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Abstract

This chapter deals with the processes by which a single-phase 3-D CFD model of hydro-
dynamics in a Sulejow dam reservoir was developed, verified, and tested. A simplified
volume of fluid (VOF) model of flow was elaborated to determine the effect of wind on
hydrodynamics in the lake. A hexahedral mesh with over 17 million elements and a k-ω
SST turbulence model were defined for single-phase simulations in steady-state condi-
tions. The model was verified on the basis of the extensive hydrodynamic measurements.
Excellent agreement (average error of less than 10%) between computed and measured
velocity profiles was found. The simulation results proved a strong effect of wind on
hydrodynamics, especially on the development of the water circulation pattern in the
lacustrine zone in the lake.

Keywords: CFD model, hydrodynamics, dam reservoir, Sulejow reservoir

1. Introduction

In recent years, numerical models of flow in water bodies are widely used to provide an

accurate description of flow velocity distribution. Although all the hydrodynamic processes

going on in an aquatic system are difficult to describe, some authors have reviewed the main

mechanisms, from large scale [1–5] to small scale and mixing processes [6, 7] or both [8, 9].

Three-dimensional numerical models of flow calculations in natural water bodies have been

successfully applied for rivers with single complex flow features [10–14] although there is a

little experience with modeling of flow in large dam reservoirs [15]. Studies of flow through

curved or straight, open channels of simple cross-sectional shape (rectangular or trapezoidal)

have been reported by Demuren [16] and Meselhe [17]. Both authors presented a 3-D
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numerical model, for the calculation of turbulent flow in meandering channels. The works

provided a hydrodynamic basis for the study of the mechanisms for the formation of river

meanders. The authors employed a finite volume numerical method to solve the full Reynolds-

averaged Navier-Stokes (RANS) equations in conjunction with the standard k-ɛ model. The

case exhibits some of the features encountered in real rivers, including longitudinal curvature

and varying bed topography. Demuren’s results were in reasonable overall agreement with the

mean velocity measurements of Almquist and Holley [18]. Meselhe focused on proposing a

simplified approach for calculating the water surface elevation as a part of the overall solution

procedure.

All previous studies with both straight and curved channels had adopted a rigid-lid assump-

tion for modeling the free surface. The rigid-lid approximation is a commonly used simpli-

fication in the study of density-stratified fluids mainly in oceanography. Assumes, that the

displacements of the surface are negligible compared with interface displacements. In a

research conducted by Sinha [11], a 3-D model of flow through a 4-km stretch of the Columbia

river, downstream of the Wanapum Dam, was developed and validated. Authors succeeded in

modeling of flow in rapidly varying bed topography and the presence of islands. In the study

three-pronged strategy—composed of the field measurements, the laboratory experiments,

and the numerical model—was undertaken. The model solves the (RANS) equations closed

with the standard k-ɛ turbulence model.

In today’s development level of hardware and software, increasingly complex, engineering

tasks can be managed, and, thus, three-dimensional hydrodynamic modeling of dam reser-

voirs became a potential tool for determining more accurate picture of the dependencies,

which prevail in the aquatic ecosystem. Whereas in most studies one- and two-dimensional

description of flows may be sufficient, in some special cases, three-dimensional approach is

needed to determining, for instance, flow patterns in bends or in the vicinity of hydraulic

structures (dams and weirs). These issues are evidently three-dimensional, and spatial charac-

ter directly affects pollutant transport processes.

Hydrodynamic processes determine the movement of suspended and dissolved matter; heat

transfer; intensity of circulation inside the ecosystem; the speed of contaminating processes; and

the self-purification of the reservoirs, ultimately provide conditions of the ecosystem function.

Kennedy et al. [15] applied a 3-D model to estimate the hydraulic residence time (HRT) for the

Thomas Basin (part of the Wachusett Reservoir in central Massachusetts). The basin was

modeled using the FLUENT software package with particles used to track travel time in

steady-state conditions. A tetrahedral mesh was used with accurate description of basin

bathymetry. The model solved the transient Reynolds equations for turbulent flow with stan-

dard k-ɛ closure. Modeling was performed to simulate flow pattern during a period when

conditions were isothermal and windless. HRTwas estimated to 3–4 days which is about half

of the HRT that would be expected based on the theoretical mean residence time. The results of

the calculations show that the presence of a primary flow path, large-scale eddies, and stagna-

tion zones contributed to the faster travel time. Reductions in inflow rates produce increased

