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Chapter

Cryptococcus neoformans-Host 
Interactions Determine Disease 
Outcomes
Jintao Xu, Peter R. Wiliamson and Michal A. Olszewski

Abstract

The fungal pathogen Cryptococcus neoformans can infect the central nervous sys-
tem (CNS) and cause fatal meningoencephalitis, which accounts for an estimated 
180,000 deaths per year. Cryptococcal meningoencephalitis (CM) occurs mainly in 
the individuals with compromised immune systems. Thus, cryptococcal disease in 
the CNS has been predominantly attributed to insufficient immune responses and 
subsequent uncontrolled fungal growth. However, evidence has emerged that an 
inappropriate immune response, as much as an insufficient response, may promote 
clinical deterioration and pathogenesis. In this chapter, we will review the different 
types of immune responses to C. neoformans and their contribution to tissue damage 
and diseases.
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1. Introduction

The human fungal pathogen Cryptococcus neoformans causes substantial morbid-
ity and mortality worldwide, with an estimated 1 million infections and 180,000 
deaths per year [1–3]. Although the primary route of infection is through inhala-
tion of yeast into the lungs, fungal dissemination to the central nervous system 
(CNS) leads to severe meningoencephalitis that can cause death or long-lasting 
neurological sequelae, including memory loss, vision deficiencies, hearing and 
speech impairments, and motor deficits [4–6]. Treatment options for cryptococcal 
meningoencephalitis (CM) are limited and often unsuccessful due to the increasing 
development of drug resistance, the high toxicity of the antifungal drugs and the 
poor permeability of the blood brain barrier [7–9]. Unsuccessful treatments are 
often accompanied with high mortality rates up to 15% and relapse rates of 30–50% 
[10–12]. Thus, there is a pressing need for understanding the pathogenesis of  
C. neoformans infection to develop more effective therapeutic strategies.

Cryptococcal infections usually manifest in patients who are immunocompro-
mised secondary to HIV infection, cancer therapies, or organ transplantation [3]. 
This has led to the characterization of C. neoformans as an “opportunistic pathogen” 
that causes disease only when the immune system cannot control its growth. Prior 
studies have established a central role for T cell mediated immunity in fungal clear-
ance from the lungs and suggested that T-cell mediated immunity is also beneficial 
in the CNS [13–25]. These studies also support a paradigm that clinical failures are 
predominantly due to a deficiency in microbiological control. However, attempts 
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to develop immunotherapies that enhance the immune responses in CM have been 
largely unsuccessful, indicating other factors may also participate in the disease 
pathology [26]. Furthermore, clinical and experimental studies increasingly show 
that an exaggerated host immune response can promote cryptococcal pathogenesis. 
For example, a common complication of CM in HIV/AIDS patients is the immune 
reconstitution inflammatory syndrome (cIRIS) that develops after initiation 
of anti-retroviral therapy [27, 28]. A parallel syndrome occurs among non-HIV 
patients with severe cryptococcal CNS infection, termed post infectious immune 
inflammatory syndrome (PIIRS) [29–31]. These patients develop severe neurologi-
cal sequela and morbidity with persisting inflammatory responses, often despite 
fungal eradication [28, 32–36]. A detrimental role of host inflammation is further 
supported by the therapeutic effects of corticosteroids in ameliorating IRIS and 
PIIRS symptoms and by observations that premature or abrupt steroid-weaning 
may result in the recurrence of CNS lesions and clinical relapse [29, 30, 37].

