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Abstract

The resistance of dry abrasive wear in Fe2B layer deposited on AISI D2 and 
1040 steel substrates, using the powder-pack boriding process, was evaluated. The 
boriding process was carried out at temperatures of 1220 and 1320 K for a time of 
8 h. A Rockwell hardness tester was used to assess the Daimler-Benz adhesion test. 
The abrasive wear tests were carried out in dry conditions according to the ASTM 
G65 test standard. The test parameters used were a sand flow of 400 g/min, a 
nominal rubber wheel constant rotation of 200 rpm, a load of 122 N, and a sliding 
distance of 716.28 m. The type of abrasive used was steel round grit with a grain 
size of 260 μm and a hardness of 1100 HV. The total time for each test was 30 min, 
removing the specimens every 5 min to determine the amount of mass loss using an 
analytical balance (sensitivity of 0.0001 g). The average value of volume loss and 
wear rates is reported. Optical microscopy and SEM were carried out in order to 
identify the wear mechanisms. The wear mechanisms presented in this study were 
two-body abrasive wear, pitting action, and plastic deformation.

Keywords: dry abrasive wear, Fe2B layer, steel substrates, boriding, wear mechanisms

1. Introduction

Abrasive wear occurs when a hard particle slides on a surface, causing loss of 
material. This type of wear depends on factors such as hardness, roughness, and 
particle geometry [1–4].

Different coatings are used as anti-abrasive wear materials. Some of them are as 
follows: ceramics coatings, such as, Al2O3/TiO2, SiO2/TiO2/Cr2O3, SiC, B4C, ZrO2, 
CaO, CrN/AlCrN, CrN/BCN, SiO2, WC, and TiC [5, 6]; polymer coatings [7, 8]; and 
DLC coatings [9, 10].

On the other hand, some works have been developed using boron coatings as 
anti-wear material. Boronizing is a thermo-diffusion process in which boron atoms, 
due to their small diameter and high mobility at elevated temperatures, diffuse into 
a metal surface and form intermetallic compounds with atoms of base metal [11]. 
Abrasive wear tests were carried out using boronizing on SAE 1010, 1040, D2, 
and 304 steels [12]. It was seen that boronizing improved the wear strengths 
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considerably. The best abrasive wear strengths were obtained in boronizing for 8 h 
at 900°C for SAE 1010 and SAE 1040 steels, 4 h at 900°C for D2 steel, and 6 h at 
900°C for 304 steel. In another work [13], abrasive wear resistance of boride layers 
on Fe-15Cr alloy was studied. It was found that the dry abrasive wear resistance of 
borided alloy samples was around 45 times greater than that of non-borided ones. 
In another study [14], the micro-abrasive wear of boride layers on AISI D2 tool steel 
was investigated. Some results indicated that wear resistance of the borided samples 
was superior to the hardened, uncoated AISI D2 steel. According to literature [15], 
wear resistance of boronized steels in abrasive wear conditions depends on the 
phase composition and hardness of the layer and its stress state, but the hardness of 
abrasive particles also has a significant importance on the wear speed.

The objective of this work was to evaluate the resistance of dry abrasive wear 
in Fe2B layer deposited on AISI D2 and 1040 steel substrates without a previous 
heat treatment (hardened and tempered) using the powder-pack boriding pro-
cess. The substrate materials were selected in order to compare the wear abrasion 
behavior of a plain carbon (1040) versus a high-carbon, high-chromium steel 
(D2). AISI 1040 steel is frequently cold drawn to specified physical properties 
for use without heat treatment for some practical applications such as cylinder 
head studs. AISI D2 tool steel has desirable properties such as abrasion resistance, 
high hardness, and no deforming characteristics, and is used in lamination and 
stamping dies, shear blades, master tools, etc. The wear resistance of D2 tool steel 
is approximately eight times that of plain carbon steels, so also was of interest 
to know if this great difference in wear behavior could increase or decrease in 
borided conditions.

2. Experimental work

2.1 Test specimens

The specimens had a rectangular shape with dimensions of 50 × 25 mm and 
10 mm in thickness. The chemical composition of the AISI D2 and 1040 steels is 
shown in Table 1 [16, 17].

