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Chapter

Opening the “Black Box” of Silicon 
Chip Design in Neuromorphic 
Computing
Kangjun Bai and Yang Yi

Abstract

Neuromorphic computing, a bio-inspired computing architecture that 
transfers neuroscience to silicon chip, has potential to achieve the same level of 
computation and energy efficiency as mammalian brains. Meanwhile, three-
dimensional (3D) integrated circuit (IC) design with non-volatile memory 
crossbar array uniquely unveils its intrinsic vector-matrix computation with 
parallel computing capability in neuromorphic computing designs. In this 
chapter, the state-of-the-art research trend on electronic circuit designs of neu-
romorphic computing will be introduced. Furthermore, a practical bio-inspired 
spiking neural network with delay-feedback topology will be discussed. In the 
endeavor to imitate how human beings process information, our fabricated 
spiking neural network chip has capability to process analog signal directly, 
resulting in high energy efficiency with small hardware implementation cost. 
Mimicking the neurological structure of mammalian brains, the potential of 
3D-IC implementation technique with memristive synapses is investigated. 
Finally, applications on the chaotic time series prediction and the video frame 
recognition will be demonstrated.

Keywords: analog signal processors, lab on a chip, neuromorphic computing, 
reservoir computing, analog/mixed-signal circuit design, three-dimensional 
integrated circuit, image classification

1. Introduction

Benefit by the Moor’s law, the von Neumann computing architecture, respec-
tively storing and processing data instructions in the memory unit and the central 
processing unit (CPU), was served as the major computing model in past several 
decades [1]. However, physical limitations of the complementary metal-oxide-semi-
conductor (CMOS) technology and the storage capacity hinder the performance 
development of classic computers; such classic computers can no longer double its 
performance every 18 months, indicating the end of Moore’s prediction [2].

Recently, the computing efficiency of extracting valuable information in 
data-intensive applications through the von Neumann computing architecture has 
become computationally expensive, even with super-computers [3]. The accumu-
lated amount of energy required for the data processing through super-computers 
poses a query on whether the augmented performance is sustainable.
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As human beings, our brains are capable to analyze and memorize sophisticated 
information with only  20W  of energy consumption [4]. In the 1980s, neuromorphic 
computing, proposed by Dr. Carver Mead, has matured to provide intelligent sys-
tems that able to mimic biological processes of mammalian brains through highly 
parallelized computing architectures; such systems typically model the function of 
neural network through very-large-scaled-integrated (VLSI) circuits [5]. Major dif-
ferences between the von Neumann computing architecture and the neuromorphic 
computing system are illustrated in Figure 1. Recently, artificial neural networks 
(ANNs) have demonstrated their superior performance in many data-extensive 
applications, including image classification [6–8], handwritten digit recognition 
[9–11], speech recognition [12, 13] and others. For instance, TrueNorth, the neu-
romorphic chip fabricated by IBM in 2014, is capable to classify multiple objects 
within a 240 × 240-pixel video input with merely  65mW  of energy consumption. 
Compared to the von Neumann computing system, such a neuromorphic comput-
ing system has five orders of magnitude more energy efficient [14]. Loihi, the latest 
prototype of brain-inspired chip fabricated by Intel in 2017, involves a mere 1/1000 
power consumption of the one used by a classic computer [15].

Most recent hardware implementations on neuromorphic computing systems 
focus on the digital computation because of its advantages in noise immunity [16]. 
However, real-time data information is often recorded in the analog format; thereby, 
power-hungry operations, such as analog-to-digital (A/D) and digital-to-analog (D/A) 
conversions, are needed to facilitate the digital computation. It can be observed that 
the digital computation results in high power consumption with a large design area.

In this chapter, an overview of ANNs will be discussed in Section 2. Section 3 
introduces the spiking information processing technique through the temporal 
code with the leaky integrate-and-fire neuron. Our fabricated spiking neural 
network chip along with its measurement results on the chaotic behavior will be 
demonstrated in Section 4, followed by the investigation on 3D-IC implementation 
technique with memristive synapses in Section 5. Applications on the chaotic time 
series predication and the image recognition are illustrated in Section 6.