This evidence challenges the view that cryptococcal disease is a consequence of 
a compromised immune system. Instead, the outcomes of cryptococcal disease can 
be better understood as a balance of C. neoformans-host interactions. The effect of 
C. neoformans on host disease can be explained by the damage-response framework 
(DRF), a theory for microbial pathogenesis proposed in 1999 [38]. The DRF theory 
incorporates the contributions of host-microbe interaction, rather than presenting 
microbial pathogenesis as a singular outcome of either microbial factors or host fac-
tors. The results of host-microbe interaction can be visualized with a single parabola 
depicting host damage as a function of the strength of the immune response [26]. 
Weak host immune responses due to HIV infection or immunosuppressive thera-
pies fail to control fungal growth, which results in fungus-mediated host damage. 
However, strong immune responses elicited by C. neoformans can also lead to host 
damages and diseases. In this chapter, we will review recent human clinical and 
experimental animal studies that have enhanced our understanding of the complex 
mechanisms involved in immunopathogenesis during C. neoformans infection. 
Uncovering the mechanisms that are involved in anticryptococcal host defense or in 
immunopathogenesis will facilitate the discovery of new intervention strategies to 
treat cryptococcal infections.

2. Cryptococcal immune reconstitution inflammatory syndrome

C. neoformans can cause infection in both the meninges and the Virchow-Robin 
channels surrounding the penetrating vessels within the brain parenchyma [39]. 
Although the exact mechanism by which this encapsulated pathogen migrates into 
the CNS is currently unclear, studies have found that circulating C. neoformans was 
trapped in the brain capillary and can actively transmigrate the microvasculature 
with contributions from urease and metalloprotease [40–42]. After migration, C. 
neoformans causes fatal meningoencephalitis which accounts for 15–20% of AIDS-
related deaths [1, 43, 44]. The high fungal burdens during CM in AIDS are associ-
ated with mortality, suggesting a prominent role of the fungal pathogen for host 
damage [45]. Thus, in HIV infection/AIDS, susceptibility to CM is thought to occur 
due to lack of T cell-mediated fungal clearance. Indeed, studies have shown that 
presence of CSF cytokine and chemokine responses consisting primarily of IL-6, 
IFN-γ, IL-8, IL-10, IL-17, CCL5 and TNF-α, are associated with increased macro-
phage activation, more rapid fungal clearance from the CSF, and patient survival 
[45]. The overall low levels of cytokine production in AIDS patients and insufficient 
activation of resident or recruited macrophages in the absence of T cells producing 
IFN-γ/TNF-α lead to uncontrolled fungal growth [45, 46].
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Antiretroviral therapy (ART) in AIDS patients rapidly restores host T cell 
responses. However, in a portion of patients it leads to a highly lethal complica-
tion, cIRIS, which is defined as a paradoxical clinical deterioration after initiation 
of ART, despite efficient control of fungal infection [28]. cIRIS occurs in 15–30% 
of HIV-infected individuals with cryptococcosis [28, 47]. Similarly, patients who 
undergo immune suppressive regiments during bone marrow transplantation or 
autoimmune diseases can develop cIRIS like syndromes once the host immune 
response is restored when immunosuppressive therapy is tapered [48]. Previous 
studies have found that paucity of initial CSF inflammation, low IFN-γ levels, and 
high fungal loads are risk factors for the development of IRIS [27, 45]. During cIRIS, 
the immune response in the brain is characterized by excessive activation of Th1 
CD4+ subsets with elevated production of cytokines including IFN-γ and TNF-α 
[27, 33, 49].

While the exact pathogenic mechanisms of IRIS have not been unraveled, the 
lymphopenic environment during HIV infection may result in abnormal func-
tion of residual CD4 T cells, rendering them more pathogenic as the population 
expands after ART [50]. Furthermore, it has also been proposed that there exists a 
decoupling of innate and adaptive immune responses in AIDS patients prior to ART 
due to deficient T cell responses, which sets the stage for excessive inflammation 
after T cell reconstitution. Indeed, several lines of evidence show that mononuclear 
immune cells are implicated in cIRIS. Predisposition to cIRIS has been shown to be 
associated with higher CCL2/MCP-1, CCL3/MIP-1α, and GMCSF production in the 
CSF, which promotes trafficking and activation of macrophages in the infection 
sites [45]. Patients with cIRIS had increased numbers of proinflammatory interme-
diate monocytes (CD14highCD16+) which produce reactive oxygen species  
[51, 52]. Although macrophages can be primed by fungal pathogens in AIDS 
patients prior to ART, they never become fully activated in the absence of T cell help 
to exert their effector functions in fungal clearance. This results in high levels of 
pathogen replication as the disease progresses. Nevertheless, increasing numbers of  
primed macrophages accumulate and create a state of immunological hyperre-
sponsiveness to the subsequently CD4+ T cell help. ART rapidly restores Th1 type 
response in the host with high level of IFN-γ production. Large numbers of primed 
macrophages then become fully activated to produce an acute spike in proinflam-
matory mediators, which may drive immunopathology during cIRIS. Thus, mac-
rophage activation in cIRIS may act in concert with T-cell responses resulting in 
tissue-destructive inflammatory responses.