The boriding process used in the specimens of AISI D2 and 1040 steel substrates 
was the same as reported in a previous work [18]. The only difference is that for this 
work, two boriding temperatures were employed (1220 and 1320 K).

It is important to mention that, based on the Fe-B phase diagram and the high 
iron content of the AISI D2 and 1040 steels [19], in addition to the diffusion of 
boron at high temperatures (1220 and 1320 K) and the treatment time of 8 h, the 
formation of a Fe2B monolayer is ensured under the conditions of the boriding 
process proposed in this work. Because the Fe-B phase is formed on the surface of 
the sample, which generates the Fe-B/Fe interface between the Fe-B phase and the 
steel, this allows the gradual formation of the Fe2B phase that grows when the thick-
ness of the boride is increased and at the same time the Fe-B phase decreases. At the 

Steel Composition

C Mn Si Cr Mo V S P Fe

AISI D2 1.55 0.35 0.35 11.8 0.85 0.85 0.03 0.03 84.22

AISI 1040 0.38 0.6 0.1 0 0 0 0.02 0.02 98.87

Table 1. 
Chemical composition of specimens (wt.%).
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end of the 8 h, corresponding to the treatment time, the Fe-B phase was consumed 
completely, and so the only phase present (Fe2B) stops growing [20].

2.2 Test procedure

The tests were performed according to the ASTM G65 test standard [21]. Figure 1 
shows the experimental rig and a simplified schematic diagram of the dry/sand rubber 
wheel apparatus used in this research work [22].

The test parameters used were a sand flow of 400 g/min, a nominal rubber 
wheel constant rotation of 200 rpm, a load of 122 N, and a total sliding distance 
of 716.28 m, using a 228.6 mm diameter wheel rotating. The wheel consists of 
a steel disk with an outer layer of neoprene rubber tire molded to its periphery 
with hardness A60. As the rubber wheel reduces in diameter, the number of 
wheel revolutions was adjusted to equal the sliding distance of the new wheel. 
The type of abrasive used was steel round grit with a grain size of 260 μm and 
a hardness of 1100 HV. The total time for each test was 30 min, removing the 
specimens every 5 min to determine the amount of mass loss using an analyti-
cal balance (sensitivity of 0.0001 g). Before the overall tests were performed, 
the specimens were cleaned by washing in ethanol in an ultrasonic bath 
(Fisherbrand 11020).

The average value of volume loss (V), wear rates (Q ), and wear coefficients 
(k) are reported. Optical microscopy and SEM were carried out on the damaged 
surfaces in order to identify the wear mechanisms. Additionally, the profiles of the 
wear scars are presented using a Mitutoyo Surftest Profilometer.

3. Results and discussion

3.1 Fe2B layer hardness

A load of 100 g was used to evaluate the hardness of Fe2B layers with a Vickers 
indenter. The variation of the hardness, depending on the depth of layers, is shown 
in Figure 2. Also, the roughness of specimens was obtained with a Mitutoyo 
Surftest Profilometer, see Table 2.

Figure 1. 
(a) Experimental setup and (b) schematic diagram of the apparatus.
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Boriding temperature (K) Borided steel Vickers hardness (HV) Roughness (Ra) 

(μm)

1220 AISI D2 1270.7 0.86

AISI 1040 964.4 1.14

1320 AISI D2 1354.5 0.22

AISI 1040 1179.5 0.35

Table 2. 
Properties of the specimens.

3.2 SEM, X-ray diffraction, and EDS

Figure 3 shows the cross-sectional view of SEM micrographs. A zigzag teeth 
shape is observed in both steels. This columnar shape comes from the direction 
in which diffusion is preferred, and the boride is of stronger (002) texture [23]. 
The presence of this typical morphology for good adhesion between coating and 
substrate is necessary.

The boriding is a diffusive process highly anisotropic [24]. In Figure 3, it was 
observed that the boride on the surface of AISI D2 steel presents a columnar morphol-
ogy; in the case of boride formed on the surface of AISI 1040 mold steel is observed a 
dense structure due to alloying elements it has. Depending on the conditions of pro-
cessing time, temperature, and chemical composition of substrates, the depth obtained 
of the boride layer was an interval of 10–60 μm (Figure 2). It was observed that the 
depth of borides formed on AISI D2 is more homogeneous than that of AISI 1040.

