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Chapter

Utilization of Dynamic and
Static Sensors for Monitoring
Infrastructures
Chung C. Fu, Yifan Zhu and Kuang-Yuan Hou

Abstract

Infrastructures, including bridges, tunnels, sewers, and telecommunications,
may be exposed to environmental-induced or traffic-induced deformation and
vibrations. Some infrastructures, such as bridges and roadside upright structures,
may be sensitive to vibration and displacement where several different types of
dynamic and static sensors may be used for their measurement of sensitivity to
environmental-induced loads, like wind and earthquake, and traffic-induced loads,
such as passing trucks. Remote sensing involves either in situ, on-site, or airborne
sensing where in situ sensors, such as strain gauges, displacement transducers,
velometers, and accelerometers, are considered conventional but more durable and
reliable. With data collected by accelerometers, time histories may be obtained,
transformed, and then analyzed to determine their modal frequencies and shapes,
while with displacement and strain transducers, structural deflections and internal
stress distribution may be measured, respectively. Field tests can be used to char-
acterize the dynamic and static properties of the infrastructures and may be further
used to show their changes due to damage. Additionally, representative field appli-
cations on bridge dynamic testing, seismology, and earthborn/construction vibra-
tion are explained. Sensor data can be analyzed to establish the trend and ensure
optimal structural health. At the end, five case studies on bridges and industry
facilities are demonstrated in this chapter.

Keywords: health monitoring, accelerometers, velometers,
displacement transducers, strain sensors, frequency response function,
cross-power spectrum, power spectral density, bridge dynamic testing, seismology,
earthborn/construction vibration, infrastructure

1. Introduction

In order to acquire infrastructural health data, proper sensor knowledge and
technology are required. This article first introduces in situ remote sensing and then
provides a review of some sensors that are useful and currently implemented in
health monitoring projects, especially those associated with vibration.

A project on the development of a self-sustained wireless integrated structural
health monitoring (ISHM) system for highway bridges was sponsored by the
USDOT Research and Innovative Technology Administration (RITA) [1]. Figure 1
shows the wireless ISHM system with remote sensing ability: (1) wireless sensor
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nodes including AE sensors, strain gages, accelerometers, thermocouples, etc.;
(2) wireless smart sensor network with (3) energy harvester; (4) data acquisition
system (DAQ ), with wireless communication modem; and (5) web-based remote
data processing and data storage for application.

In situ sensors may include the capability to collect static and dynamic data and
then apply algorithm to extract and combine relevant condition information from
sensor data. Typical vibrational sensors used include accelerometers and velometers
(velocity transducers), while static sensors include displacement transducers, strain
gauges (transducers), tilt meters, and weather-related sensors to measure and
record temperature, humidity, barometric pressure, wind velocity, wind direction,
etc. When using vibration data, especially in conjunction with modeling systems,
the data is often measured in the form of acceleration, velocity, and displacement.
Sometimes different analyses require measured signals in different forms. Even if
we measure in the form of acceleration, velocity, or displacement (Figure 2), we
may apply simple mathematics to convert between them through integration or
differentiation. For instance, if the measured signal is from accelerometers, we may
obtain the velocity through integration and displacement through double integra-
tion. On the other hand, if the measured signal is from velocity or displacement

Figure 1.
Remote wireless bridge monitoring system.

Figure 2.
Measured signals in different forms: (a) acceleration (raw data), (b) velocity (single integration from
acceleration), and (c) displacement (double integration from acceleration).
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transducers, we may obtain acceleration through differentiation or double differ-
entiation, respectively. Usually, unless there are special circumstances, the
suggested method to measure vibration is with an accelerometer. However, care is
required to remove accelerations of very low frequencies for possible noises if any
integration to velocity or displacement is needed.

Accelerometers and strain sensors are widely used dynamic and static monitor-
ing sensors. The modern-day systems are small, lightweight, and robust and are
typically quite simple to calibrate and to convert output to acceleration or strain
data. Accelerometers are useful for measuring with low to very high sampling rates.
They have shown to be useful in a wide variety of applications. On the other hand,
velocity sensors are generally used to measure dynamic response in the low- to
medium-range frequencies. They are typically used for similar applications as
accelerometers [2].

