the threshold, the conversion value is defined as G, 
and when the conversion value is less than 0. When the value is greater than the 
negative threshold, the conversion value is defined as C; the conversion rules are 
as follows:

Input:
A sequence of converted values   of length N: ; N is a positive 

integer; threshold “R,” R is a natural number greater than 0.
Processing:
For example, conversion rule between the i-th element  and the threshold in 

the conversion sequence:
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Output:
A pseudogene sequence of length N , where N is a 

positive integer.

3.2 Segmented measurement module

The segmentation measurement module is to segment the pseudogene sequence. 
The function of this step is simple, but it is essential to prepare for the state statistics 
module. It should be noted that the segmentation measurement method here is dif-
ferent from the sliding window value in the variable value processing module. The 
principle of sliding window operation in the variable value processing module is to 
perform correlation measurement in order of 1 interval and sliding window value 
as unit length. The segmentation measurement is based on the segment length and 
sequentially segments the data sequence. For example, when the segment length is 
m, the pseudogene sequence of length N can be divided into M segments, N = M*m. 
The workflow of segmented measurement is in Figure 4.

The input and output relationship of this module is:
Parameter setting:
The segment length value is recorded as “m,” .
Input:
Segmentation length value “m”; pseudogene sequence of length N: 

.
Processing:
Segmenting the pseudogene sequence of length N in turn at intervals of segment 

length m.
Output:
The segmentation length of m is divided into M groups of pseudogene sequences 

; where .

3.3 Variant state statistics module

This module statistically analyzes the sequence mathematically, revealing 
the patterns in the data and the relationship between the data. The module uses 

Figure 4. 
The workflow of segmented measurement.
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statistical ideas to calculate the measure values of the various primitives of A, G, 
C, and T in the pseudogene sequence. The measurement method is to count the 
number of each primitive in each group in the grouping sequence of the pseudogene 
sequence and mark the obtained value as a state statistical sequence. The workflow 
chart is shown in Figure 5.

As can be seen from Figure 5, the input and output relationship of the module is:
Input:
Segment length with m; pseudogene sequence 

; where .
Processing:
Processing includes variant conversion statistics and variant probability 

measurement.
Output: Probability measure sequence.
The rules for variant conversion statistics and variant probability measurement 

are defined as follows.

3.3.1 Variant conversion statistics

The process of variant conversion statistics is illustrated by taking the i-th group 
in the grouped pseudogene sequence as an example:

; where ,  is a pseudogene 
sequence consisting of all pseudogenes in the i-th group.

 represents the value of the number of A primitives in the i-th group;
 represents the value of the number of G primitives in the i-th group;
 represents the value of the number of C primitives in the i-th group; and
 represents the value of the number of T primitives in the i-th group.

Taking the i-th group as an example, the state measurement sequence 
 can be obtained by analogy.

Figure 5. 
The workflow of variable state statistics.
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3.3.2 Variant probability measurement

The following describes the process of probability measurement by taking the 
i-th group in the pseudogene sequence as an example:

  

  

  

  

  

Taking the i-th group as an example, the probability measurement sequence 
 can be obtained by analogy.

4. Sample results and brief analysis

4.1 Data source description

ECG data samples from the First People’s Hospital of Yunnan Province. This 
batch of data sets was initially analyzed by hospital experts. In order to facilitate 
the experimental research, an ECG database was established to classify ECG data. 
Among them, the normal ECG data is about 138 MB, and the abnormal ECG data is 
about 362 MB. The data samples obtained by collation are shown in Figure 6.

As can be seen in Figure 6, ECG data belongs to multivalued data and has a 
plurality of different attribute values, including pr interval, qt interval, p wave, 
qrs wave, and the like. In the medical field, the diagnosis of P-wave signals is a key 
point and difficulty in research. The P wave is the key to the diagnosis of arrhyth-
mia; as shown in Figure 7, it is the normal ECG signal that marks P.

