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Abstract

MicroRNAs (miRNAs) are noncoding RNAs that play an important role in the 
regulation of the genetic expression in animals and plants by targeting mRNAs 
for cleavage or translational repression. Several miRNAs regulate the plant 
development, the metabolism, and the responses to biotic and abiotic stresses. 
Characterization of an miRNA has helped to show its role in fine tuning the mecha-
nisms of posttranscriptional gene regulation. Although there is a lot of information 
related to miRNA regulation of some processes, the role of miRNA involved in the 
regulation of biosynthesis of secondary plant product is still poorly understood. In 
this chapter, we summarize the identification and characterization of miRNAs that 
participate in the regulation of the biosynthesis of secondary metabolites in plants 
and their use in the strategies to manipulate a controlled manipulation.
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1. Introduction

1.1 Definition of miRNA

mRNAs are noncoding single-stranded RNA molecules that range from a 
length of 18 to 28 nucleotides. These molecules play an important role in post-
transcriptional regulation by the inhibition of the expression of target genes by 
binding to mRNA [1]. Eukaryotic organisms, such as plants and animals, and 
some viruses express this type of molecules [2, 3]. Lin-4 is the first miRNA that 
was identified in Caenorhabditis elegans, although later in the same organism were 
found 22-nt lin-4 and 21-nt let-7; currently, more than 18,226 miRNAs are reported 
[4]. Although miRNA:target-gene interactions are widely conserved, this process 
is limited between kingdoms [5]. miRNAs are distributed in genome as single or 
clusters expressed as polycistronic units and share function relationships [6]. In 
plants, most miRNAs are encoded by their own primary transcript; few examples of 
miRNA cluster are reported (i.e., miR395). Introns are the main hotspots for their 
origination [7]. Some of the mechanisms where they act are the development of 
time and host-pathogen interactions, as well as cell differentiation, proliferation, 
apoptosis, and tumorigenesis.
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1.2 Mechanism of action of miRNAs

The biogenesis of miRNAs in plants and animals presents some differences. In 
both plants and animals, the precursors of miRNAs are polyadenylated caps and 
RNAs, and transcribed as for any coding RNA by RNA polymerase II (RNAPII) [5, 8].  
However, in the plants, the primary transcript (pri-miRNA) that gives rise to the 
miRNA is produced by the nuclear RNAase dicer-like 1 (DCL1) and its accessory 
proteins SERRATE (SE) and hyponastic leaves (HYL1) [8]. Also, Drosha gene is 
absent in plants [5].

In Arabidopsis thaliana, DCL1 and hyponastic leaves 1 (HYL1) cleave the pri-
miRNA in the nucleus of the cell, which gives rise to the precursor-miRNA (pre-
miRNA) dsRNA. Subsequently, there is another cleavage by the action of DCL1 and 
HYL1 to release the miRNA; the two nucleotide 3′ overhangs are methylated by the 
action of the sRNA-specific methyltransferase HUA enhancer1 (HEN1). When the 
mature single-stranded miRNA is found in the cytoplasm, it is loaded onto AGO1 
that is present in RNA-induced silencing complexes (RISC), repressing the expres-
sion by mRNA cleavage [9]. 3′ untranslated region (3′ UTR) is the union region of 
the miRNAs to its target mRNAs which allows it to be repressed [10].

The expression of miRNAs is regulated by transcription factors. Negative on 
TATA less 2 (NOT2) promotes the transcription of protein miRNA genes and 
facilitates efficient DCL1 recruitment in miRNA biogenesis [11]. Cell division cycle 
5 (CDC5) acts as a positive transcription factor associating with miRNA genes [12]. 
Pleiotropic regulatory locus 1 (PRL1) has the ability to bind to DCL1 and pri- 
miRNAs. The miRNA duplex is transported to the cytoplasm by nuclear export 
factor Drosophila Exportin-5 ortholog HASTY (HST).