The mechanisms of tissue damage by host inflammation during fungal infec-
tions are still under active research. Macrophage or T cell production of TNF-α, 
IL-1β, reactive oxygen species (ROS) and nitrogen species (RNS), may contribute to 
irreversible tissue damage and/or lead to neuronal apoptosis [53–55]. C. neoformans 
infection also induces cerebral edema and raised CSF pressure that are associated 
with symptoms including headache, nausea, and mental status deterioration.

3. Postinfectious inflammatory response syndrome

Another example showing that strong host immune responses during C. neo-
formans infection can induce immunopathology is post-infectious inflammatory 
response syndrome (PIIRS). It is characterized in non-HIV patients during initial 
therapy by severe mental deficits despite antifungal therapy and their apparent 
immunocompetent state. Reports showed that up to 25% of cases in the United States 
and 60% in the Far East occur in apparently immune competent patients [56, 57]. 
Despite antifungal therapy and negative CSF-C. neoformans cultures, PIIRS patients 
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many times require ventricle-peritoneal shunts to relieve the high CSF pressure 
caused by inflammation. Recent studies have shown that patients with PIIRS exhibit 
strong intrathecal Th1 responses with high levels of IFN-γ production and a relatively 
lack of Th2 responses [30]. Importantly, elevated levels of CSF neurofilament light 
chain (NFL), a marker of axonal injury, indicate ongoing immunological host neuron 
damage. Interestingly, macrophages recruited to the CNS infection site are often alter-
natively activated (M2) and exhibit poor phagocytic effect during PIIRS [30]. This 
apparent Th1-M2 discrepancy suggests that PIIRS patients may have downstream 
defects in monocyte activation. New therapies that consider immune-mediated host 
injury may decrease mortality in these severe or refractory clinical cases [43].

4. Animal models of IRIS and PIIRS

Detrimental roles for immune responses in the pathogenesis of cryptococcus-
associated IRIS or PIIRS have also been recently demonstrated in experimental 
mouse models. A recent study in our lab established a reproducible mouse model 
of CM using C57BL/6 mice infected intravenously with 106 CFU of C. neoformans 
strain 52D [58]. Using this model, we found that infected mice displayed overt and 
severe symptoms similar to that of human patients, including increased cranial 
pressure, ataxia, and limb paralysis after 21 days post infection (dpi). Importantly, 
over 50% of animals succumbed to infection between 21 and 35 dpi, despite appar-
ent fungal control in the CNS (Figure 1). Thus, we showed that the magnitude of 
CNS fungal burden does not directly correlate with the intensity of disease symp-
toms or mortality during CM.

Brain cellular inflammation, marked by leukocyte accumulation after 21 dpi and 
dominated by CD4+ T cell infiltration, plays an important role in the pathology of 
the CNS in cryptococcal-infected mice. Similar to human patients with IRIS and 
PIIRS, infiltrating CD4+ T cells in brains of cryptococcal-infected mice exhibit a 
Th1-type bias and produce high levels of IFN-γ. Critically, the influx of immune 
cells into the CNS after 21 dpi was synchronized with the onset of fungal clearance, 
development of neurological symptoms, and mortality. The depletion of CD4 + T 
cells leads to a reduction in mortality and inflammatory pathology, providing con-
ceptual evidence that CD4 + T cells are a principal mediator of inflammation and 
pathology in this model. Notably, over the course of the study, the survival of CD4+ 

