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Chapter

Mycelium Differentiation and 
Development of Streptomyces 
in Liquid Nonsporulating 
Cultures: Programmed Cell 
Death, Differentiation, and Lysis 
Condition Secondary Metabolite 
Production
Angel Manteca, Beatriz Rioseras, Nathaly González-Quiñónez, 

Gemma Fernández-García and Paula Yagüe

Abstract

Streptomycetes are mycelium-forming sporulating bacteria that produce two 
thirds of clinically relevant secondary metabolites. Secondary metabolite produc-
tion is activated at specific developmental stages of Streptomyces life cycle. Despite 
this, Streptomyces differentiation in liquid nonsporulating cultures (flasks and 
industrial bioreactors) tends to be underestimated and the most important parame-
ters managed are only indirectly related to differentiation: modifications to the cul-
ture media, optimization of productive strains by random or directed mutagenesis, 
analysis of biophysical parameters, etc. In this chapter, we review the relationship 
between differentiation and antibiotic production in liquid cultures. Morphological 
differentiation in liquid cultures is comparable to that occurring during pre-
sporulation stages in solid cultures: an initial compartmentalized mycelium suffers 
a programmed cell death, and remaining viable segments then differentiate to a 
second multinucleated antibiotic-producing mycelium. Differentiation is one of the 
keys to interpreting biophysical fermentation parameters and to rationalizing the 
optimization of secondary metabolite production in liquid cultures.

Keywords: Streptomyces, bioreactor, differentiation, antibiotics,  
programmed cell death

1. Introduction

Streptomycetes are gram-positive, environmental soil bacteria that play important 
roles in the mineralization of organic matter. Streptomyces is extremely important 
in biotechnology, given that approximately two thirds of all clinical antibiotics and 
several other bioactive compounds are synthesized by members of this genus [1].
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Streptomycetes have a complex developmental cycle that makes this bacterium 
a multicellular prokaryotic model. The classical Streptomyces developmental cycle 
defined 50 years ago by Waskman [2] and Wildermuth [3] in laboratory solid 
cultures focused on sporulation (Figure 1): after spore germination, hypha grow 
inside the culture (substrate mycelium); the substrate mycelium differentiates into 
a new mycelium that begins to express hydrophobic surfaces and grows into the air 
(aerial mycelium); the substrate and aerial mycelia are multinucleated with spo-
radic septa; both mycelia eventually undergo a programmed cell death (PCD), and 
the remaining viable hyphae differentiate into chains of unigenomic spores. Most 
streptomycetes do not sporulate in liquid cultures, and it was traditionally thought 
that there was no differentiation in these conditions. Despite this, most processes 
for secondary metabolite production are performed in liquid (flask or bioreactor). 
It was postulated that secondary metabolites would be produced in liquid cultures 
by the substrate mycelium at the stationary stage [4–8].

The main objective of this work is to review the state of the art of Streptomyces 
differentiation in liquid cultures, especially in lab-scale bioreactors, defining the 
kind of differentiation present under these conditions, how differentiation, fermen-
tation parameters (dissolved oxygen tension, oxygen uptake rate, oxygen transfer 
rate, pH, temperature, agitation, culture medium, etc.) and secondary metabolite 
production are correlated, and describing a general model applicable to improving 
secondary metabolite production in Streptomyces industrial fermentations.

2. Streptomyces development in liquid cultures

During the last decade, new knowledge regarding Streptomyces development 
during the early differentiation stages, those occurring between spore germination 
and substrate mycelium differentiation, was generated (red labels in Figure 1): a 
previously unidentified, young, compartmentalized mycelium (MI) undergoes a 
PCD; and viable MI segments differentiate into a multinucleated mycelium with 
sporadic septa (MII). One-micron spaced MI compartments are separated by 

Figure 1. 
Streptomyces developmental cycle. New developmental stages are highlighted in red. MI, first 
compartmentalized mycelium, vegetative; MII, second multinucleated mycelium producing secondary 
metabolites. The full cycle is developed in solid cultures. Liquid cultures do not develop aerial mycelium or 
spores.
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cross-membranes without peptidoglycan cell walls, a kind of cell division unprec-
edented in bacteria [9]. MII corresponds to the substrate mycelium in early develop-
ment, and to the aerial mycelium once it starts to express hydrophobic surfaces. In 
liquid cultures, there is no hydrophobic surface formation or sporulation, but there 
is a compartmentalized MI, which differentiates into a multinucleated MII after 
PCD. MII produces secondary metabolites in solid and liquid cultures. This was 
the first time that secondary metabolism was associated with a specific mycelial 
stage (MII) [10]. Transcriptomic [11] and proteomic [12, 13] analyses performed 
by our group corroborated that MI is the vegetative mycelium expressing/translat-
ing primary metabolism genes/proteins, while MII is the reproductive mycelium 
expressing/translating secondary metabolism and sporulation genes/proteins.