The miRNA target genes can be a single member of a gene family or regulate a 
multiple family members. Thus, multiple miRNA genes could be targeting a single 
member, with tissues and stage specificity, and/or a single miRNA gene could be 
regulating multiple family members. The spatial and temporal expression and 
abundance of mature miRNAs are tightly regulated; they vary greatly among 
different miRNAs; and the abundance also varies depending on the tissue types or 
developmental stages [13].

1.3 Regulatory processes involving miRNAs

In the cytoplasm of cells, the miRNAs regulate the expression of genes at the 
posttranscriptional level via mRNA degradation and/or translational repres-
sion [14]. Unlike animals, in plants, there is a perfect complementarity between 
miRNA and target mRNA [14]. To carry out the silencing, a ribonucleoprotein 
RNA-induced silencing complex (RISC) is formed [15]. AGO1, AGO2, AGO4, 
AGO7, and AGO10 slicer activity has been reported, even though AGO1 is associ-
ated with most miRNAs [16]. AGO1-catalyzed RNA cleavage (slicing) represses 
miRNA targets [17].

2. miRNAs and secondary metabolism in plants

In plants, miRNAs control the expression of genes that encode transcription 
factors, stress response proteins, and others, which have an impact on biological 
processes. The miRNAs regulate the biological processes in the plans such as main-
tenance of genome integrity, primary and secondary metabolism, development, 
signal transduction, signaling pathways, homeostasis, innate immunity, and adap-
tive responses to biotic and abiotic stress [18]. Secondary metabolites are a group 
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of phytochemicals that regulate various processes related to the interaction of the 
plant with its environment [19]. These compounds include terpenoids, alkaloids, 
phenolics, glycosides, tannins, and saponins, and defend plants from several biotic 
an abiotic stressors [20]. Even though these types of compounds are synthesized by 
plants to help in self-defense, they have diverse industrial uses such as insecticides, 
dyes, flavoring compounds, and nutraceuticals having a positive effect on human 
health. Commercial importance has resulted in a great interest in studying pos-
sibilities of enhancing its production [21]. It is known that miRNAs control several 
biological processes at the posttranscriptional level. Currently, some studies reveal 
the role that miRNAs have in the regulation of secondary metabolic pathways [20]. 
Therefore, the production of compounds derived from secondary metabolism can 
be managed through the miRNAs. Since they are positively or negatively regulated, 
the production of desired metabolites can be induced, the production of toxic 
metabolites can be limited, and new metabolites can be produced [22].

Computational analysis carried out in two transcriptomes of Swertia resulted 
in the identification of miRNAs associated to secondary metabolites biosynthesis; 
miR-156a, miR-166a, miR-166b, miR-168, miR-11071, and miR-11320 target-
ing metabolic enzymes, such as aspartate aminotransferase, ribulose-phosphate 
3-epimerase, acetyl-CoA acetyltransferase, phosphoglycerate mutase, and prem-
naspirodiene oxygenase, also include a gene encoding a homeobox-leucine zipper 
protein (HD-ZIP) with a possible association in secondary metabolites biosyn-
thesis in Swertia chirayita [23]. Elicited or infected plants induce change in gene 
expression and production of defensive metabolites and these might be regulated 
by miRNAs. Solanum tuberosum L. under light stimulus found light-responsive 
miRNAs that are important regulators in alkaloid metabolism, UMP salvage, 
lipid biosynthesis, and cellulose catabolism [24]. Cadmium stress in oilseed rape 
(Brassica napus L.) reported miRNAs involved in the regulations of TFs, biotic 
stress defense, ion homeostasis, and secondary metabolism synthesis [25]. 
Nicotiana tabacum plants infected with tobacco mosaic virus (TMV), at the early 
stage of infection (5 dpi), show a cluster of miRNAs with down-accumulation, 
while most of the miRNAs were upregulated at 15 and 22 dpi, including both 
miRNAs and miRNA targets [26].