Figure 1. 
Depletion of CD4+ T cells resulted in improved survival despite higher fungal burden during CM. C57BL/6 
mice were infected with 106 CFU of C. neoformans 52D via retro-orbital intravenous inoculation. (A) Fungal 
burdens were measured in whole-brain homogenates at the indicated time points. Naive mice and animals 
that succumbed to infection (†) are indicated. (B) Representative images of severe cranial swelling and CNS 
tissue injury in infected mice. (C) Survival of infected CD4-depleted (broken line) and isotype-treated mice 
through 35 dpi. (D) Brain fungal burdens were calculated on day 21 and 35 dpi. *, P < 0.05; **, P < 0.01; ****, 
P < 0.0001. Reproduced from Neal et al., [58].
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T cell depleted mice significantly improved despite having higher fungal loads in 
the CNS compared to mice with sufficient CD4+ T cells (Figure 1). Depletion of 
CD4+ T cells during CM also broadly inhibited all other aspects of the CNS inflam-
matory response, including accumulation of CD8+ T cells and CD11b + Ly6C+ 
myeloid effector cells. Taken together, these data strongly support the idea that 
CD4+ T cells exert dual but opposing roles during CM: promoting the elimina-
tion of the fungal pathogen in the CNS but simultaneously driving tissue damage, 
neurological deterioration, and death.

Another animal model has also demonstrated the pathological role of CD4+ T 
cells in cIRIS. Eschke and colleagues reconstituted RAG−/− mice, which are deficient 
in T and B cells, with WT CD4+ T cells after infection with C. neoformans [59]. They 
found that mice receiving CD4 T cells displayed high levels of Th1-type cytokines 
such as TNF-α and IFN-γ compared to mice not receiving CD4+ T cells. These 
results suggested that CD4+ T cell reconstitution in mice infected with C. neofor-
mans may lead to syndromes similar to IRIS in HIV-infected patients [59]. These 
animal models provide important tools for further investigating the mechanism of 
cryptococcal pathology.

5.  Host immunity to C. neoformans infection: protective or non-
protective, the yin and yang

Protective immunity is conferred by a fine balance between immune responses 
that eliminate the pathogen and those that limit host damages. However, an immune 
response induced by the pathogen may be non-protective for any one or combina-
tion of the following reasons: (1) it could occur in the wrong location or timeframe, 
promoting inflammatory injury without effective clearance of pathogens; (2) it 
could be too strong and cause immunopathology despite control of pathogen bur-
den; 3) regulatory mechanisms meant to maintain host tissue integrity may lead to 
microbial survival and persistence and thus result in chronic inflammation. Below, 
we describe cellular and molecular mechanisms by which dysregulation of immune 
responses contribute to host disease during infection with C. neoformans.