residence times and significant changes in flow patterns. However, the authors did not provide

any information about model verification.
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In a research conducted by Khosronejad [19], a 3-D CFDmodel was applied to predict the flow

hydrodynamics around power intakes within the Dez dam reservoir (Iran). The study was also

devoted to a qualitative analysis of sediment transport at the area around the intakes. For

incorporating the effects of turbulent flow, the k-ωmodel was implemented. The finite volume

method was used to discretize the RANS equations. The 3-D single-phase model ran for a

limited 320 m long reservoir section. The results show that the flow velocity has a maximum

value of 1–2 m/s near power intakes and decreases with distance. In addition, the turbulent

intensity increases in the area near intake entrance resulting in increasing bed shear stress near

intakes. Khosronejad did not present a test of either coarser or finer mesh resolution; moreover,

the model was not verified in the field measurements.

2. Study area

Sulejow reservoir is situated on the middle reach of the Pilica river, which is left-hand side

tributary of Vistula river, central Poland (Figure 1). One of the biggest artificial reservoirs in

Figure 1. Localization of the Sulejow dam reservoir.
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Poland was built by impounding the Pilica river on 138.9 km with a dam in the years 1969–

1973. The reservoir is a shallow water body (mean depth 3.3 m) covering a large area (22 km2).

Sulejow reservoir is a ribbon-type reservoir, which can be divided into two morphological

zones each influenced by different forcing agents. The first one (consisting of a riverine zone

and a transition zone) is the narrow, shallower part of the reservoir, dominated by the river

inflows. The second zone, the wide lacustrine part of the reservoir, is located near the dam.

This zone is quite open and behaves like a lake, and the main driving force mechanism causes

the movement of water masses wind. The main axis runs from southwest to northeast which is

close to the direction of winds that ripple and mix the water. A result is the formation of places

with stagnant water on the southern bank of the middle and lower part of the reservoir.

3. Generation of three-dimensional geometry

The first step in the numerical procedure was to prepare the 3-D geometry of the 17-km-long

Sulejow reservoir. Gambit Program 2.2.30 (ANSYS, USA) was employed to generate geometry

of the water body.

On the basis of the most accurate, available data of the reservoir, geometry was generated

using segmentation technique with 36 cross-sectional profiles of the artificial lake. Methodol-

ogy adopted to determine parameters of the sections was based on the field measurements by

using an integrated system: digital depth sounder RESON PC-100 and GPS Trimble 5700. The

cross-sectional spacing ranged from 400 to 600 m. Figure 2 shows an example and locations of

the measured sections in the water body.

Figure 2. The cross-sectional profiles of the Sulejow reservoir.
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In this study, the “bottom-up” approach was implemented in order to obtain a three-dimensional

geometry from the set of separated surfaces. Each measured cross section was defined by the

information of the distance between two banks (connection length between probing points in

the section was 5 m) and elevation (normal impoundment level in the Sulejow reservoir is

166.6 m amsl). Figure 3 illustrates an example of the cross section built in the Gambit Program.

The vertices which determine the reservoir bed were connected to form the edges. Subse-

quently, edges were combined into faces. The last stage consisted in stitching the faces in order

to obtain the volumes. After completion of the segmentation procedure, rendering process was

conducted, which facilitated generation of three-dimensional geometry of the reservoir, using

the faces obtained from the segmentation. Figure 4 presents the complete geometry that

consists of 36 volumes totally.

Terminal berm of the reservoir consists of earth dam and weir, with integrated hydroelectric

power station (Figure 5). The length of the dam with a weir is 1200 m, the maximum height is

16 m, and the total volume is 567,000 m3. The jazz is concrete, in the overflow riffle span,

middle and left of the weir, drain pipes have been built. Weirs are closed with the oval valves.

Cross section of earth dam and weir is shown in Figure 6a and b. Geometry and computational

mesh of the dam are shown in Figure 7.

Figure 3. Example of the cross sections generated with Gambit program.

Figure 4. Sulejow reservoir geometry.
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Figure 5. Front step of the weir. (1) Earth dam, (2) weir, (3) electric power station, (4) switching station, (5) operating

settlement, (6) buildings, (7) clay band, (8) foil-sealing of the reservoir bottom, and (9) marina.

Figure 6. (a) Cross section of the earth dam. (1) reinforced concrete shield, (2) clay band, (4) grass slope, (5) drainage, (6)

embankment, and (7) national road on the dam crest. (b) Cross section of the weir. (1) Elevated sill, (2) oval valve, (3) weir

pool, and (4) artificial pothole.