2.1 Flavonoids

Flavonoids are secondary metabolites that possess a polyphenolic structure. Those 
compounds consist of hydroxylated phenolic substances having a benzo-𝛾-pyrone 
structure and derived of phenylpropanoid pathway [27]. Within the subgroups of 
the flavonoids are flavones, flavonols, flavanones, flavanonols, flavanols or catechins, 
anthocyanins, and chalcones [28]. For plants, this type of compounds is synthesized 
as a result of the interaction with the environment, other plants, and microorganisms. 
They have diverse biological functions as anti-oxidative, anti-inflammatory, anti-
mutagenic, and anti-carcinogenic properties, which are structure dependent [28]. 
The above makes flavonoids a compound with nutraceutical, pharmaceutical, medici-
nal, and cosmetic applications [28]. The production of secondary metabolites is 
found in cases regulated by the miRNAs (Table 1). Little is known about the miRNAs 
involved in flavonoid biosynthesis. In Helianthus, 323,318 ESTs were computationally 
screened for the miRNAs identification of them, and a miR911 family was found 
related to the biosynthesis of tocopherols. Gou et al. [51] demonstrate that accumula-
tion of anthocyanins in the stems of A. thaliana is under the regulation of miR156-
targeted squamosa promoter binding protein-like (SPL) genes. High miR156 activity 
promotes accumulation of anthocyanins and activity-induced of flavonols. This study 
also demonstrates that SPL9 negatively regulates anthocyanin accumulation through 
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Plant species miRNA Target Function References

Flavonoids

Sunflower miR2911 Gamma-tocopherol methyl transferase Tocopherols biosynthesis [29]

A. thaliana miR156 SPL transcription factor Accumulation of anthocyanins, 

whereas reduced miR156 activity 

results in high levels of flavonols

[51]

Diospyros kaki miR395p-3p and miR858b bHLH and MYB, respectively Proanthocyanidin biosynthesis [30]

Lonicera japonica miRNAs (U436803, 

U977315, U805963, 

U3938865 and U4351355)

R2R3-MYB transcription factors Flavonoid biosynthesis [2, 3]

A. thaliana MicroRNA858a R2R3-MYB transcription factors Flavonoid biosynthesis [31]

Halostachys 

caspica

miR6194 and miR5655 Flavanone 3-hydroxylase Flavonols, anthocyanidins 

proanthocyanidins synthesis

[32]

Podophyllum 

hexandrum

miR1873/miR5532 Dihydroflavonol 4-reductase C/-hydroxyisoflavanone dehydratase Flavonoid/isoflavonoid biosynthesis [33]

Alkaloids

Opium poppy 

(Papaver 

somniferum)

pso-miR13, pso-miR2161, 

and pso-miR408

7-O-methyltransferase, S-adenosyl-l-methionine:3′-hydroxy-N-

methylcoclaurine 4′-O-methyltransferase 2/ 4′-O-methyltransferase2 

(4-OMT)/FAD-binding and BBE domain-containing protein, also known as 

reticuline oxidase-like protein

Benzylisoquinoline alkaloids [34]

Tobacco miRX17, miRX27, miRX20, 

and miRX19

QPT1, QPT2, CYP82E4, and PMT2 Nicotine biosynthesis and catabolism [35]

T. baccata miR164 and miR171 Taxane 13α hydroxylase and taxane 2α-O-benzoyltransferase Paclitaxel biosynthetic genes [36]

R. serpentina miR396b Targets kaempferol 3-O-beta-D-galactosyltransferase Flavonol glycosides [37]

Mentha spp. miR156 Basic helix-loop-helix (bHLH) Flavone/flavonol biosynthesis [38]

Terpenoids

P. kurroa iRNA-4995 3-Deoxy-7-phosphoheptulonate synthase (DAHP synthase) Terpenoid biosynthesis ultimately 

affecting the production of picroside-I

[39]
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Plant species miRNA Target Function References

Korean ginseng 

(Panax ginseng 

Meyer)

miR854b and miR854c 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), farnesyl 

diphosphate synthase (FPS), geranyl-diphosphate synthase, squalene 

synthase, and squalene epoxidase (SE)

