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Abstract

This chapter presents an improved method for constrained optimisation of bio-
chemical systems production. The aim of the proposed method is to maximise its
production and, at the same time, to minimise the total amount of chemical con-
centrations involved in producing the best production. The proposed method
models biochemical systems with ordinary differential equations. The optimisation
process became complex for the large size of biochemical systems that contain
many chemicals. In addition, several constraints as the steady-state constraint and
the constraint of chemical concentrations also contributed to the computational
complexity and difficulty in the optimisation process. This chapter considers the
biochemical systems as a nonlinear equations system. To solve the nonlinear equa-
tions system, the Newton method was applied. Then, both genetic algorithm and
cooperative co-evolutionary algorithm were applied to fine-tune the components in
the biochemical systems to maximise the production and minimise the total amount
of chemical concentrations involved. Two biochemical systems were used, namely
the ethanol production in the Saccharomyces cerevisiae pathway and the tryptophan
production in the Escherichia coli pathway. In evaluating the performance of the
proposed method, several comparisons with other works were performed, and the
proposed method demonstrated its effectiveness in maximising the production and
minimising the total amount of chemical concentrations involved.

Keywords: biochemical systems production, constrained optimisation,
computational intelligence, cooperative co-evolutionary algorithm,
genetic algorithm, Newton method

1. Introduction

Computational systems biology is a field of biological study that combines the
knowledge of science and engineering. The objective of this field is to model the
behaviour of biochemical reactions through a computational approach. Within this
field, the structures and complexity of biological processes can be investigated as a
system [1]. Therefore, computational systems biology enables the scientist to rep-
resent the biological process as a system. This allows the biochemical process in a
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living cell to be manipulated as a real factory and gives a way for scientists to
improve the cell production (microbial production).

Integrating the knowledge of microbial production with genomic techniques and
biotechnology processes creates the ability to manipulate a living cell to act like a
real cell factory, thus opening new doors for researchers seeking to improve micro-
bial productions [2]. One example of improving the microbial production is the
optimisation of a biochemical systems production. Generally, biochemical systems
can be defined as a series of chemical reactions found in a microorganism cell. With
the knowledge of microbial production and genomic techniques, the biochemical
systems can be represented as a dynamic mathematical model such as the Michaelis-
Menten type [3], the stoichiometric approach [4], flux-balance analysis [5], meta-
bolic control analysis [6] and biochemical systems theory (BST) [7]. Among these
various choices, this work uses the BST representation to model the biochemical
system. An advantage of using the BST is that prior knowledge of the mechanisms
for each reaction is not required in order to build equations and the mathematical
models can be designed by identifying the reactants and their interconnections [7].
For that reason, a canonical form that uses an ordinary differential equation (ODE)
representation is suitable for modelling biochemical systems [1].

The optimisation of the biochemical systems production is a biotechnological
process that aims to improve production by fine-tuning the chemical reaction.
Besides that, the total amount of chemical concentrations involved also needs to be
taken into account [8, 9]. To date, many studies have been carried out to develop
methods for the optimisation of the biochemical systems production. Researchers
tend to use the computational methods due to the flexibility of the mathematical
models allowing to reduce the required costs and time. Popular methods used are the
linear programming method (Vera et al. 2010; Xu 2012) and the geometric pro-
gramming method [10, 11]. These methods depend on the definitions of the decision
variables and the equality and inequality constraints, which could cause a conver-
gence problem if the definition process is not performed well [12]. In order to
overcome this problem, the present study was carried out using the stochastic
method. The stochastic method operates on an evolving set of candidate solutions. In
the evolving process, the candidate solutions are modified by the stochastic operator
to produce the next generation. Using the stochastic operator, the search direction
is determined by a random method, which makes it more efficient and robust [13].
In addition, the stochastic method does not rely on the manipulation of the objective
function and constraints or the initialisation of a feasible point [14]. There are many
stochastic methods that can be adopted for the optimisation process, among which
is the genetic algorithm (GA) that has been widely found to be the most suitable
method [15–17]. The GA works by representing the chemical reaction in the bio-
chemical systems as a chromosome. The chromosome is then evolved and modified
by a crossover and mutation process, with the intention to improve the solution.