Microbial multinucleated structures such as the substrate and aerial mycelia 
are fragile, uncommon, and usually related to transitory reproductive stages [14]. 
Contrary to what was postulated during the last 50 years, Streptomyces is not an excep-
tion, and the compartmentalized MI is the predominant mycelium in cultures resem-
bling natural conditions, such as nonamended soils [15]. The MI lifespan is very short 
in laboratory cultures, which is why it was ignored in most Streptomyces works [15].

3. Streptomyces differentiation and industrial fermentations

The absence of an understanding of Streptomyces differentiation in liquid 
cultures has long precluded the existence of a general consensus as to how morpho-
logical and biophysical parameters correlate with secondary metabolite production. 
Pharmaceutical companies have addressed the optimization of industrial fermen-
tation empirically for each strain and compound. For example, pellet and clump 
formation has been described as essential for obtaining good production of reta-
mycin or nikkomycin [16], but in the case of virginiamycin, there is no relationship 
between morphology and secondary metabolite production [17]; high dissolved 
oxygen tensions (DOT) have been reported as being necessary for the production 
of vancomycin [18], but not for the production of erythromycin [19], just to name a 
few examples.

Only recently has basic knowledge about differentiation in liquid cultures 
been generated. As introduced above, MII was demonstrated to be the antibiotic-
producing mycelium. In a recent work, our group demonstrated that differentia-
tion is one of the keys to interpreting typical fermentation parameters (growth, 
antibiotic production, dissolved oxygen tension, agitation, and oxygen uptake 
rates) [20] in bioreactors. Pellet and clump formation greatly influences PCD, 
usually occurring in the center of the mycelium pellet [10] and MII differentia-
tion from MI living cells at the pellet periphery [10]. We proposed a general 
consensus to improve secondary metabolite production in S. coelicolor: optimiza-
tion of the differentiation of the antibiotic-producing mycelium (MII) [20]. In 
the past few years, other groups have contributed to identifying some genetic 
determinants controlling pellet and clump formation [21, 22].

3.1 Differentiation of Streptomyces in bioreactors

There are important differences between liquid cultures in laboratory flasks 
and bioreactors. Despite the obvious hydrodynamic differences between the two 
systems, there are also differences in the culture media. In this sense, one of the 
most important differences between flasks and bioreactors is the use of anti-
foams. Antifoams are often used in bioreactors to prevent foam formation and its 
interference with the bioreactor probes [23]. Apparently, antifoams do not affect 
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development and they are usually added automatically in small amounts when foam 
is detected by a specific probe, and in some cases, they are added directly to the cul-
ture medium at concentrations up to 0.1% [23]. Rioseras et al. [20] analyzed for the 
first time Streptomyces differentiation (MI and MII differentiation) in bioreactors 
and demonstrated an important effect of the antifoam in macroscopic morphology 
of the cultures (pellet and clump formation), which conditions mycelium differen-
tiation and secondary metabolite production.

3.1.1 Differentiation of S. coelicolor in antifoam-free media

Mycelium differentiation in bioreactors is comparable to differentiation in 
laboratory flasks [20] (outlined in Figure 2): at early time points, hyphae presented 
the regular discontinuities and gaps previously described for MI hyphae [10]; MI 
differentiates into a second multinucleated mycelium (MII) after a programmed 
cell death (reviewed in Yagüe et al. [24]). However, there are important differences 
between development in flask and bioreactor.

One of the most important differences observed in the bioreactor with respect to 
laboratory flasks for S. coelicolor [20] is the existence of massive fragmentation and 
disintegration of mycelial pellets at around 50 hours of fermentation. This massive 
disintegration is observed macroscopically, in the form of the apparent clarification 
of the culture medium, and correlates with a sudden fall in intracellular protein 
levels. This kind of mycelial disintegration has been previously described as “mas-
sive lysis” in several Streptomyces fermentations, such as S. clavuligerus (reducing 
mycelium by more than 30%) [25], Streptomyces spp. [26], Streptomyces albulus [27], 
or S. coelicolor [28], to name just a few examples. This “massive lysis” differs from 
the “fragmentation of the mycelial clumps” described in some cases [29], flasks and 
bioreactors, which basically consists of the fragmentation of large clumps into small 
clumps, but without the early massive hyphal lysis reported in several bioreactor 

Figure 2. 
Scheme illustrating S. coelicolor differentiation in bioreactors in media with or without antifoam. Red 
corresponds to dying hyphae (PI staining) and green to viable hyphae (SYTO9 staining). The optimal 
fermentation workflow is highlighted in red.
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fermentations [20, 25–28]. The reason why this phenomenon occurred in some 
streptomycetes and not in others remains unknown. Understanding and controlling 
mycelial lysis would be essential to optimize fermentations. In S. coelicolor growing 
in laboratory flasks containing the same media used by Rioseras et al. [20] in biore-
actors, this massive lysis does not occur [10]. Hence, Rioseras et al. [20] proposed 
that massive pellet disintegration depends on the hydrodynamics of the bioreactor 
combined with the tendency of S. coelicolor to form large pellets. Further work will 
be necessary to define if the same is happening in the other streptomycetes suffer-
ing the same phenomenon in bioreactor cultures.