Dam Engineering44



The final verification of the accuracy of the reservoir shape was feasible on the basis of satellite

photographs, which confirm the correct approximation of the geometry. Figure 8 shows the

satellite image of the Sulejow reservoir with marked cross sections, according to which the 3-D

geometry was prepared. Due to the fact that sections were determined every �500 m, it could

not be possible to precisely map the shape of the shoreline; however, this approximation does

not affect the nature of the flow throughout the 17-km-long dam reservoir. The generated 3-D

geometry of the artificial lake was discretized to perform the numerical solutions.

3.1. Computational mesh

Three-dimensional grid generation for a complex geometry is not a straightforward task, as the

grid type has a significant influence upon the quality of the simulations [20]. The crucial issues

controlling grid quality are the type of grid, that is, structured and unstructured, grid spacing,

and skewness. To apply a finite volume method in CFD model of the reservoir, the 3-D

computational domain must be subdivided into a large number of cells. However, the high

ratio of the breadth to depth dimensions and irregular shape of the reservoir make this process

difficult. Appropriate mesh resolution is linked to the hydrodynamic conditions, the flow

features, and the discretization schemes.

In finite volume methods for numerical simulations, the hexahedral mesh (hex mesh) is

preferred, as compared to the tetrahedral mesh (tet mesh), owing to the reduced error and

smaller number of elements [21]. Typically, tet mesh is preferred for filling irregular spaces,

since existing algorithms can semiautomatically subdivide most of the spaces [15]. Structured

meshes are better suited to shallow reservoirs, while an unstructured mesh matches better to

deeper (or with smaller aspect ratio) reservoirs. On the other hand, generating a hex mesh,

with desirable qualities, often requires significant geometric decomposition, which makes the

Figure 7. Outflow of the Sulejow reservoir.
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meshing process extremely difficult to perform and automate. As a result, it requires consider-

able user efforts and may take days or even weeks to develop the proper grid in the case of

complex shapes.

To fill the shallow space representing the reservoir area, with minimally skewed, hexahedral

cells, the typical cell dimension must be small compared to the depth of the water. Thus, the

meshing process becomes computationally expensive due to the requirement of a large num-

ber of elements.

While developing the CFD model of flow hydrodynamics, preliminary simulations allowed us

to select proper density of the numerical grid, at which a convergent and stable solution can be

obtained. In order to generate a mesh for the Sulejow reservoir geometry, the capacity of

Gambit 2.2.30 commercial software was used. The domain surface was discretized using

structural (hexahedral) mesh with 16,787,820 active cells and 17,717,364 nodes, respectively.

Figure 8. Satellite photograph of the Sulejow reservoir with the cross sections. Source: geoportal.gov.pl.
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The total basin volume was 74,721,600 m3, which reflects the real value. Four layers of ele-

ments across the wall thickness were added to confirm the numerical stability by specifying

the height of the first layer, nearest to the wall (0.01), and the growth factor (0.1).

The process of generating structured grid was much more labor intensive than creating an

unstructured mesh; however, elaborated model was more stable and converged quickly.

Exclusion from the model of some near-shore regions of the basin, with the shallow depth

(<0.3 m) and inconsiderable slope, was necessary to avoid generation of cells with highly acute

angles. Removal of strongly skewed elements from the computational domain would have

minimal impact on the overall circulation patterns in the basin due to the high ratio of bottom

area to the water volume, resulting with minimal flow and very low velocity in this region.

This operation removed approximately 10% of the basin surface area but only a small fraction

of the basin volume �1%.

A post-processing check on mesh quality, based on assessing the skewness of the generated

cells, indicated that the mesh is of high quality and would not compromise solution stability.

The use of a coarser grid (<105 and 106 elements) caused rapid solution divergence. However,

increasing the mesh number to 18 � 106 had no further influence on the results especially on

the location of swirl flows. Figure 9 shows the hexahedral, structured mesh which has been

generated for the Sulejow reservoir geometry.

Figure 9. Example of the computational domain with the structural mesh generated in GAMBIT 2.2.30 program. Under

magnification, hexahedral elements included in the boundary layer are visible.