For the static monitoring sensor, displacement transducers are used to measure
relative displacement. These sensors are available in both contacting devices, like
string pot and linear variable differential transformer (LVDT), and non-contacting
devices, like laser displacement, global positioning systems (GPS), and photogram-
metry. The major limitation for contacting displacement-measuring devices in the
field is that the measured displacement is a relative displacement. GPS-type sensors
are gradually more often used in civil engineering studies because of recent devel-
opments allowing measurements to be taken at high fidelity. Displacement mea-
surements from laser sensors, ultrasonic distance sensors, and strain pot were used
on different occasions to determine the vertical deflection of a bridge. These tech-
niques are useful because they can result in relative and absolute displacement
states. Strain sensors, including optical fiber strain, can be monitored at dynamic
rates, while traditional foil strain gauges have been widely used on civil engineering
structures, even in remote sensing.

2. Mathematical models for computing accelerometer sensor data

The data acquisition system may be set to measure acceleration time histories
and calculate frequency response function (FRF), cross-power spectrum (CPS),
and power spectral density (PSD) [3].

For a continuous time series, x tð Þ, defined on the interval from 0 to T, the
Fourier spectrum (Fourier transform), X fð Þ, is defined in Eq. (1) as

X  fð Þ ¼
ð

T

0

x tð Þe�i2πftdt (1)

where i ¼
ffiffiffiffiffiffi

�1
p

and f ¼ cyclic frequency Hzð Þ.
This function is complex, and the magnitude is typically plotted in engineering

units (EU), such as m=s2 or g’s, versus frequency.
This power spectrum is defined in Eq. (2) as

X fð Þj j2 ¼ X  fð ÞX  fð Þ (2)

where * denotes a complex conjugate. The power spectrum is a real-valued

frequency domain function and has the units of EUð Þ2.
The power spectral density (auto-spectral density, or abbreviated as PSD),

GXX  fð Þ, is defined in Eq. (3) as
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GXX  fð Þ ¼ 2

T
E X  fð Þð Þ2
h i

(3)

where E n½ � indicates an ensemble average for a specific t over n samples of X  fð Þ.
This PSD is a real-valued frequency domain function and has the units of EU2=Hz.

The cross-power spectrum (cross-spectrum density, or abbreviated as CPS),
GXY  fð Þ, relating two time histories, x tð Þ and y tð Þ, is defined in Eq. (3) as

GXY  fð Þ ¼ 2

T
E X  fð ÞY  fð Þ½ � (4)

For a linear system, the frequency response function (transfer function, or
abbreviated as FRF), H  fð Þ, which relates an input X  fð Þ to a response Y  fð Þ, is
defined in Eq. (5) as

H fð Þ ¼ Y  fð Þ
X  fð Þ ¼

GXY  fð Þ
GXX  fð Þ (5)

In actual dynamic testing, discrete time series are measured. Refer to Bendal and
Piersol [4] for the discrete representations on the functions listed in Eqs. (1)–(5).

There are several factors that would affect system-level measurement accuracy,
which are (1) sensitivity error and initial absolute offset, (2) nonlinearity of the
data, (3) total offset variation from initial absolute offset, and (4) noise. To improve
the accuracy, two- or three-point calibrations recommended by manufacturers may
be needed.

The output spectrum (measured with accelerometers) can be assumed to be
linearly related to the input spectrum through the FRF, which contains both reso-
nant frequency and damping information of the vibrating system. Resonant fre-
quencies can be determined from peaks in the output spectrum, and damping
values can be determined by the half-power bandwidth (HPBW) method.