5.1 Host immune responses contribute to fungal clearance but also tissue damage

Upon infection, C. neoformans is sensed by a variety of innate receptors 
including Toll-like receptors [60–62], mannose receptors [60], and β-glucan 
receptors [63–65]. Macrophages [66, 67], DCs [68], natural killer cells [69–72] 
and neutrophils [73] have been shown to mediate killing C. neoformans, how-
ever, the development of the adaptive immune response is required for control-
ling the fungal growth in the host [74–76]. Specifically, the development of Th1 
and Th17 responses that are associated with classical activation of macrophages 
(M1) promotes fungal clearance in both humans and experimental mouse mod-
els [14, 77]. DCs and macrophages function as the potential sensors for infection 
through PRRs or inflammasomes, and produce cytokines such as IL-12, IL-23, 
IL-6, IL-18, TNF-α and IL-1β, which have been shown to promote the Th1/Th17 
response during C. neoformans infection [78–84]. During this response, Th1 
and Th17 cells produce cytokines such as IFN-γ, IL-17 and IL-22, which act on 
macrophages, neutrophils or epithelial cells and induce robust antimicrobial 
and phagocytic responses, including the production of reactive oxygen and 
nitrogen species [16, 85–90]. As a result, resident and/or recruited macrophages 
and DCs can become highly activated and function as the main effector cells for 
controlling fungal infection [91, 92].
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Although generation of the Th1/Th17 response and subsequent M1 activation 
play a critical role in controlling fungal growth, excessive immune responses can 
become destructive and cause lung immunopathology following fungal infection. 
Recent studies demonstrated that FADD and RIPK3 proteins, which are mediators 
of death receptor-triggered extrinsic apoptosis, play a crucial immune regulatory 
role in preventing excessive inflammation during C. neoformans infection [93]. 
Deletion of RIPK3 and FADD led to a robust Th1-biased response with M1-biased 
macrophage activation, which is accompanied by marked upregulation of cytokines 
like TNF-α, IL-1α, IL-1β, IL6, and IFN-γ (Figure 2). Rather than being protective, 
this robust host response was deleterious and is associated with paradoxical fungal 
growth and rapid clinical deterioration (Figure 2). These findings showed that 
excessive inflammation can mediate tissue damage and host disease during cryp-
tococcal infection [93]. Furthermore, the balance between Th1 and Th17 immune 
responses plays important roles in optimizing clearance and minimizing inflamma-
tory damage to the host tissues during fungal infections. For example, it has been 
shown that IL-23 and Th17 pathway act as a negative regulator of Th1 response and 
thus contribute to fungal growth during C. albicans and A. fumigatus infection [94]. 
Recent studies show that the Th1, Th2, Th17 responses and cytokines co-exist and 
evolve during different time points in a chronic fungal infection [13], while fungus 
adapts to and exploit the dysregulation of this immune balance. Thus, therapeutic 
cytokines and vaccines may create a new therapeutic mean to restore protective 
host responses and fungal control, but would need to be introduced with extreme 
caution not to induce an excessive immune bias.

DCs play a critical role in modulating host antifungal responses. Distinct PRRs 
and intracellular signaling pathways in DCs help to define the immune response 
to fungal pathogens [95]. Studies from Bonifazi et al. showed that C. albicans 
exploits multiple, functionally distinct, receptor-signaling pathways in DCs 
ultimately affecting the local inflammatory/anti-inflammatory state in the gut [96]. 
Furthermore, depletion of DC through administration of diphtheria toxin to trans-
genic mice resulted in rapid clinical deterioration and death of mice infected with 
C. neoformans [97]. Early mortality in DC-depleted mice was related to increased 
neutrophil accumulation accompanied with histopathologic evidence of alveolar 
damage, including hemorrhagic and proteinaceous exudates [97]. Similar changes 
mediated by neutrophils were associated with respiratory failure and death [98]. 
Collectively, these data define an important role for DC in regulating the initial 
innate and adaptive response following fungal infections.

Figure 2. 
RIPK3 and FADD modulate host responses against C. neoformans infection. (A) Ripk3−/− and Ripk3−/−Fadd−/− 
mice were more susceptible to C. neoformans infection. (B) Diminished fungal clearance in lungs of Ripk3−/− 
and Ripk3−/−Fadd−/− mice. (C) RIPK3 or FADD deletions altered Th-polarizing and pro-inflammatory 
cytokine profiles in pulmonary response to cryptococcal infection. *, P < 0.05; **, P < 0.01; ****, P < 0.0001. 
Reproduced from Fa et al., [93].
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5.2  Host immune responses normally associated with homeostasis can contribute 
to fungal persistence

Cryptococcal virulence includes evasion of immune recognition, interference 
with phagocytosis, and modulation of host immune responses [56, 99]. Many 
fungal factors have been shown to promote allergic Th2 or Treg responses. These 
types of responses are characterized by alternatively activated macrophages and 
may promote uncontrolled fungal growth [56]. However, the regulatory immune 
response is also crucial for maintaining host tissue homeostasis and limiting the 
inflammatory responses that can cause tissue damage.