Three-Dimensional CFD Simulations of Hydrodynamics for the Lowland Dam Reservoir
http://dx.doi.org/10.5772/intechopen.80377

47



The quality of the numerical grid was determined by the shape and the size of the computing

field and the total number of elements used in the generated numerical grid and through the

position of the first node relative to the plane of the wall. To assess the quality of the numerical

grid elements, three parameters were used (Gambit User Guide):

• Parameter y+—determining the quality of the mesh in the boundary layer

• “Skewness”—determining the quality of the individual grid elements

• “Aspect ratio”—defining the degree of deformation of the mesh elements

Ranges of parameters: y+, skewness, and aspect ratio for the numerical grid generated in this

work are given in Table 1.

4. Mathematical model

In order to fully present the hydrodynamics in the dam reservoir, volume of fluid (VOF) model

should be developed. Owing to large size and complexity of the computational grid, as well as

limited computer capacity, such an approach would be very difficult to apply for a big water

bodies. In the literature, VOF technique was adopted only for the CFDmodeling of reservoir in

a downscale model (1:50) [22].

Sulejow reservoir due to the location, shape of the bowl, and uncovered, flat shores is partic-

ularly exposed to the effect of wind. Direction and energy of wind determine the waving

movement and mixing of the water, so the impact of the factor, on flow distribution in the

CFD simulations, should be taken into consideration.

In the model under wind conditions, the speed, at which the plate was moving on the water

surface (which reflects the speed and direction of the wind in the area of the Sulejow reservoir),

was determined. For this purpose, independent, 2-D, two-phase problem was resolved. Data

concerning wind parameters were provided by the Institute of Meteorology and Water Man-

agement in Warsaw and come from the meteorological station (Sulejow-Kopalnia) located near

the reservoir. Average speed and direction of wind were selected as 3 m/s and southeast,

respectively, based on the daily data from year 2007.

4.1. Simplified VOF CFD model

The 2-D model of a straight channel with a length of 80 m and a width of 6 m (3 m layer of

water, 3 m layer of air) was elaborated. Figure 10 shows the hexahedral, structured mesh

which has been generated for the simplified geometry. The grid contains 159,242 elements

Parameter Values for numerical grids in this work The limit values in the numerical simulations

y
+

�1.8 ≤2

Skewness �0.8 0–1

Aspect ratio �1.7 ≥1

Table 1. Values of parameter: y+, skewness, and aspect ratio for the analyzed numerical grid.
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(159,116 hexahedra, 126 wedges) and 321,872 nodes, respectively. A boundary layer was

generated consisting of 10 rows.

Wind accelerates surface fluid particles by imparting momentum to the fluid, through surface

stresses. In the analysis, the water flows through the air momentum. In the computational

domain, the water phase has two outlets that allow for fluid reversing. Analysis of flow in 2-D

model was intended to determine which boundary condition best describes the situation that

prevails over the water surface by the effect of wind.

4.2. Boundary conditions

For two-dimensional CFD model, the following boundary conditions were imposed:.

Inlet boundary conditions applied for the analyzed domain were two tributaries (Pilica and

Luciaza rivers) and outlet (dam) as given in Figure 11.

Simulated inflow boundaries were specified with mass flow rates, normal to the boundary.

Velocities at each inlet were calculated from the inlet area measurements of stream flow for the

Pilica and Luciaza rivers, made by the Regional Board and Water Management in Warsaw in

2007. The monthly values of mass flow rates in the Pilica and Luciaza rivers are presented in

Table 2.

The definition of the inlet requires the values of the velocity vectors and turbulence properties.

For the air inlet, the simulations were first conducted at a speed of 3 m/s. Velocity profile

obtained at the outlet of the computational domain was loaded as an input file to receive the

velocity profile at the inlet. This approach allows to obtain a fully developed velocity profile

for a small domain.

Implementation of volume of fluid model requires an additional boundary condition to be

specified, namely, the turbulence intensity at the inlet and turbulent viscosity ratio. Introduc-

tion of disturbance into the flow reflects the real features of the flow pattern.

Figure 10. Fragment of the structured, hexahedral mesh generated with Gambit program.
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The turbulence intensity, I [%], is defined as the ratio of the root-mean-square of the velocity

fluctuations u` to the mean flow velocity Uavg. The turbulence intensity at the core of a fully

developed duct flow can be estimated from Eq. (1):

I ¼
u

Uavg
¼ 0, 16R

�1
8 (1)

Kennedy [15] carried out sensitivity analysis on the turbulence intensity in the simple, channel

geometry and found that value 4% was able to match the conditions well. The author con-

cluded that this parameter had a noticeable effect on the solution. Following the above find-

ings, turbulence intensity level of 4% was specified at the inlet.