The results of X-ray diffraction studies are presented in Figure 4. The XRD 
analysis shows well-defined peaks at 42.67 and 45.11° confirming Fe2B phase. Also, 
the presence of chromium boride (CrB) phase in the borided AISI D2 steel was 
determined. This is due to the significant presence of chromium in AISI D2 steel as 
an alloying element [25, 26]; apparently, during powder-pack boriding, it reacted 
with boron atoms and formed a little intermediate phase of CrB.

Figure 2. 
Variation of hardness.
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The EDS analysis obtained by SEM, for the borided steels, is shown in 
Figure 5a–d. The presence of borides formed on the surfaces of the steels was 
confirmed considering the presence of boron and iron.

Figure 3. 
SEM cross-sectional micrograph, and XRD of borided samples: (a) AISI D2 at 1220 K, (b) AISI 1040 at 
1220 K, (c) AISI D2 at 1320 K and (d) AISI 1040 at 1320 K.

Figure 4. 
Diffraction patterns of borided specimens: (a) AISI 1040 at 1220 K, (b) AISI 1040 at 1320 K, (c) AISI D2 at 
1220 K, and (d) AISI D2 at 1320 K.
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Figure 5. 
EDS spectrum of borided samples. (a) AISI D2 at 1220 K, (b) AISI 1040 at 1220 K, (c) AISI D2 at 1320 K, and 
(d) AISI 1040 at 1320 K.

3.3 Fe2B layer adhesion test

A Cientec Rockwell hardness tester model 200HR-150 was used to assess the 
Daimler-Benz adhesion tests [27]. Figure 6 shows the indentations on the surfaces. 
For the AISI D2 steel, some small cracks and no visible delamination are observed 
(Figure 6a and c), and the adhesion strength quality is related to HF1 map [28]. In 
the case of AISI 1040 steel (Figure 6b and d), microcracks and small delamination 
are observed, and the adhesion category belongs to the HF4 level.

3.4 Wear profile

The abrasion tests carried out caused wear damage on surfaces. The wear profiles 
were measured using a Mitutoyo Surftest profilometer and are shown in Figure 7. The 
results are compatible with the volume loss (Figure 8), where 1040 steel borided at 
1220 K has the greatest wear volume and the D2 steels at 1320 K had the minor wear.

3.5 Volume loss

The volume loss was obtained for all the borided and unborided steel substrates. 
These data were calculated using Eq. (1). The mass loss was obtained weighing the 
specimens before and after the test. The graph of the Figure 8 shows that the AISI 
D2 steel borided at 1320 K exhibited a higher wear resistance compared to the other 
specimens. The results also show the great difference in volume loss between borided 
and unborided steels. The reason that the D2 steel had a greater wear resistance is 
due most likely to the mechanical properties conferred by a high content of C and 
Cr, which is higher than in the 1040 steel (see Table 1). According to Figure 8, the 
abrasion wear resistance of borided D2 tool steel is approximately 16 times greater 
than borided 1040 plain carbon steel. This could justify the use of this tool steel for 
abrasion wear applications when it is borided to the conditions used in this work, 
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without a previous heat treatment, as usual. These results also indicate that its 
core strength was not affected due to high temperatures of powder-pack boriding 
treatment.

  Volume loss  ( mm   3 )  =  (Mass loss  (g)  / density  (g /  cm   3 ) )  × 1000  (1)

3.6 Wear rates (Q ) and wear coefficients (k)

The wear rates were obtained from Eq. (2).

  Q = V / d.  (2)

where Q = wear rate (mm3/m), V = volume loss (mm3), and d = sliding 
distance (m).

Figure 9 shows the wear rates obtained every 716 m of the borided and 
unborided D2 and 1040 steels. AISI D2 borided steels at 1320 and 1220 K had the 
best performance against the dry abrasive wear conditions. It was due to its good 
mechanical properties and chemical composition. Additionally, the adhesion tests 
on this steel showed an excellent performance. On the other hand, the 1040 steel 
borided at 1320 K had a good behavior, almost similar to the D2 steel. For the AISI 
1040 steels borided at 1220 K, an abnormal value was observed at a sliding distance 
of 716 m, where the wear rate had a great increase. This performance was mainly 
due to the running in period of the test.