Th2: In murine models, C. neoformans exhibits a remarkable ability to induce 
Th2 response, which is associated with fungal growth, fungus-associated allergic 
responses and disease relapse. Although rare for C. neoformans infection, other 
fungal pathogens such as Aspergillus fumigatus can induce devastating allergic bron-
chopulmonary mycosis in human patients that is accompanied by a Th2 response  
[100, 101]. Additionally, enhancing the Th2 response in a mouse model has been 
shown to exacerbate pulmonary disease during cryptococcal infection, supporting a 
causal role of Th2 response in pathology [102].

IL-4 and IL-13 provide the most potent proximal signals for Th2 cell polarization 
[13, 17, 103]. The epithelial-derived cytokines thymic stromal lymphopoietin (TSLP), 
IL-25, and IL-33 have been shown to regulate the development of Th2 response during 
asthma [104, 105]. A time-dependent increase in IL-33 expression in the lungs has 
been found during C. neoformans infection, and IL-33 signaling can promote Th2 
response and facilitates cryptococcal growth in the lungs [106]. In addition, chitin 
recognition via host chitotriosidase promotes harmful Th2 cell differentiation by 
CD11b + conventional DCs in response to pulmonary fungal infection [102]. However, 
Th2 polarization may play beneficial roles at certain stage of infection. IL-4Ra has 
been shown to afford protection early upon infection associated with increased 
IFN-γ and nitric oxide production. More importantly, Th2 response plays important 
roles in wound healing to tissue destructive pathogens [107] and down regulating 
inflammatory responses [108]. Many of the proteins produced in response to IL-4 
and IL-13, such as arginase, MMP12, and TREM-2, are associated with injury [109]. 
Th2-activated macrophages also produce TGF-β which can suppress pro-inflammatory 
responses while at the same time serving as a potent pro-fibrotic mediator [110].

Treg: CD4+ CD25+ Treg cells expressing the transcription factor forkhead box 
protein 3 (FoxP3) play critical roles in down-regulating immune responses and pro-
moting homeostasis [111, 112]. Accumulation of antigen specific Treg has been shown 
during infection with fungal pathogens [113–116]. Multiple studies have shown that 
Treg can suppress effector cells and lead to fungal persistence. For example, Treg in 
mice infected with C. albicans were shown to be capable of inhibiting Th1 activity, 
thereby limiting protective responses. However, the roles of Treg in modulating Th17 
activity are still controversial, with both positive and negative effects reported  
[117, 118]. Similar enhancement of effector function in the absence of Treg can be 
found in multiple other models of viral, bacterial, and parasitic infection [119].

While Treg may lead to pathogen persistence, they can actually be benefi-
cial in protecting against immune-mediated damage to the host. This has been 
demonstrated in diseases caused by Pneumocystis pneumonia, HSV, Schistosoma 
mansoni where depletion of Treg leads to enhanced pathology [120–123]. It has 
been shown that depletion of Tregs enhanced Th2 response during pulmonary 
cryptococcal infection as evidenced by increased mucus production, enhanced 
eosinophilia, and increased IgE production [113]. Interestingly, Treg-depleted 
mice exhibited elevated fungal burden compared to control mice, suggesting 
that Treg mediated enhanced fungal control by inhibiting non-protective Th2 
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responses [113]. Confirming these observations, therapeutic expansion of Tregs 
during pulmonary cryptococcal infection has been shown to limit allergic airway 
inflammation, as demonstrated by reduced production of IgE and Th2 cytokines 
[116, 124]. Since laboratory mice show a strong tendency to develop a detrimen-
tal Th2 response during C. neoformans infection, Tregs may be protective in this 
context by inhibiting the tissue-damaging Th2 response. Furthermore, Tregs 
have also been demonstrated to be required for resistance to reinfection with  
C. albicans [120].