2. Artificial neural networks

In the endeavor to imitate the nervous system within mammalian brains, ANNs 
are built by employing electronic circuits to imitate biological neural networks 
[17]. In general, ANN methodologies adopt the biological behavior of neurons and 
synapses, so-call the hidden layer, in their architecture. The hidden layer is consti-
tuted by multiple “neurons” and “synapses”, which carries activation functions that 

Figure 1. 
General architecture of (a) von Neumann computing system and (b) neuromorphic computing system.
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control the propagation of neuron signals. Based on the connection pattern and the 
learning algorithm, ANN methodologies can be classified into various categories, as 
depicted in Figure 2.

The multilayer perceptron (MLP), a representation of feedforward neural 
networks (FNNs), is composed by unidirectional connections between hidden 
layers. MLP has become the quintessential ANN model due to its advantages in ease 
of implementation [18]. However, the major design challenge in the MLP is that 
the runtime as well as the training and learning accuracy of the system are strongly 
affected by the number of neurons and hidden layers. As the neural information 
evolved into a much more sophisticated mixed-signal evaluation, disadvantages 
of MLP are exposed when such a neural network is deployed for temporal-spatial 
information processing tasks [19]. Recurrent neural networks (RNNs), success-
fully adopt the temporal-spatial characteristics within their hidden layer, closely 
mimic the working mechanism of biological neurons and synapses. However, the 
major design challenge is that all weights within the network need to be trained, 
which dramatically increases its computational complexity. In earlier 2000s, the 
reservoir computing, an emerging computing paradigm, exploits the dynamic 
behavior of conventional RNNs and computationally evolved its training mecha-
nism [20]. Within the reservoir layer, synaptic connections are constructed by a 
layer of nonlinear neurons with fixed and untrained weights. In the reservoir com-
puting, the complexity of the training process is significantly reduced, since only 
output weights are needed to be trained, thereby, higher computational efficiency 
can be achieved.

The conventional reservoir computing has been fully developed in the past 
decade to simplify the training operation of RNNs and proven its benefits across 
multifaceted applications [21–24]; however, the computational accuracy of the 
system is still highly proportional to the number of neurons within the reservoir 
layer. It can be observed that these enormous numbers of neurons significantly 
hinder the hardware development on the reservoir computing. In [25], it has been 
proven that the computing architecture is capable to exhibit rich dynamic behaviors 
during operations when the delay is employed into the system. Benefit from the 
embedded delay property, the training mechanism and the computing architecture 
of conventional reservoir computing have conceptually evolved, namely the time 
delay reservoir (TDR) computing [26]. In the TDR computing, the reservoir layer is 
built by only one nonlinear neuron with a feedback loop. In this context, time-series 
input data can be processed through the TDR computing by taking advantages of 
the feedback signal to form a short-term memory, thereby, higher computational 
efficiency and accuracy can be achieved.

Figure 2. 
Overview of artificial neural networks.
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3. Spiking information processing

In many brain-inspired neuromorphic computing systems, the interface 
between modules is often influenced by the signal propagation. The major design 
challenge in neuromorphic computing is the difficulty in adapting raw analog sig-
nals into a suitable data pattern, which can be used in the neuronal activities. Before 
digging deep into the architecture of our fabricated spiking neural network chip, in 
this section, a temporal encoding scheme through the analog IC design technique 
will be discussed.

3.1 CMOS neuron models

In past few decades, researches on biological neurons have been fully investigated in 
the field of neuroscience [27–32]. In general, the dendrite, the soma, the axon and the 
synapse are four major elements of a biological neuron [33]. Within a nervous system, 
dendrites collect and transmit neural signal to the soma, while the soma plays an 
important role as the CPU to carry out the operation of the nonlinear transformation. 
Moreover, signals are processed and transmitted in form of a nerve impulse, also known 
as the spike [34]. During the operation, an output spike is formed when the input 
stimulus surpasses the threshold level, indicating as the firing process. Figure 3 demon-
strates a typical firing and resting operation in a biological neuron. Synapses along with 
the axon are then transmitted the spike data patterns to other neurons.

The leaky integrate-and-fire (LIF) neuron model plays an important role in the 
neuron design to convert raw analog signals into spikes [35]. Figure 4 depicts the 
analog electronic circuit model of a LIF neuron. The input excitation,   I  ex   , can be 
expressed as

   I  ex   =  C  m   ∙   d  V  m   ____ 
dt

   +  I  leak  ,  (1)

where   C  m    is the membrane capacitance,    d  V  m  
 ____ 

dt
    represents the voltage potential 

across the membrane capacitor over time, and   I  leak    is the leakage current. During the 
operation, raw analog signals are firstly converted into an excitation current, which 
will be used to charge up the potential level across the membrane capacitor. When 
the voltage potential across the membrane capacitor surpasses the threshold level, 
the circuit fires a spike as its output. Once the firing process is accomplished, the 
membrane capacitor will be reset to its initial state until the next firing cycle takes 

Figure 3. 
Action potential of biological impulses.
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place. The LIF neuron is capable to process both firing and resetting operations, 
closely mimicking the biological behavior of neurons.