The damping ratio, or damping coefficient, ξ, is defined as c=cc ¼ c=2
ffiffiffiffiffiffiffi

km
p

to be
used in the dynamic analysis. Normally, steel bridges have a low damping coeffi-
cient ξ≤0:02. The half-power (bandwidth) method is the most commonly used
experimental method [5] to determine the damping in the structure by using two
frequencies shown in Figure 3 and Eq. (6):

ξ ¼ f 2 � f 1
f 2 þ f 1

(6)

Mathematically the most common and easy way is to use the Rayleigh damping
method with a linear combination of the mass and the stiffness matrices as Eq. (7):

c ¼ a0m� a1k (7)

where c, m, and k are the damping, the mass, and the stiffness matrices, respec-
tively, a0 and a1 are proportional constants, and cc represents the critical damping
coefficient. The relationship between the damping ratio and the frequency for
Rayleigh damping is shown in Figure 4. By simplification, these lead to Eq. (8):

a0

a1

� �

¼ 2ξ

ωn þ ωm

ωnωm

1

� �

(8)

The CPS plot between the signals from two accelerometers can then be used to
determine the vibration mode shape information based on the relative phase of
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the two signals. One signal is termed the reference signal, and the process is
repeated at various stations on the bridge to map out the mode shapes. Typically,
in vibration testing FRFs are used to estimate the dynamic properties of a struc-
ture. Further interpreted from the CPS, it can be seen that two measured
responses are correlated only at the resonant frequencies of the structure. There-
fore, the CPS will show peaks corresponding to the resonant frequency which
shows another method estimating the resonant frequencies from peaks in the

Figure 3.
Half-power method to estimate damping by experiment.

Figure 4.
Relationship between damping ratio and frequency for Rayleigh damping.
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response power spectra. Mode shapes are estimated from the relative
magnitudes of these peaks, where relative phase information can be obtained
from either the CPS or FRF and modal damping values can be obtained by
applying the HPBW method to these peaks, which need very-high-frequency
resolution to obtain the values. Mode shapes can be determined from cross-power
spectra of the various accelerometer readings relative to the reference
accelerometer [3]. Examples of field dynamic applications are shown in the
next sections.

3. Representative applications

3.1 Bridge dynamic testing

Dynamic testing on bridges has been conducted for many years. Measured data
were usually in the form of deflections and strains, but some measurements were in
acceleration. For bridge dynamic testing, ambient and forced vibrations can be
performed.

• Ambient vibration testing—Ambient vibrations in bridges can be induced by
a wide variety of environmental factors, such as traffic, seismic, and wind
loading.

• Forced vibration testing—Some techniques of forced vibration testing of
bridges such as variable frequency rotating dynamic shaker, servo-hydraulic
inertial actuators, impact hammer, and controlled truck loading can be applied.
Accelerometers can be used to determine the resonant frequencies, damping
ratios, and mode shapes.

By using accelerometers, acceleration time histories can be obtained,
transformed into Fourier spectra and CPS, and then analyzed to determine
damping, resonant frequencies, and corresponding modal shapes.

3.2 Seismology

Devices can be used to measure seismic data. Two types of sensors (transducers)
were used by Caltrans to measure seismic record [6].

• Seismometer—A seismometer, also called a velocity transducer, measures
velocity directly using a signal conditioner. It measures low frequencies of
ground motions (usually 1–200 Hz) and produces a voltage proportional to
velocity through magnetic induction. A seismometer can catch low rate
vibrations during monitoring.

• Accelerometer—An accelerometer measures acceleration directly by using the
piezoelectric crystal material. This type of sensor, which is widely used by
Caltrans, is pressure sensitive and can also obtain velocity and displacement
with an integrator. Accelerometer is usually a small sensor with a wide
frequency range, and typically not as sensitive as the seismometer. The
frequency range could be narrowed from 0.1 to 1.0 KHz when using as large
sensor as around 1 pound in weight and more sensitive technical methods,
typically from 1.0 to several KHz.
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3.3 Earthborn/construction vibration

Humans have varying sensitivities to vibrations at different frequencies. In
general, humans are more sensitive to low-frequency vibration. Construction activ-
ities could induce vibrations that caused building surface movements, shaking or
rattling of windows, hanging items, and lightweight furniture [7]. This type of low-
frequency vibrations, when acting on the structural component, can also produce
an audible rumbling noise, which referred to earthborn noise. The noise could be a
problem when the upper end of the range frequencies (60–200 Hz) dominates the
originating vibration spectrum, or the construction activities are connected to the
structure by foundations or utilities.