IL-10 is a critical effector molecule involved in the immunoregulatory func-
tions of Treg cells [125]. IL-10 has been reported to inhibit production of cytokines 
such as IL-1, IL-6, IL-23, IFN-γ, TNF-α and chemokines including CCL2(MCP-1), 
CCL12(MCP-5), CCL5(RANTES), IL-8, CXCL10(IP-10), and CXCL2(MIP-2) [126]. 
During C. neoformans infection, IL-10-deficient mice display reduced expression 
of IL-4, IL-5, and IL-13, but enhanced TNF-α and IL-12 expression [127]. Studies 
have further shown that IL-10 signaling blockade can promote fungal control even 
if administered after persistent infection has been established [128]. IL-10 expres-
sion also occurs and dampens fungal control in response to other fungal pathogens 
such as C. albicans, H. capsulatum and A. fumigatus [129–131]. These studies suggest 
that IL-10 production plays an essential role in the development of persistent fungal 
infections. Deficiency or blockade of IL-10 may result in better fungal control, 
however, it comes at the cost of excessive inflammation that may cause greater 
tissue damage [127, 132, 133].

The roles of Tregs in the CNS during fungal infection, however, remain less 
studied. One report shows an increase in the abundance of Treg cells within cIRIS 
patients [134]. Further clinical and animal studies are needed to investigate the 
functions of Tregs during fungal CNS infections.

6. Conclusions and future directions

A tightly-regulated balance between inflammatory and regulatory mechanisms 
is required to control fungal infection, maintain host homeostasis, and ultimately 
develop protective immunity (Figure 3). Recent studies have demonstrated that 
disease and mortality in cryptococcal infection can result from either uncontrolled 
fungal growth due to defective host immunity, or excessive host inflammation. As 
the spectrum of hosts with cryptococcal disease expands, it is critical to understand 
and distinguish pathology caused by the pathogen or host responses. For example, 
additional suppression of weak immunity by steroid therapy in patients with 
uncontrolled fungal growth may lead to enhanced fungus-mediated damage and 
mortality in HIV-associated cryptococcal patients [135]. Instead, adjunctive IFN-γ 
therapy to bolstering immunity in these patients has the potential to ameliorate 
fungus-mediated damage and mortality [136]. However, in cIRIS patients, who 
experience inflammation-mediated tissue damage and mortality, corticosteroids 
can be effective to control disease-related deterioration [30]. Furthermore, mount-
ing evidence implies that the top priority for cIRIS and PIIRS is to control the 
devastating immunopathology. Thus, comprehensive therapeutic strategies that 
take fungus- and host mediated damage into account could have the potential to 
significantly improve therapeutic outcomes.

Recent studies have identified the involvement of a number of immunopatho-
genic mechanisms including CD4+ T cells. However, the function of CD4 T cells 
overlaps with the mechanisms required for fungal clearance. Little is known about 
whether it is possible to uncouple the anti-fungal host defense mechanisms from 
the host immune responses that mediate deleterious immunopathology. One of 
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the future directions in this research field is to identify mechanisms that are not 
required for fungal clearance but are major culprits in immunopathology which 
could be promising targets for future immunotherapies.
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Figure 3. 
C. neoformans and host interactions determine disease outcomes. In the center, innate immune cells such as 
DCs recognize C. neoformans using multiple pattern recognition receptors. A weak immune response due to 
HIV, cancer, or organ transplant can result in fungal-mediated tissue damage. Macrophages recruited into the 
infected tissue without T cell stimulation fail to control fungal growth. In healthy individuals, the DC-initiated 
Th1 response, which completely activated macrophages to efficiently control C. neoformans infection. Cytokines 
such as TNF-α and IFN-γ, as well as iNOS, are critical for fungal control. Tregs play important roles in 
limiting inflammation and maintaining homeostasis of the host. During IRIS and PIIRS, however, excessive 
inflammation can cause tissue damage despite fungal control. Whether Tregs are functional under this state 
is not clear. Macrophages may not be activated in PIIRS patients even with strong Th1 and IFN-γ production. 
Overproduction of cytokines and iNOS may promote tissue damage and cause disease. For certain host genetic 
backgrounds or highly virulent strains, an allergic Th2 response is developed and control of fungal growth fails. 
Host tissue damage in this circumstance may stem from both the pathogen and the detrimental Th2 responses.
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