From Eq. (1), it can be observed that the integration time over the membrane 
capacitor can be regulated by excitation and leakage currents. Such relation can be 
depicted by a simple resistor model, which can be rewritten as

   I  ex   =  C  m   ∙   d  V  m   ____ 
dt

   +    V  m   ____ 
 R  leak  

  ,  (2)

where     V  m   ____ 
 R  leak  

    determines the amount of leakage current. Thereby, the voltage 
potential across the membrane capacitor can be determined as

   V  m   =  I  ex   ∙  R  leak   −  e     
t _______ 

 R  leak  ∙ C  m  
   .  (3)

3.2 Neural codes

Neural code is used to characterize raw analog signals into neural responses. In 
general, there are two distinct classes to represent neural codes. One class converts 
analog signals into a spike train where only the number of spikes matters, knowing 
as the rate code. Another class converts analog signals into the temporal response 
structure [36] where time intervals matters, knowing as the temporal code.

Figure 5 demonstrates major differences between the rate code and the tempo-
ral code. In the rate code, analog signals are encoded into the firing rate within a 
sampling period, as shown in Figure 5a. Considering the implementation complex-
ity, the rate encoding scheme is easier to implement through electronic circuits 
compared to the temporal encoding scheme; however, small variation of an analog 
signal in the temporal response structure are neglected, which makes the rate 

Figure 4. 
Analog electronic circuit model of a LIF neuron.

Figure 5. 
Neural codes in (a) rate code, (b) time-to-first-spike latency code, and (c) inter-spike-interval temporal code.
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code inherency ambiguous in the real-time computation [36]. In [37], researches 
discover that neural information does not only depend on the spatial, but also the 
temporal structure. Time-to-first-spike (TTFS) latency code [38–40] is one of the 
simplest temporal encoding schemes. As demonstrated in Figure 5b, in a TTFS 
latency code, analog signals are encoded into a time interval between the starting 
point of the sampling period and the generated spike. However, the encoding error 
would be large if the system performs abnormally.

The inter-spike-interval (ISI) code is another branch of the temporal code, 
where encoded analog signals depends on the internal time correlation between 
spikes [41, 42], as illustrated in Figure 5c. In general, the ISI temporal encoder 
converts all analog signals into several inter-spike-intervals, allowing each spike to 
be the reference frame to others. Obviously, the ISI code is capable of carrying more 
information within a sampling period compared to the TTFS latency code.

Figure 6a demonstrates the simplified function diagram of ISI temporal 
encoder. The ISI temporal encoder employs an iteration architecture such that 
each LIF neuron operates in separate clock periods. The signal regulation layer is 
built by a current mirror array to duplicate the input excitation current for each 
LIF neuron; the neuron pool along with the signal integration layer achieve the 
iterative characteristic. Our ISI temporal encoder chip was fabricated through 
the standard GlobalFoundries (GF)  180 nm  CMOS technology, as depicted in 
Figure 6b.

The number of spikes in an ISI code as discussed in [32] is directly proportional 
to the number of neurons. Even though this linear proportional correlation is 
desirable, its hardware implementation is still far more challenging. On the other 
hand, it can be observed that the exponential relation would increase the number of 
spikes, thus, containing more information even with the same number of neurons. 
Through the iterative structured ISI temporal encoder, the number of generated 
spikes,   S  N   , can be determined by the number of neurons, which can be written as

   S  N   =  2   N  − 1,  (4)

where  N  defines the total number of neurons.
From Eq. (4), it can be observed that even with the same number of neurons, the 

ISI temporal encoder is capable to produce more spikes compared to [35]; thereby, 

Figure 6. 
(a) Simplified function diagram of ISI temporal encoder and (b) die photo of our fabricated ISI temporal 
encoder chip [32].
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the ISI temporal encoder has capability to carry more information. The iterative 
structure greatly reduces the power consumption, since a smaller number of 
neurons are needed to produce the equal number of spikes.