Earthborn vibrations can be detected and measured by accelerometers which
could be mounted to heavy blocks of steel (about 5–10 kg) directly placed directly
on the ground or other surfaces by magnets [6, 8]. Activities and motions of the
vibration-sensitive land shall be monitored and measured during constructions
occur within 15 m (50 ft) to establish the level of vibrations. Construction projects
of foundations, like pile driving, jackhammering, and soil compacting, may also
produce high-level vibrations by their equipment operations. Measured vibration
data from construction are commonly classified as broadband or random vibrations
with various ranges of frequencies. The general frequency ranges of most earthborn
vibrations are from less than 1.0 to 200 Hz.

Vibration levels can be represented in terms of velocity (in/sec or mm/sec) or
acceleration (in/sec2 or mm/sec2), which demonstrates vibration severity. Vibration
levels for construction activities are recognized as the highest during demolition
activities and soil compacting. Vibration levels are required to remain below
0.5 in/sec (15 mm/sec) at residences along the project corridor and minimized risk
for structural damage. Vibration levels from other general construction activities
will also be well below the 0.5 in/sec (15 mm/sec) criteria.

The US Department of Transportation (USDOT) has guidelines for vibration
levels from construction related to their activities and recommends that the maxi-
mum peak-particle-velocity levels remain below 0.05 in/sec (1.5 mm/sec) at the
nearest structures. Vibration levels above 0.5 in/sec (1.5 mm/sec) have the potential
to cause architectural damage to normal dwellings. The USDOT also states that
vibration levels above 0.015 in/sec (0.45 mm/sec) are sometimes perceptible to
people and the level at which vibration becomes annoying to people is 0.64 in/sec
(19.2 mm/sec).

3.4 Types of accelerometers and their advantages/disadvantages

Popular types of accelerometers used in the infrastructural areas are (1) bulk
micromachined capacitive, (2) bulk micromachined piezoelectric resistive,
(3) capacitive spring-mass system based, and (4) laser accelerometers [9].

The work principles of different types of accelerometers are based on piezoelec-
tric effect due to accelerative forces and displacement sensing based on displace-
ment of mass. The advantages of piezoelectric resistive are (1) rugged and
inexpensive, (2) high impedance, (3) high sensitivity, and (4) high-frequency
response. However, their disadvantages are (1) sensitive to temperature, (2) hys-
teresis error, (3) less longevity, and (4) decreased efficiency with time.

On the other hand, displacement sensing or seismic-type accelerometers are
using spring-mass-damper system, and their advantages are (1) easy calculation,
(2) simple and reliable, and (3) durable and efficient. Their disadvantages are
(1) spring system not always accurate and (2) fluctuation in mass leading to wrong
calculation.
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4. Case study 1:Wireless accelerometer sensing of a self-sustained
wireless integrated structural health monitoring (ISHM) system on
Beaufort #25 bridge, NC

A scalable integral structural health monitoring (ISHM) system sponsored by the
USDOT had been developed by the University of Maryland (UMD) and North
Carolina State University (NCSU) with the URS (later named AECOM) Corpora-
tion [1]. This system, with remote sensing capability, is designed to be suited for
fatigue condition assessment of highway steel bridges. Furthermore, the ISHM
system would help in damage detection and deterioration diagnosis in early stages,
predicting the remaining service life more accurately when compared with the
traditional SHM system with reliable technology to improve current inspection
methods, and reduce the operating and maintenance costs.

The ISHM system based on wireless sensor networks entails a few recent innova-
tions which applied the current state of the practice in remote sensing and highway
infrastructure management. Accelerometers, in this system, are used for monitoring
the vibration response of bridges so that the modal frequency information could be
obtained and used to calibrate the finite element model of the monitored bridge.