Figure 11. Inlet region in the analyzed domain.

Month Pilica river (mass flow rate m3/s) Luciaza river (mass flow rate m3/s)

January 19.86 2.80

February 46.31 5.50

March 22.33 4.92

April 23.04 2.19

May 17.36 1.39

June 15.65 1.64

July 16.45 1.91

August 12.83 1.39

September 13.21 1.59

October 16.37 1.69

November 25.50 2.21

December 25.65 2.55

Table 2. The monthly values of mass flow rate in the Pilica and Luciaza rivers in 2007.
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Another parameter, the turbulent viscosity ratio (the ratio of turbulent to laminar (molecular)

viscosity), was used as given in Eq. (2). The default value of 10%was applied in the simulations:

β ¼

vt

v
(2)

The air outlet of pressure type was defined in the model. Pressure outlet boundary conditions

require specification of a static pressure at the outflow. Convergence difficulties were mini-

mized by specified values for the backflow quantities (backflow turbulence intensity and

viscosity ratio). A no-slip boundary condition was applied on the wall.

4.3. Solution methods

Table 3 summarizes the solution conditions and methods used in the modeling process.

4.4. Results of VOF model

Based on the analysis of two-dimensional two-phase model, an appropriate input data for the

wall boundary condition, corresponding to real wind conditions at the surface, could be

determined. Figure 12 depicts the velocity profile of water at the outlet of the computational

domain. As a result, the replacement velocity of wind, which corresponds to the real, average

value in the area of the Sulejow reservoir, was obtained. The mean value of 0.147 m/s was used

in the simulations of flow hydrodynamics in the modeled reservoir.

4.5. Results of CFD calculations at wind conditions

Due to the fact that the Sulejow reservoir is a shallow, polymictic lake, the wind will be

important for the distribution and mixing of the water masses of two tributaries. The results

shown in Figure 13 confirm this assumption.

Model volume of fluid

Space Two-dimensional

Time Steady

Discretization method

Gradient Least squares cell based

Pressure Body force weighted

Pressure–velocity coupling scheme Coupled

Momentum Second-order upwind

Volume fraction Compressive

Turbulence energy kinetic Second-order upwind

Specific dissipation rate Second-order upwind

Table 3. Solution conditions and methods for volume of fluid model.
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The findings suggest that when steady flow pattern develops in the basin, large regions of

recirculation are formed below the outlet of the reservoir. Figure 14 shows contours of velocity

field in the Sulejow reservoir in (a) March (b) July, and (c) December.

Figure 12. The velocity profile at the interface of water-air.

Figure 13. Comparison of velocity field (m/s) in the Sulejow reservoir in October at wind and no-wind conditions.
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Figure 14. Contours of velocity field (m/s) in the Sulejow reservoir in (a) march (b) July, and (c) December.
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5. Model verification

Numerical simulations have many advantages such as providing results in the entire domain

and the ability to make changes to the geometry, boundary, or initial conditions, but numerical

models always require validation of the simulations with reliable and appropriate experimen-

tal data [22]. The following section describes the measurements for obtaining data necessary

for validation of the numerical simulations.

5.1. Acoustic measurements

Field measurements of velocity and turbulent quantities have been made much more accessi-

ble with the development of acoustic measurement methods. Acoustic Doppler Current Pro-

filer (ADCP), highly efficient and reliable instrument for flow measurements in riverine and

open-channel environments, has been used for the first time to determine the velocity profiles

in the dam reservoir in Poland.

The measurements are repeated continuously during the movement of the boat. As a result, for

a single passage along the cross section, a few hundred to several thousands of partial flow are

obtained, which are summed during the measurement process. The measurements are

repeated several times. The final result is calculated as the average value of at least four correct

runs.

Teledyne RD Instruments’ StreamPro Acoustic Doppler Current Profiler (ADCP) was used to

validate the hydrodynamic CFD model. The device was mounted on a boat that moves across

a transect of the reservoir channel. This technique can be adopted while complying the

assumptions: (1) the water surface is not wavy and (2) velocity of the water is less than 2 m/s.

In order to correctly determine the places selected for the verification, the GPS Garmin eTrex 10

has been used. Flow velocity measurements were made in June 2013 and included four cross

sections in the Sulejow reservoir and measurements of the flow rate at the inlet to the reservoir

of the Pilica and Luciaza rivers.