In this iterative structured design, the ISI temporal encoder samples the original 
analog signal without using A/D and D/A conversions, and converts analog signals 
into several inter-spike-intervals. The expression of the inter-spike-interval can be 
simplified as

   D  i   =    A  i   ______ 
 I  ex   −  I  leak  

  ,  (5)

where   A  i   =  C  m   ∙  V  m   . In the IC implementation, the membrane capacitor is fixed, 
thus,   V  i    is a constant; thereby, the variable,   A  i   , in terms of excitation current can be 
defined as

   A  i   = β ∙  A  N−1   =  β   2  ∙  A  N−2   = ⋯ =  β   N−1  ∙  A  1  ,  (6)

where  β  is an arbitrary design parameter.
The general expression of each inter-spike-interval, as demonstrated in 

Figure 7, can be written as

   D   2   N−1 −1   =   1 ___ 
 A  N  

   ∙    V  N−1   ____ 
 β   N−1 

  ,  (7)

   D   2   N−1 −2   =   1 __ 
 A  1  

   ∙  (   V  N−2   ____ 
 β   N−2 

   −    V  N−1   ____ 
 β   N−1 

  ) ,  (8)

  ⋮  

   D   2   N−1    =   1 __ 
 A  1  

   ∙  (   V  1   ___ 
 β   1 

   −    V  2   ___ 
 β   2 

   −    V  3   ___ 
 β   3 

   − ⋯ −    V  N−3   ____ 
 β   N−3 

   −    V  N−2   ____ 
 β   N−2 

   −    V  N−1   ____ 
 β   N−1 

  ) .  (9)

4. CMOS nervous system design

With the respect to the analog design of neural code, our spiking neural network 
chip adapts the ISI temporal encoding scheme as it pre-signal processing module, 
as well as the reservoir computing module with delay topology as the processing 
element. Our spiking neural network, named as the analog delayed feedback res-
ervoir (DFR) system is considered as the simplification of conventional reservoir 

Figure 7. 
ISI temporal spike train with  N  LIF neurons.
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computing. By employing the delayed feedback structure within the system, our 
analog DFR system processes the functionality of high dimensional projection and 
short-term dynamic memory, whereby the behavior of biological neuron is achieved.

4.1 Architecture of analog DFR system

Figure 8 demonstrates the architecture of our analog DFR system, as published in 
[43, 44]. During the operation, the high dimensional projection within the reservoir 
layer, as illustrated in Figure 9, is the key module to separate input patterns into 
different categories [26]. For instance, with low dimensional spaces, two different 
objects cannot be linearly separated by a single cut-off line, as shown in Figure 9a. 
However, by projecting input patterns onto higher dimensional spaces, from two-
dimensional to three-dimensional, the separability of the system changes accordingly. 
As demonstrated in Figure 9b, the same objects are linearly separated by a single 
cut-off plane without changing their original  xy  position. Our analog DFR chip was 
fabricated through the GF  130nm  CMOS technology, as demonstrated in Figure 10.

In our analog DFR system, the dynamic behavior can be controlled by changing 
the total delay time within the feedback loop. Along the feedback loop, the total 
delay time,  T , is separated into  N  intermediate neurons with an identical delayed 
time constant,   τ  delay   , such that

   τ  delay   =   T __ 
N

  .  (10)

In the conventional reservoir computing system, represented by the echo state 
network (ESN), the memory within the reservoir layer fades in time due to the way 
that neurons are sparsely connected; such fading memory limits the performance 
of computation [20]. With the delay-feedback topology embedded, our analog DFR 
system not only reduces the implementation complexity but also overcomes the 
drawback of fading memory limitation. Such functionality enables the knowledge 
transfer processing technique, allowing new incoming input data to carry information 
from its previous states, as depicted in Figure 11. The expression of   N   th   output,   S  N   , can 
be simplified as

   S  N   = f [ I  p   (x)  +   ∑ 
x=1

  
N

     I  P−1   (x)  ∙ A  v   x ] ,  (11)

where the function,  f [ ]  , represent the nonlinear transformation of input signal;   I  p   (x)   
and   I  p−1   (x)   indicate the current and previous input patterns, respectively;  Av  is the finite 
gain of the gain regulator within the reservoir layer.