MII differentiation and antibiotic production is accelerated in the S. coelicolor 
bioreactor cultures, peaking at 100–140 hours in laboratory flasks vs. 50 hours in 
the bioreactor [20]. However, antibiotic biosynthesis was halted after pellet disin-
tegration, with maximum undecylprodigiosin and actinorhodin production levels 
lower in the bioreactor than in laboratory flasks [20].

Biophysical fermentation parameters, such as dissolved oxygen tension (DOT), 
agitation, and oxygen uptake rates (OURs), correlated well with differentiation 
[20]: DOT falls from saturation at time zero to the fixed level (50% saturation), due 
to hyphal growth and respiration; there is a concomitant increase in agitation to 
maintain oxygen levels at the fixed level; once pellet disintegration starts, biological 
oxygen consumption and agitation decrease gradually, and dissolved oxygen levels 
increase suddenly to saturation. OUR values fall during the MI PCD and are not 
recovered until the MII differentiation. This description of mycelium differentia-
tion and OUR in bioreactors constitutes an elegant example of the importance 
of understanding Streptomyces differentiation, to interpret classical biophysical 
fermentation parameters in the model strain S. coelicolor and conceivably in other 
industrial relevant streptomycetes. Information concerning oxygen uptake kinetics 
of Streptomyces cultures is scarce despite their industrial importance. OUR values 
vary widely between strains, from 2.88 mg O2 g cell−1 h−1 in S. lividans [30] to 
320 mg O2 g cell−1 h−1 in S. clavuligerus [31]. The meaning of these differences is 
difficult to interpret due to the absence of any indication as to mycelium differentia-
tion/PCD in most of these works. An analysis of hyphae differentiation, develop-
ment, and PCD would be essential to address these differences in OURs between 
different Streptomyces strains and culture conditions.

3.1.2 Differentiation of S. coelicolor in bioreactors supplemented with antifoam

Rioseras et al. [20] modified growing conditions in bioreactors to prevent the early 
massive lysis described above. The most obvious difference between bioreactors and 
laboratory flasks is the impellers used for agitation in the case of the bioreactor, so 
the first experimental approach to trying to prevent lysis was to reduce agitation to 
minimum levels (50 rpm); however, the same extension of pellet disintegration was 
observed [20]. Similar results were observed at different agitation rates (50, 100, 200, 
or 300 rpm) or by replacing Rushton impellers by a gentle impeller (pitched blade 
impellers) [20]. The only modification that worked to avoid the massive mycelial 
lysis observed in bioreactors was the modification of the culture medium’s rheology 
reducing surface tension by means of an antifoam agent (Biospumex 153 K, BASF). 
This effect of preventing early fragmentation/lysis was only observed at relatively 
high antifoam concentrations (1%) (outlined in Figure 2).

The reason why antifoam prevents pellet disintegration is as yet unknown. 
However, the antifoam tended to coat the mycelial pellets, and the hydrophobic 
forces generated may have prevented this phenomenon. Antifoams are often used 
with Streptomyces coelicolor [23] as well as other Streptomyces fermentations to 
prevent foam formation, or even, in some cases to be used as carbon sources [32]. 
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They are usually added automatically in small amounts when foam is detected by a 
specific probe, and in some cases, they are added directly to the culture medium at 
concentrations up to 0.1% [23]. However, Rioseras et al. [20] were the first authors 
who demonstrated that antifoams added to the culture media at relatively high 
concentrations prevent mycelium lysis, a fact that might be useful for preventing 
lysis in other industrial streptomycetes.

Biophysical fermentation parameters also correlated well with differentiation in 
cultures with antifoam: the absence of pellet disintegration prolonged the oxygen 
consumption phase, generating two peaks of OUR (MI and MII stages) separated 
by a stage of low oxygen consumption [20]. These two maxima in OUR are very 
unusual in industrial fermentation, and are another nice illustration of the necessity 
of understanding Streptomyces differentiation in order to interpret fermentation 
parameters in Streptomyces fermentations. As in the case of fermentations without 
antifoam, oxygen levels did not limit growth.