In this system, a new wireless piezoelectric sensor board had been designed and
used. This board mainly consists of an 8-bit microcontroller, a FPGA, and a piezo-
electric amplifier circuit. This device is enhanced with improved operating frequency
and a four-wire, SPI-compatible interface while having lower power consumption. In
the ISHM system, each single wireless sensor was tested on a shaker to verify that the
developed sensor can recover the input information accurately. However, a single
sensor could not catch enough data for structure monitoring and analysis. Thus, a
number of wireless sensors along the bridge span are needed [1].

The example for the ISHM accelerometer monitoring case is the Structure No.
060025 Swing Bridge in Beaufort County, North Carolina (Figure 5, Beaufort #25
Bridge). The bridge consists of side spans and main spans. It should be noted that
the structural support of the side span is a simply supported steel girder bridge,
which has a relatively simple stress state compared with the main span because the

Figure 5.
Sketch plan for monitoring system.
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boundary condition of the main span is changed between simply supported and
cantilever due to the close or open of the main span. Thus, the researchers of NCSU
chose the main span as the targeted monitoring case for the dynamic behavior
considering the complex stress states.

In this case, a row of smart sensors was attached to the bridge girders in the main
span. The dynamic behavior was analyzed by data from accelerometers. Figure 6

Figure 6.
The result of the field test of Beaufort #25 bridge.

Figure 7.
The first three mode shapes from FE analysis.
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shows the test results of the bridge by using the set of wireless sensors. The data is
processed using fast Fourier transform (FFT). The estimation of the natural fre-
quency of the bridge about 4.0 Hz to 5.0 Hz was made by the NCSU researchers.

Meanwhile, the finite element model using the software ANSYS of Beaufort #25
Bridge was built and analyzed. The structural analysis was separated into two
conditions due to the fact that the main span could swing. The first three mode
shapes are illustrated in Figure 7, and the first five modes are summarized in
Table 1. Depending on the relative amplitude of the mode shapes, these modes
were noted as the vertical-dominated modes, the lateral-dominated modes, and the
torsional-dominated modes (Figure 7).

The accelerometers are commonly used in highway bridges’ monitoring for
dynamic behavior. The monitoring results for the bridge are close to the finite
element analysis result, and thus, the model was calibrated to be analyzed for other
load conditions, and the test results were archived to be the baseline for future
monitoring.

5. Case study 2: Remote monitoring of a self-sustained wireless
integrated structural health monitoring (ISHM) system for highway
bridges on I-270 bridge in MD

The second case study is under the same ISHM project [1] and was conducted by
the University of Maryland at College Park. The types of sensors used in this project
were (1) piezoelectric paint AE sensors; (2) wireless accelerometers; (3) laser sen-
sor; (4) ultrasonic distance sensors; (5) BDI strain transducers; and (6) string pots.

Fixed position Swing position

First (torsional) 4.95 Hz First (torsional) 1.51 Hz

Second (vertical) 5.92 Hz Second (torsional) 1.72 Hz

Third (vertical) 6.74 Hz Third (vertical) 2.15 Hz

Fourth (vertical) 7.48 Hz Fourth (vertical) 2.51 Hz

Fifth (lateral) 8.18 Hz Fifth (vertical) 2.58 Hz

Table 1.
Modal analysis results.

Figure 8.
Sensor locations.
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In order to verify the reliability of the whole system, a field test for I-270 Bridge in
Maryland by using this ISHM system was carried out with the accelerometer sensor
locations shown in Figure 8. Figures 9 and 10 show the test results collected by
these wireless sensors.

Figure 9.
PSD of these sensors and the first mode shape of the bridge.

Figure 10.
The results of field test of I-270 bridge, MD: (a) the time-history data of sensor 3 and (b) the PSD of sensor 3.
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6. Case study 3:Wireless structural monitoring of a newly replaced
fiber-reinforced plastic (FRP) bridge deck

The use of FRP-composite bridge decks is viewed as a potential long-term
solution for the concrete deck deterioration problem. A pilot project
sponsored by the Federal Highway Administration (FHWA), USA, was under-
taken by the Maryland State Department of Transportation, partnered with the
University of Maryland to rehabilitate a steel truss bridge (MD24 over Deer
Creek in Harford County, Maryland) using lightweight FRP deck [10, 11]. The
existing steel truss bridge (Figure 11), built in 1934, carries two lanes of
traffic, provides 9.14 m (30 ft.) of clear roadway, and is 37.50 m (123 ft.) long
with severe roadway skew (Figure 12). The FRP deck panels are placed per-
pendicular to the stringers and act as a continuous plate between the stringer
supports.