4.2 Delay characteristic

Along the feedback loop, the delay time constant,   τ  delay   , can be controlled by the 
integration time over the membrane capacitor, which can be expressed as

   τ  delay   =  C  m   ∙    V  m   ___ 
 I  ex  

  .  (12)

In general, the mathematical model of the delay time constant is represented by 
the values of resistance and capacitance. In the LIF delay neuron, the input imped-
ance,   R  in   , is equivalent to     V  m  

 ___ 
 I  ex  

   , thus, the delay time constant can be simplified as

   τ  delay   =  C  m   ∙  R  in  .  (13)
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The feedback loop, which is constructed by multiple LIF neurons, as illustrated 
in Figure 12. To enable the spiking signal propagation, the output spike train from 
the previous neuron is utilized as the clock signal to trigger its following neuron.

Figure 9. 
(a) Nonlinear classification with low dimensional spaces and (b) linear classification with high dimensional 
spaces.

Figure 10. 
Die photo of our fabricated analog DFR chip.

Figure 8. 
Architecture of our analog DFR system.
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4.3 Dynamic behavior

In general, the phase portrait is used to visualize how solutions of a delay system 
would behave. In this experiment, measured phase portraits are plotted through 
two signals from the feedback loop where one of them is recorded with the time 

Figure 13. 
Measured phase portrait of dynamic system in (a)  T = 0.64 μs ; (b)  T = 1 μs ; (c)  T = 1.2 μs ; (d)  T = 1.4 μs .

Figure 11. 
Illustration of short-term dynamic memory.

Figure 12. 
Dynamic delayed feedback loop.
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delay, as shown in Figure 13. As the total delay time within the feedback loop 
increases, the dynamic behavior of the system changes accordingly. As plotted in 
Figure 13b, the delayed signal repeatedly traces its initial path when the total delay 
time within the feedback loop maintains around  1 μs , indicating as the periodic. 
When the total delay time within the feedback increases to  1.4 μs , as shown in 
Figure 13d, the delayed signal diverges its initial path but still tracking its equilib-
rium point, indicating as the edge-of-chaotic.

5. Three-dimensional neuromorphic computing

To closely mimic functionalities of mammalian brains, electronic neurons and 
synapses in neural network designs need to be constructed in a network configura-
tion, which demands extremely high data communication bandwidth between 
neurons and high connectivity neural network degree [45, 46]. However, these 
requirements are not achievable through the traditional von Neumann architec-
ture or the two-dimensional (2D) IC design methodology. Recently, a novel 3D 
neuromorphic computing system that stacks the neuron and synapse vertically has 
been proposed as a promising solution with lower power consumption, higher data 
transferring rate, high network degree, and smaller design area [47, 48]. There are 
two 3D integration techniques that can be used in the hardware implementation of 
neuromorphic computing: (1) through-silicon via (TSV) 3D-IC and (2) monolithic 
3D-IC. A well-known 3D integration technique is to use the TSV as vertical connec-
tion to bond two wafers. In this structure, a large capacitance that is formed by TSVs 
can be used to build the membrane capacitor, which is required in neuron firing 
behavior [49–51]. Unlike the TSV 3D-IC technique that uses separately fabrication 
processes, the monolithic 3D-IC technique is capable to integrate multiple layers of 
devices at a single wafer, thus, the monolithic 3D-IC technique is capable to provide 
a smaller design area with lower power consumption [52, 53].

5.1 Memristor

In neural network designs, the electronic circuit model of synapses can be 
implemented by an emerging non-volatile device, namely the memristor, which is 
a class of the resistive random-access memory (RRAM). In general, the memristor 
device is constructed in a metal-insulator-metal (MIM) structure, as illustrated in 
Figure 14a. The resistance of a memristor device can be gradually changed between 
its low resistance state and high resistance state as the voltage across the memristor 
device changes.

Memristors are typically fabricated in a 2D crossbar structure [54], which can be 
further extended to 3D space, as illustrated in Figure 14c and d, respectively.