3.2 Sporulation of Streptomyces in bioreactors

Another important difference between bioreactor- and laboratory flask- 
S. coelicolor cultures is the existence of a sporulation-like process, affecting some 
5% of hyphae in bioreactors [20]. Two of the most important features of sporula-
tion, division, and separation of nucleoids, and the physical strangulation of 
hypha forming chains of individual round segments, were observed in bioreactors 
[20]. Sporulation in S. coelicolor liquid cultures is very unusual and has only been 
reported once before in laboratory flasks suffering nutritional downshifts [33]. The 
differentiation signals activating sporulation in the bioreactors remain unknown. 
However, if it is considered that sporulation is triggered by environmental/biologi-
cal stresses [34], the high growth rates achieved in the bioreactors together with 
pellet disintegration might approach the development occurring in stressed solid 
sporulating cultures. In the absence of pellet disintegration, putative differentia-
tion diffusible signals [35, 36] generated by stressed cells suffering from PCD [24] 
would be hidden in the centers of the pellets [20].

4.  Streptomyces differentiation and screening for new bioactive 
compounds

Streptomycetes are important biotechnological bacteria from which two thirds 
of the bioactive secondary metabolites used clinically (mainly antibiotics, but also 
antitumourals, immunosuppressors, etc.) were discovered [37]. Drug discovery 
became challenging once the most common antibiotics were discovered. In fact, 
during the past 30 years, only three new classes of antibiotics have been brought to 
the clinic (mutilins, lipopeptides, and oxazolidinones) [38, 39]. At the same time, 
microbial resistance to existing antibiotics has increased dramatically, rendering 
some microbial infections extremely hard to treat.

New antibiotics are urgently needed in the clinic. No valid alternatives to screen-
ing natural strains have emerged to find new scaffolds and families of antibiotics 
[40]. New workflows are needed to access the natural secondary metabolites 
that remain inaccessible in the laboratory [41]. Nonnatural synthetic antibiotics 
obtained by chemical/combinatorial biosynthesis exist, but most of them are varia-
tions of natural molecules [40]. The best way to find structurally novel bioactive 
compounds is to resume screening from natural streptomycetes. The most obvious 
approach to look for new bioactive compounds from natural streptomycetes is to 
study streptomycetes isolated from relatively lowly explored niches such as marine 
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ecosystems [42], symbiotic streptomycetes [43], etc., an approach followed by 
several research groups and biotechnology companies. On the other hand, genomic 
analyses revealed that Streptomyces genomes encode an average of 30 secondary 
metabolite pathways [44], but only a fraction of these pathways (around four per 
strain [43]) is active in laboratory cultures. Consequently, there is a huge amount 
of potentially bioactive compounds produced by streptomycetes that are never 
observed in the lab (cryptic pathways) and remain unexplored. There is a consensus 
in the scientific community about the necessity to activate the expression of these 
cryptic pathways in order to overcome the present bottleneck in drug discovery.

Several research groups and biotechnology companies face the challenge of 
activating cryptic pathways to try to mimic the ecological niche of the bacteria 
by making co-cultures of different microbes [45], looking for elicitor activating 
pathways (nutrients such as glucose, xylose, and small molecules such as GlcNac 
and phosphate) [46] or making heterologous expression [47]. As stated above, 
Streptomyces differentiation conditions secondary metabolism [20], and differ-
entiation can be one of the keys to activate cryptic pathways by modulating the 
differentiation of the antibiotic producer mycelium (MII). The “MII approach” 
will be useful to activate secondary metabolism production in strains discarded as 
producers in the classical screening campaigns, strains that did not produce in the 
lab because they did not reach the MII stage, or because they sporulated in liquid 
cultures (during sporulation metabolism is stopped), i.e. false negatives [48]. This 
approach was already useful to enhance flavonoid production in S. albus [49], as 
well as microbial transglutaminase in S. mobaraensis [50].

5. Conclusions

Different streptomycetes show different behaviors in liquid cultures: some species 
form large pellets, such as S. coelicolor, others grow more dispersed, as for instance 
S. clavuligerus [25], while some species such as S. griseus or S. venezuelae sporulate 
in liquid cultures [51, 52]. As a consequence, the effect of fermentation parameter 
modifications in different species cannot be easily predicted. The “MII approach” 
described here, i.e. optimization of antibiotic-producing mycelium differentiation, 
prevention of sporulation, might be applied to rationalizing the biological effects of 
classical biophysical fermentation parameters, and to facilitating the optimization of 
secondary metabolite production in industrial streptomycetes. In addition, prevent-
ing early massive pellet fragmentation/lysis by adding antifoam directly to the culture 
medium at relatively high concentrations is novel and may be useful for preventing 
lysis in other industrial streptomycetes. The “MII approach” also has applications 
in the screening for new secondary metabolites, allowing the activation of cryptic 
pathways in streptomycetes that did not reach the MII stage in the lab.
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