The places, which have been selected for the verification of the hydrodynamic model, were

arranged along the longitudinal axis of the Sulejow reservoir. The selection of these areas was

dictated by expecting a different character of flow in indicated areas (Figure 15):

• Barkowice Mokre (1)—the place closest to the backwaters of the reservoir, located in the

riverine zone, characterized by small depths (<3 m) and the highest flow rates.

• Zarzecin (2)—located in the upper, narrow part of the reservoir, with higher flow veloci-

ties, resulting in a half-river character. The depth at this point was about 4 m.

• Bronislawow (3)—situated in the central part of the reservoir, near the former water intake

for Lodz City. The place is characterized by a low flow, due to greater width (1500 m) and

depth of the basin (approximately 6 m).
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• Tresta (4)—located in the lower part of the artificial lake, where the depth is about 7–8 m.

The place is closest to the dam of the reservoir, characterized by, in addition to great

depths, the largest cross-sectional width of approximately 2000 m.

5.2. Results of model validation

A reasonable agreement between the flow pattern predicted by the model and those deduced

from the field data was found (Figure 16). To quantify the comparison, relative error was

calculated by taking the difference between numerical and measured values and then dividing

the results by the measured values. The measured velocity profiles were provided with a

relative accuracy within the range 1–10%.

The possible reasons for the discrepancies are (1) inaccuracies in location of measuring points,

(2) point velocity measurement errors, (3) errors in modeling the flow, and (4) errors in

modeling the geometry.

The first category is related to the field velocity measurements taken from a boat. Considering

the fact that a boat cannot maintain an absolute fixed position due to the waving and wind,

errors are introduced in velocity measurements. A deviation of �20 cm from the fixed position

can cause large errors if there is a steep velocity change in the plane of measurements. The

magnitude of this error could not be estimated accurately; however, rough estimate of the

nearby velocities within a distance of �20 cm at the measuring point resulted in an error in the

range 3–5%.

Figure 15. Hydrological and morphological differentiation of the Sulejow reservoir along the longitudinal axis.
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The second category consists of errors related to the instrument, its volume resolution, the

range of operation, and the sampling time. The ADCP device could measure instantaneous 3-D

velocity vectors with 1% accuracy. The vertical resolution of the instrument was 0.05 m, which is

less than the vertical mesh spacing (∆y) used in the numerical model, that is, 0.08 m. In other

words, the instrument resolution error can be ignored.

The third category is related to the numerical methods (discretization and iteration errors),

the boundary conditions, and the closure models. For a carefully modeled problem that has

well-posed boundary conditions, these errors are relatively low in comparison with other

errors.

The fourth category is how the model geometry was built. The modeled geometry was an

approximation of the reservoir topography as it was based on measurements of discrete cross

sections. The regions between the cross sections were interpolated and may not represent the

right topography of the artificial lake. A rapid variation in the topography significantly affects

the flow velocity distributions. The spacing used in the present study was selected with special

attention to the section properties of the reservoir. However, they may not have captured

important changes of the bed.

Based on the above discussion, a total error between computed and measured velocities of

about 10% is a reasonable assumption. Proper agreement of theoretical and experimental results

shows the correctness of the actions, developed in the frame of this work.

Figure 16. Comparison between computed and measured velocity profiles in four cross sections.
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6. Conclusions

The objective of this study was to develop and validate a three-dimensional numerical model

for simulating flow through the long dam reservoir of a complex bathymetry (17 km length).

As a result of the study, a three-dimensional one-phase CFD model of flow hydrodynamics in

the large water body on the example of the Sulejow reservoir was developed with an accurate

depiction of basin bathymetry and verified on the basis of field measurements.

The results of three-dimensional one-phase CFD model indicate that the flow field in the

Sulejow reservoir is transient in nature, with visible swirl flows in the lower part of the lake.

The results of simulations confirm the pronounced effect of wind on the water flow in the

reservoir and the accumulation of phytoplankton cells in the epilimnion layer of the lacustrine

part of the Sulejow reservoir. Methodology developed in the frame of this work can be applied

to all types of storage reservoir configurations, characteristics, and hydrodynamic conditions.

Results of the simulation are complementary to the direct measurements of the surface water

quality. A well-defined and constructed model can be used while developing a strategy for

water environment quality control and can be used as an auxiliary tool for the monitoring and

prediction of surface water quality and decision-making in the field of planning.
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