5.2 Memristor-based 3D neuromorphic computing

In the field of ANN designs, a novel 3D neural network architecture, which 
combines memristors and the monolithic 3D-IC technique, has been proposed [55]. 
In this structure, neurons and memristor-based synaptic array are stacked verti-
cally, as demonstrated in Figure 15 [48]. As a non-volatile device, RRAM is capable 
save static power consumption with small implementation area while maintaining 
its weighted value. With the monolithic 3D-IC technique, the memristor-based 3D 
neuromorphic computing can potentially reduce the length of critical path by 3X 
[56], increase the scalability [52], decrease the power consumption by  50%  as well as 
minify the die area by 35% [57].
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6. Lab on a chip

6.1 Chaotic time series prediction

To evaluate the precision of our analog DFR system, a chaotic time series predic-
tion benchmark, the tenth-order nonlinear autoregressive moving average system 
(NARMA10), is carried out, which can be governed by the following equation

  O (t)  = 0.3 ∙ O (t)  + 0.05 ∙ O (t)  ∙   ∑ 
i=0

  
9
   O (t − i)  + 1.5 ∙ D (t − 9)   

                                        ∙ D (t)  + 0.1,   
(14)

where  D (t)   is the random input signal at time  t , and  O (t)   is the output signal. 
In this experiment, 10,000 sampling points were generated through Eq. (14) for 
training and testing phases. 6000 samples were used for the training while rest 
samples were used for the testing. The prediction error was then examined through 
the normalized root mean square error (NRMSE).

Figure 15. 
(a) Typical ANN; (b) 2D structured crossbar array; (c) 3D structured crossbar array; (d) 3D neuromorphic 
computing architecture by stacking synapses vertically; and (e) deploy monolithic 3D neuromorphic computing 
on a silicon chip.

Figure 14. 
(a) Switching process of memristor device; (b) transmission electron microscopy images of dynamic evolution 
of conductive filaments; (c) horizontal RRAM structure; and (d) vertical RRAM structure.
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In the training phase, output weights were trained by minimizing the devia-
tion between target and predicted outputs. Both training and testing errors were 
achieved by the NRMSE, which can be defined as

  NRMSE =  √ 

___________

   
 ∑ 
i=1

  
N

      ( y  i   −   y ̂    i  )    2 
 __________ 

N  σ   y ̂    
2 
    ,  (15)

where   y  i    defines the predicted output,    y ̂    i    is the target output,  N  is the number of 
samples, and   σ   y ̂    

2
   determines the output variance. Experimental results of predicted 

output signals against target outputs with our analog DFR computing system is 
plotted in Figure 16. From experimental results, the training and testing errors are 
found to be 8.49 and 6.83%, respectively.

6.2 Video frame recognition

In this task, the application of video frame recognition is chosen to examine the 
performance of our analog DFR system. In this experiment, 48 images, which com-
prise three different persons with various face angles, were drawn from the Head 
Pose Image dataset [58], as demonstrated in Figure 17a. Twenty images were used 
for the training, while another 24 images were used for the testing. In the training 
phase, the face angle changes from 0 to 75° horizontally. In the testing phase, the 
rotational angle of face follows the training phase but with additional 15° applied 
vertically.

As illustrated in Section 4.3, our fabricated analog DFR chip is capable to operate 
at the edge-of-chaos region as the delay changes. To demonstrate the importance of 
delay, our model was evaluated through several delayed time constants. As depicted 
in Figure 18, it can be observed that the recognition rate changes with regard to the 
delay time. For instance, the recognition rate maintains above 98% when the system 
operates at the edge-of-chaos regime ( T = 20 ms ) with 10% or less salt-and-pepper 
noise. As the noise level approaches to 50%, the recognition rate still maintains 
above 93%. However, if the dynamic behavior of the system deviates from the edge-
of-chaos regime, the recognition rate significantly reduces due to the change in the 
dynamic behavior.

Figure 16. 
Target signals versus predicted signals for NARMA10 benchmark.
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7. Conclusions

In this chapter, the design aspect of our analog DFR system with the analogue 
electronic circuit model of biological neuron is discussed. By mimicking how 
human beings process information, our analog DFR system adapts the spiking tem-
poral information processing technique and a nonlinear activation function to proj-
ect input patterns onto higher dimensional spaces. From measurement results, our 
analog DFR system demonstrates richness in dynamic behaviors, closely mimicking 
the biological neurons with delay property. By naturally perform these neuron-like 
operations, our analog DFR system is capable to nonlinearly project input patterns 
onto higher dimensional spaces for the classification while operating at the edge-of-
chaos region with merely  526 μW  of power consumption. Experimental results on the 
chaotic time series prediction and the video frame recognition demonstrate the high 
recognition accuracy even with noise, making our analog DFR system a candidate 
for low power intelligence applications.

Figure 18. 
Recognition rate with respect to various dynamic behavior.

Figure 17. 
(a) Training database with three subjects and (b) testing dataset with various salt-and-pepper noise levels.
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