Load tests and structural monitoring were conducted to obtain information
regarding the performance of the structure. For a relatively new material like
FRP, the use of load tests can prove the structure’s capacity. Wireless structural
monitoring system developed through a previous FHWA small business inno-
vation research (SBIR) contract to Invocon, Inc. in Conroe, Texas, was used.
The system includes a data acquisition and communication nodes (Figure 13)
connected to strain gages that can acquire data in digital form and relay the

Figure 11.
Steel truss bridge on MD 24 over deer creek.

Figure 12.
Replacement of a FRP deck panel.
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data to a local base receiver attached to a personal computer. In this load test,
five boxes were linked in a “smart” network to control the data acquisition
process. By using this system, the effort of instrumenting a bridge was reduced
by more than half compared to hardwired systems. All CEA-06-250-UN350
uniaxial gages installed on the bridge are produced by the Measurements
Group, Inc. As shown in Figure 13, strain gauges were strategically placed at
different locations to measure strains due to live load effect. Three stringers, as
shown in Figure 13(a), were load tested to check the distribution of live load
over the stringers. Strain gages (data sets 2–1, 2–2, and 2–3 in Figure 13(b))
were located on the top of bottom flanges in the middle of the span. Compari-
son of finite element results and test results shows that the percentage differ-
ence ranged between 1.47 and 9.43%. The purpose of this test is to prove the
integrated composite action between the steel stringers and the new FRP panels
[10, 11].

Figure 13.
Truss bridge deck, stringers, strain sensor locations, and data: (a) plan, elevation, and section A-A views and
(b) section B-B and strain data measurement.
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7. Case study 4: Digital accelerometer monitoring of hanger cables on
arch bridges

Arch-girder bridges with hanger cables are a popular type of bridges because
they have the advantages of both arch and girder forms. Therefore, it is critical to
check the performance of the hanger cables in order to guarantee road safety. The
hanger, which ties the arch and the girder, is a key determinant of bridge quality. If
one hanger is damaged, the whole structure is at risk. By detecting bridge’s hangers,
we may make judgment whether the bridge is in good condition or not:

T0 ¼ ml2 4:3865 f 21 � 0:2742 f 22
� �

(9)

where T0 is the cable tension, m is the mass of the cable, l is the length of the
cable, and f1, f2 are the first and second natural frequencies, respectively.

In Eq. (9), the stiffness of hanger cable is not needed to be tested, only frequen-
cies. Therefore, it has an advantage of easy operation and usage. The demonstrated
bridge here is a tied-arch bridge, and the above equation was used to calculate the
cable forces, which are shown in Refs. [5, 12].

In the project, digital accelerometer JMM-268 dynamic testing instrument
(Figure 14) was used to measure the first and second frequencies of hanger cables.
When the frequencies were obtained, the hanger cable force can be calculated
according to Eq. (9).

Comparing calculated hanger cable forces with cable force capacity, inspector of
the bridge can locate critical sites and focus on those sites to do more detailed
inspection. With the fast assessment method presented, only the first and second
frequencies of the hanger cable need to be detected. This method was used to
evaluate several arch bridges with hanger cables [5, 12].