Based on the above background, this chapter selects the P-wave data in the ECG 
data provided by the First People’s Hospital of Yunnan Province to perform vari-
able value visualization analysis. In order to ensure the rigor of the experiment, the 
normal P wave and the abnormal P wave of the same data amount were selected 

Figure 6. 
Sample of ECG data.
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for research. By comparing the variant maps between the normal P wave and the 
abnormal P wave, the useful information in the ECG data is mined.

4.2 Meaning of selected variable value map

Input:
data source and parameter value; the data source is a normal P-wave ECG sequence 

of length 10,254, an abnormal P-wave ECG sequence of length 10,254; the parameter 
is the sliding window value “W,” and the threshold “R,” a segment length value “m”;

Processing:
The process is completed by the variant measurement system.
Output:
Variant maps: the X-axis represents the probability measure of G in the four primi-

tives A, G, C, and T, and the Y-axis represents the probability measure of C in the four 
primitives A, G, C, and T. Marked on the variable map as X = St(G), Y=St(C).

4.3 Visualization features

Figure 8 shows an example of normal P-wave and anomalous P-wave variation 
map. This example is a variable value map obtained under the condition that the 

Figure 7. 
The normal ECG signal that marks P.

Figure 8. 
Normal P-wave and abnormal P-wave characteristics. (a) Normal P-wave variant map. (b) Abnormal 
P-wave variant map.
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parameter sliding window value W = 24, the threshold R = 0.85, and the segment 
length value m = 100 are selected. It can be seen that there are obvious differences 
in the shape characteristics of the normal P-wave and the abnormal P-wave scatter 
cluster, and the distribution characteristics of the scatter cluster between the two 
are also different. The normal P-wave characteristics are mainly concentrated in the 
interior of the quadrilateral formed by “(0.3, 0.4), (0.4, 0.1), (0.8, 0.4), (0.8, 0.7).” 
The abnormal P-wave characteristics are mainly concentrated inside the triangle 
formed by “(0, 1), (0.4, 0.4), (1, 1).”

In order to better display the variant features, the following will be shown as an 
example of the visualization results under different “m” values (Figure 9).
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5. Summary

This chapter is closely related to the measurement model, processing method, 
and variant maps to study ECG signals. To some extent, the variant maps and the 
traditional clinical ECG can be compared:

Figure 9. 
A list of variant maps on parameters M = {50,80,110,140,170,200}; (a1)–(a6) is a list of normal P wave; and 
(b1)–(b6) is a list of abnormal P wave. (a1) m = 50, (a2) m = 80, (a3) m = 110, (a4) m = 140, (a5) m = 170, and 
(a6) m = 200; and (b1) m = 50, (b2) m = 80, (b3) m = 110, (b4) m = 140, (b5) m = 170, and (b6) m = 200.
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© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
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1. The electrocardiogram is a characteristic map obtained by processing the 
individual ECG signal. The variant maps, which mainly target massive ECG 
signals, can process individual ECG signals and can also process cluster ECG 
signals to provide visual analysis of points and surfaces.

2. The waveform features on the electrocardiogram have strong professionalism 
and complexity, while variant maps show waveform features from another 
perspective in the form of scatter clusters; variant maps visualization features 
are simple and clear. Nonprofessional ECG experts can also see the difference 
between normal and abnormal ECG characteristics.

The experimental results in this chapter demonstrate the visual characteristics 
of the differences in ECG data, giving a simple and clear visual experience, but the 
research in this chapter still has some shortcomings: due to the differences in the 
detection instruments, the different backgrounds of the times, the different data 
sources, and the lack of specific ECG diagnostic experts to guide these factors in the 
reality, the basic research of this chapter needs to be further improved.

Further cooperation with hospital ECG experts in the later stage is expected, 
combined with computer method technology, to process more targeted ECG data 
and further improve the variant measurement system to form a standard model, 
and combined with pathological conditions; the corresponding quantitative evalua-
tion criteria were studied.

It is necessary to specifically note here that the parameters selected in the 
experiments in this chapter are selected after a large number of experiments, and 
the selection is based on the integrity, usability, and stability of the image features 
in the visualization results.
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