[40]

C. roseus mir-5021 MYB transcription factor, geranyl diphosphate synthase, GCPE protein, 

UDP-glucose iridoid glucosyltransferase

Primary and secondary metabolism, 

Isoprenoid/terpenoid biosynthesis 

iridoid production in higher plants

[41]

Xanthium 

strumarium L.

miR7539, miR5021, and 

miR1134

Nontranscriptional factor proteins, such as DXS, HMGR, IDS, and IDI, 

essential to produce IPP and DMAPP

Terpenoid biosynthesis [42]

Xanthium 

strumarium L.

miR7540, miR5183, 

miR6449, miR5255, 

miR5491, and miR6435

R-linalool synthase, gibberellin 3-oxidase, ent-kaurene synthase, squalene 

epoxidase, beta-amyrin synthase, and germacrene A oxidase

Mono-, sesqui-, di-, and tri-terpenoids 

biosynthesis

[42]

Ferula gummosa miR2919, miR5251, 

miR838, miR5021, and 

miR5658

SPL7, SPL11, and ATHB13 TFs Terpene biosynthesis [43]

Pogostemon cablin miRNA156 Squamosa promoter binding protein-like (SPL) Sesquiterpene biosynthesis [44]

A. thaliana miR156 SPL transcription factor Modulate sesquiterpene synthase gene 

TPS21 responsible for the biosynthesis 

of (E)-β-caryophyllene

[44]

Mentha spp. miR156, miR414, and 

miR5021

Basic helix-loop-helix (bHLH) geranyl di-phosphate synthase subunit alpha-

like protein (NACA), respectively

Terpenoid backbone biosynthesis, 

sesquiterpenoid and triterpenoid 

biosynthesis

[38]

Others

S. chirayita miR-168, miR-11320, miR-

166a, miR-11071, miR-156a 

and miR-166b

Acetyl-CoA acetyltransferase (AACT), aspartate aminotransferase (PHAT), 

premnaspirodiene oxygenase (PSO), ribulose-phosphate 3-epimerase (RPE), 

phosphoglycerate mutase (PGM), and a gene encoding homeobox-leucine 

zipper protein (HD-ZIP)

Secondary metabolites biosynthesis [23]

A. thaliana miR163 Family of small molecules of methyltransferases Secondary metabolism [45]

A. thaliana miR393 Auxin receptors (TIR1, AFB2 and AFB3) Increase of glucosinolate and decrease 

of camalexin

[46]
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Plant species miRNA Target Function References

Potato mirn79 AP2/ERF transcription factor JA-responsive secondary metabolites [24]

S. rebaudiana miRstv_7 UDP-glycosyltransferase 76G1 (ugt76g1), kaurenoic acid hydroxylase (KAH), 

and kaurene oxidase (KO)

Steviol glycoside biosynthesis [47]

Arabidopsis 

thaliana

miR826 and miR5090 AOP2 Glucosinolate biosynthesis [48]

A. thaliana miR826 Alkenyl hydroxyalkyl producing 2 Glucosinolate synthesis [49]

Salvia miltiorrhiza miR5072 Acetyl-CoA C-acetyl transferase Tanshinones biosynthesis [50]