8. Case study 5: Accelerometer application on large steel frame
structure

The steel frame structure is commonly used in the infrastructure of the petro-
leum industry to support numerous pipes and storage tanks. Vibration in steel
frames is an industrial safety issue due to the movement of massive amounts of
liquid, solid, and gas through the pipes. According to statistics published by David
G. Maboney [13] regarding the causes of serious disasters in petrochemical indus-
tries, tube systems took up to 33% of the equipment. To identify the structural
behavior of steel frames, accelerometers could be applied to detect vibrations.
Shown here is an industry case that a new half-mile-long, 76-in (190 mm) diameter
pipeline system is installed above a large 80-ft (24 m)-high steel frame structure in
an oil refinery in Taiwan (Figure 15). The main function of the 76-in pipeline is to
deliver massive amount of waste to the flare stack. However, an unexpected dis-
turbance of the 76-in pipeline occurs which becomes the source of dramatic and

Figure 14.
Digital accelerometer JMM-268 dynamic testing instrument.
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continuous vibrations above the steel frames during the discharge process. The
vibration in the steel frames caused by the 76-in pipeline disturbance might lead to
cracks in the original pipes below, steel fatigue, and joint failure. Once the above
incidents occur, it has potential to result in the escape of poisonous gas, interruption
of the production process, and even conflagration. In this case, accelerometer mon-
itoring records are used to detect dynamic structural weaknesses of the steel frames,
and then, the structural systems could be retrofitted to reduce the probable essential
structure faults leading to industry disasters. Disturbances occur randomly along
the 76-in pipeline due to vaporization of solid or liquid waste whose volume
expands dramatically and raises the pressure in the pipeline. Waste flow also causes
impact force on curved parts of the 76-in pipeline when the flow direction changes.

The IMI 603C01 piezoelectric accelerometer is used in this case. It is a shear-
mode-type accelerometer with a ceramic sensing element. It is suggested that
ceramic sensing elements provide great resolution and durability in noisy environ-
ments and it also covers both low-frequency and high-frequency measurements
[15]. Fifty-six accelerometers in either vertical or horizontal direction are installed
on the 76-in pipeline and the steel frame below. Accelerometers are aligned verti-
cally along the 76-in pipeline and the steel frame since the response of the steel
frame caused by disturbances could be monitored simultaneously by all sensors
(Figure 16).

With acceleration data from long-term monitoring, locations of vibrations and
vibration levels could be identified. To provide methods to reduce vibration, the
first step is to build the finite element model verified with monitoring data. In this
case, SAP2000 is used to build the finite element model of the steel frame and the
76-in pipeline (Figure 17). By assigning time history recorded by the accelerometer,
the fundamental frequency of the steel frame could be obtained by the FFT. The
fundamental frequency of the steel frame could be also calculated by finite element

Figure 15.
76-in pipeline with steel frame and plan view [14].

Figure 16.
Accelerometer installation and side view of design [14].
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software. Therefore, the finite element model could be modified to increase accu-
racy of the model by comparing frequencies with data recorded by accelerometers.
The higher-vibrated steel frame structure is suggested to increase stiffness by
installing steel bracing or enlarging column size. Based on the modified finite
element model, the effect of retrofitted design could be evaluated in software. After
retrofitting, the improvement of the steel frame could be demonstrated by further
accelerometers monitoring (Figure 18).

The accelerometer plays an important role in this industry case because it pro-
vides critical information for steel frame dynamic behavior due to unexpected
turbulence. Based on the monitoring data, the accuracy of the finite element model
could be enhanced. More accurate models can help structural engineers figure out
effective methods to reduce vibration which potentially leads to serious industrial
disasters. The improvement could also be validated by further monitoring using
accelerometers. On the other hand, steel frame vibration caused by the 76-in pipe-
line turbulence is also related to the volume of waste delivered to the flare stack.
Therefore, the safe range of waste consumption could be determined to avoid
insecure vibrations of the steel frame.

Figure 17.
Finite element model [16].

Figure 18.
Research flowchart [16].
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9. Conclusion

The purpose of the infrastructural monitoring is to have efficient use of the
materials, energy, and labor to increase the performance of infrastructures.
Advances of modern remote monitoring increase the efficiency, which is demon-
strated in case studies. The emerging sensor technologies, no matter in situ, on-site,
or airborne sensors, are increasingly used in the infrastructure sensing. An inte-
grated structural health monitoring system (ISHM) includes the ability to extract
information from sensor data to establish trends, such as the sensor signatures and
structural damage, and make recommendation of actions to ensure the health of the
infrastructures.
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