Figure 6. 
Indentations on surfaces. (a) AISI D2 borided at 1220 K, (b) AISI 1040 borided at 1220 K, (c) AISI D2 
borided at 1320 K, and (d) AISI 1040 borided at 1320 K.



Friction, Lubrication and Wear

8

3.7 Wear mechanisms

Figure 10a–f shows the wear on the surface of the unborided and borided 
specimens. In both steels, as expected, the wear damage was more severe on the 
unborided specimens (Figure 10a and b). In the case of the borided steels, AISI 
1040 at 1220 K (Figure 10c) showed the greater damage and the AISI D2 borided 
at 1320 K (Figure 10d) showed the lower damage. This was in accordance to the 
results of the wear profiles showed in Figure 7 and wear rates showed in Figure 9. 
In the case of borided steels, the main wear mechanism observed in the wear scars 
was the two-body abrasive wear due to the presence of parallel lines to the sliding 
direction. These parallel lines were produced by wear debris acting as indenters 
causing, in some cases, depth grooves.

Figure 11a–d shows the SEM micrographs of the wear damage of the borided 
steels. In the case of AISI 1040 steel borided at 1220 K (Figure 11a), wear debris was 
observed, which was derived from the three-body abrasion situation, where hard 
particles were trapped between the two sliding surfaces. Also, severe pitting action 
was observed, caused by the particles of material and abrasive particles. Finally, 

Figure 8. 
Volume loss of borided and unborided steels.

Figure 7. 
Roughness profiles of wear scars.
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Figure 9. 
Wear rate of borided and unborided steels.

Figure 10. 
(a) 1040 steel substrate, (b) D2 steel substrate (c) 1040 borided—1220 K, (d) D2 borided—1220 K, (e) 1040 
borided—1320 K, and (f) D2 borided—1320 K.

Figure 11. 
SEM micrographs of wear scars. (a) AISI 1040 at 1220 K, (b) AISI D2 at 1220 K, (c) AISI 1040 at 1320 K, and 
(d) AISI D2 at 1320 K.
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plastic deformation occurred due mainly to the sliding action. Figure 11b (AISI 
D2 steel at 1220 K) shows a typical effect of abrasive wear, where sharp asperities 
plowed the surface, causing permanent deformation. This plowing action produced 
a groove in the softer material. Also, parallel lines were observed caused by wear 
debris probably inlaid in the rubber wheel. In the case of AISI 1040 steel borided 
at 1320 K (Figure 11c), severe micropitting action and plastic deformation were 
observed. Finally, in the case of the AISI D2 steel at 1320 K, wear debris and pitting 
action were observed, but to a lesser degree. This matches with the results of wear 
rates obtained and indicated in Figure 9.

4. Conclusions

1. The formation of a Fe2B monolayer is ensured under the conditions of the 
process of boron powder-pack proposed in this work. The Fe-B phase is formed 
on the surface of the sample, which generated the Fe-B/Fe interface between 
the Fe-B phase and the steel, which allowed the gradual formation of the Fe2B 
phase that grows when the thickness of the boride is increased and at the same 
time the Fe-B phase decreases.

2. The Rockwell-C adhesion tests showed that for the AISI D2 steel, the adhesion 
strength quality, of Fe2B layers, is related to HF1 map, showing some small 
microcraks and the AISI 1040 steel fits to HF4 category, where microcracks 
and some delamination was observed.

3. AISI D2 steel specimens borided at 1320 K showed a higher wear resistance, in 
accordance to the wear rates and wear coefficients results. It was due to its good 
mechanical properties and chemical composition. Additionally, the adhesion 
tests on this steel showed an excellent performance.

4. The wear mechanisms presented in this study were as follows: two-body 
abrasive wear, which was due to the presence of parallel lines to the sliding 
direction; pitting action, which was caused by the particles of the material and 
abrasive particles; and plastic deformation, which occurred due mainly to the 
sliding action.
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