Table 1. 
miRNA related to secondary metabolite production.
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destabilization of a MYB-bHLH-WD40 transcriptional activation complex. Diospyros 
kaki fruits collected at two examined stages (15 and 20 WAF) showed differential 
expression of the mRNAs, indicating that these miRNAs might regulate PA synthesis 
during development, and some of them are miR858 and miR156, which regulate PA 
synthesis. miR858 positively regulates the genes responsible for the production of 
PA, while miR156 does so in a negative way. miR395 is another miRNA that has an 
influence on PA biosynthesis [30]. Some miRNAs (U436803, U977315, U805963, 
U3938865, and U4351355) regulate fatty acid and flavonoid biosynthesis in Lonicera 
japonica [2, 3]. The characterization in A. thaliana shows that miR858a targets 
MYB transcription factors that are involved in flavonoid biosynthesis, growth, and 
development. Over-expression of miR858a downregulates several MYB transcription 
factors, and the higher expression of MYBs in MIM858 lines leads to the redirec-
tion of the metabolic flux toward the synthesis of flavonoids [31]. Yang et al. [32] 
indicate that salt stress conditions regulate miRNAs; some salt stress-related biologi-
cal pathways includes calcium signaling pathway, MAPK signaling pathway, plant 
hormone signal transduction, and flavonoid biosynthesis [32]. Himalayan mayapple 
(Podophyllum hexandrum), miR1438 target caffeoyl-CoA O-methyltransferase and 
is related to phenylalanine metabolism, phenylpropanoid biosynthesis, flavonoid 
biosynthesis, stilbenoid, diarylheptanoid, and gingerol biosynthesis. miR1873 targets 
dihydroflavonol 4-reductase C related to flavonoid biosynthesis. miR5532 2-hydroxyi-
soflavanone dehydratase is related to isoflavonoid biosynthesis [33].

2.2 Alkaloids

Alkaloids are naturally compounds that have one or more of their nitrogen atoms. 
Alkaloids are classified into different groups: indole, piperidine, tropane, purine, 
pyrrolizidine, imidazole, quinolizidine, isoquinoline, and pyrrolidine alkaloids [52]. 
Because of their toxicity, alkaloids act as defense compounds against diverse pathogens 
or herbivores. Understanding the regulation of alkaloid biosynthesis is crucial for its 
production. Target transcript identification analyses in Opium poppy (Papaver som-
niferum) revealed that pso-miR13, pso-miR2161, and pso-miR408 (Table 1) might be 
involved in BIA biosynthesis. pso-miR13 might cleave 7-OMT transcript, involved in the 
conversion of S-reticuline to morphinan alkaloids. 4-OMT is the target of pso-miR216 
and mediates the production of S-reticuline that is also an intermediate molecule in BIA 
biosynthesis. On the other hand, pso-miR408 possibly targets mRNA from reticuline 
oxidase-like protein in charge of the conversion of S-reticuline to (S)-scoulerine in 
the BIA pathway [34]. Studies in tobacco (Nicotiana tabacum), identified four unique 
tobacco-specific miRNAs miRX17, miRX27, miRX20, and miRX19 that were predicted 
to target key genes of the nicotine biosynthesis and catabolism pathways, QPT1, QPT2, 
CYP82E4, and PMT2 genes, respectively [35]. In Taxus baccata, two paclitaxel bio-
synthetic genes, taxane 13α hydroxylase and taxane 2α-O-benzoyltransferase, are the 
cleavage targets of miR164 and miR171, respectively [36]. In silico analysis reveals that 
miR396b in Rauwolfia serpentina targets kaempferol 3-O-beta-D-galactosyltransferase 
whose activity as transferase activity, transferring hexosyl groups is essential for forma-
tion of flavonol glycosides [37]. A computational approach in Mentha spp., revealed that 
miR156, miR414, and miR5021 are essential for regulation of essential oil  biosynthesis. 
miR156 participates in flavone, flavonol biosynthesis, and terpenoid backbone 
 biosynthesis [38].

2.3 Terpenoids

Plant terpenoids secondary metabolites are synthesized from C5 precursors 
isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). They are 
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classified according to the number of carbon atoms as monoterpenes (C10), sesqui-
terpenes (C15), diterpenes (C20), triterpenes (C30), carotenoids (C40), and poly-
prenols (>45) [53]. Like the alkaloids and the flavonoids, the biological characteristics 
and the applications of interest in the industry. Computational identification of miR-
NAs was done in six transcriptomes of Picrorhiza kurroa revealed that miRNA-4995 
has a regulatory role in terpenoid biosynthesis (Table 1), ultimately affecting the 
production of picroside-I [39]. In silico profiling of microRNAs (miRNAs) in Korean 
ginseng (Panax ginseng Meyer) indicate that 3-hydroxy-3-methylglutaryl-coenzyme 
A reductase (HMGR), farnesyl diphosphate synthase (FPS), geranyl-diphosphate 
synthase, squalene synthase, and squalene epoxidase (SE) were predicted been 
regulated by miR854b and miR854c, especially SE [40]. miR-5021 was identified in 
Catharanthus roseus which targets two enzymes involved in biosynthesis of terpe-
noid indole alkaloids (TIAs), GCPE protein, and Terpenoid cyclase [41]. miR7539, 
miR5021, and miR1134 might be involved in regulating terpenoid biosynthesis by 
targeting upstream terpenoid pathway genes; nontranscriptional factor proteins, such 
as DXS, HMGR, IDS, and IDI, essential to produce IPP and DMAPP, the common 
precursors for all the downstream end terpenoids [42]. miRNAs miR7540, miR5183, 
miR6449, miR5255, miR5491, and miR6435 target downstream enzymes in the 
biosynthesis of mono-, sesqui-, di-, and tri-terpenoids; they were R-linalool syn-
thase, gibberellin 3-oxidase, ent-kaurene synthase, squalene epoxidase, beta-amyrin 
synthase, and germacrene A oxidase [42]. miR2919, miR5251, miR838, miR5021, 
and miR5658 were found to be related to the pathway of terpene biosynthesis in 
Ferula gummosa. SPL7, SPL11, and ATHB13 TFs are putatively regulated by miR1533, 
miR5021, and miR5658, respectively [43]. miRNA156-targeted squamosa promoter 
binding protein-like (SPL) intervenes in the temporal space regulation of sesquiter-
pene biosynthesis [44]. miR5021 is also involved in terpenoid backbone biosynthesis 
and miR414 is related to sesquiterpenoid and triterpenoid biosynthesis [38].

2.4 Other secondary metabolites

miRNAs were identified from in vitro culture of roots and leaves tissues of the 
transcriptome of Withania somnifera; miR159, miR172, miR5140, and miR5303 in root 
tissue and miR477, miR530, miR1426, and miR5079 of leaf tissue. These miRNA were 
associated in the regulation of secondary metabolites. Endogenous miRNAs (miR159 
and miR5140 from roots, miR477 and miR530 from leaves) may be help to increase the 
metabolites (withanoides) yield. Also, miR159, miR172 from roots, and miR530 from 
leaves were involved in the regulation of secondary metabolite associated with mRNAs 
[54]. Chlorophytum borivilianum, Oryza sativa, and Arabidopsis thaliana target gene 
prediction indicate that miR9662, miR894, miR172, and miR166 might be involved in 
regulating saponin biosynthetic pathway [55]. miR8154 and miR5298b increase taxol, 
phenylpropanoid, and flavonoid biosynthesis in subcultured Taxus cells [56]. In silico 
analysis indicate that miRstv_7* target ugt76g1, KAH, KO, for steviol glycoside biosyn-
thesis [47]. In Arabidopsis thaliana, miR826 and miR5090 share the target AOP2, which 
encodes a 2-oxoglutarate-dependent dioxygenase that is involved in glucosinolate bio-
synthesis [48]. Salvia miltiorrhiza miR5072 targets acetyl-CoA C-acetyl transferase that 
is involved in the biosynthesis of tanshinones [50]. miR826 targets alkenyl hydroxyalkyl 
producing 2 oxoglutarate dioxygenase, which is involved in glucosinolate synthesis [49].

3. Conclusion

miRNAs are small molecules associated with developmental processes con-
trolling gene expression. The mechanisms involved posttranscriptional and 
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transductional processes. The miRNA secondary metabolism control is a relative 
new field of study; the knowledge of the regulation of secondary metabolism 
in plants will help to understand the production of these products in controlled 
systems. Some of these products have an important economical value because of 
their use in agricultural, food, and cosmetic industries making these areas (miRNA 
regulation) very attractive.
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