As mentioned above, this chapter uses the BST method to model biochemical
systems. Within the BST, two representations are typically used, namely, the S-
system and generalised mass action (GMA). This study employs the GMA repre-
sentation due to its ability to represent the nonlinearity of a biochemical systems
and superior performance in optimisation [10]. The GMA uses the power law
function, which is an ODE to model the biochemical systems. Applying only the GA
for the optimisation of biochemical systems is not sufficient as the GA only fine-
tunes the chemical concentrations. Therefore, a method is needed to deal with the
biochemical systems. Implementing the Newton method for the biochemical sys-
tems is a good choice because the GMA model that represents the biochemical
systems can be viewed as a nonlinear equations system [8, 18–22]. It also has been
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found that the Newton method is suitable for the nonlinear equations system due to
the convergence speed, simplicity and ease of use [23, 24].

Using the Newton method with the GA in optimising the biochemical systems
production is a good choice because the Newton method deals with the biochemical
systems, while the GA is used to fine-tune the chemical concentrations by
representing the chemical concentrations into a chromosome. However, several
problems do occur when dealing with large biochemical systems that contain many
chemicals and has complex structures where it makes the representation of the
solution become complex and difficult to evaluate. Hence, a method is needed in
order to overcome these problems by simplifying the representation of the solution.
Using the cooperative co-evolutionary algorithm (CCA) is a good choice because it
has the ability to simplify the representation of the candidate solution by
decomposing a single chromosome into multiple sub-chromosomes [17, 25, 26].

In this chapter, a hybrid method known as the advanced Newton cooperative
genetic algorithm (ANCGA) that combined the Newton optimisation method; the
GA and the CCA were presented. This method models biochemical systems as a
system of nonlinear equations and applies the Newton method to solve the system.
In the optimisation process, the GA and the CCA were used to represent the vari-
ables in a nonlinear system in order to search the best solution. The GA was used to
maximise the production, while the CCA was used to minimise the total amount of
chemical concentrations involved. The ANCGA that proposed in this study is the
improvement of the existing method [17]. The reason of proposing the ANCGA is
due to the previous algorithm that takes longer time for the optimisation process.
Moreover, the performance of the previous work can be improved in terms of
maximising the production and minimising the total amount of chemical concen-
trations involved. In order to do that, this work introduces a concept of external
population. The external population was used to store the best solution found in
every generation. The reason of using this concept was to avoid the best solution
found in every generation from being lost during the reproduction process. The
methods used in this study are presented in the following order. Firstly, the pro-
posed method is explained in detail. Case studies of the fermentation pathway in
Saccharomyces cerevisiae (S. cerevisiae) and the tryptophan (trp) of biosynthesis in
Escherichia coli (E. coli) are then presented. Following that, the results are discussed,
and a brief conclusion is made.

2. The proposed method

This section describes the proposed ANCGA in detail. The ANCGA is proposed
in order to improve the performance of the previous method [17] in terms of
computational time. In addition, the ANCGA is hope to improve the performance of
the previous method [17] in maximising the production and minimising the total
amount of chemical concentrations involved. Figure 1 shows the flowchart of
ANCGA. The ANCGA operates by treating the biochemical systems as a system of
nonlinear equations and then uses the Newton method in solving the nonlinear
equations system. Then, the GA and CCA were used in the optimisation process.
The detailed operation of the ANCGA is described in the following steps:

Step 1—randomly generate the initial n sub-chromosomes in m sub-populations
and create an empty external population. The number of sub-populations (m) must
be the same to the number of variables in the nonlinear equations system. The sub-
chromosomes represent the variables in the nonlinear equations system. The sub-
chromosome is in the binary format.
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Step 2—evaluate the sub-chromosome. The evaluation process starts when a
representative from every sub-population is selected to produce a complete solution
that is known as a cooperative chromosome. The selection of representatives is
based on their fitness value, where the lowest values are selected first. This process
is known as the sub-chromosome evaluation. The objective of this process is to
minimise the total amount of chemical concentrations involved by letting repre-
sentatives that have the lowest fitness values from every sub-population to be
combined together.

Step 3—produce the cooperative chromosome. The cooperative chromosome is
produced after all the selected representatives are combined together. The cooper-
ative chromosome is the complete solution. The formation of the cooperative chro-
mosome is depicted in Figure 2.

Step 4—evaluate the cooperative chromosome. In this step, the cooperative
chromosome is tested. The evaluation process starts with an encoding of the coop-
erative chromosome into variables in the nonlinear equations system. Then, the

Figure 1.
The flow chart of ANCGA.
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Newton method is used to solve the nonlinear equations system. In the evaluation
process, a condition might occur depending on whether or not the cooperative
chromosome follows the set of constraints. If the cooperative chromosome follows
the constraints, then the procedure goes ahead to Step 8; if not, it goes to Step 5.

Step 5—decompose the cooperative chromosome into sub-chromosomes. After
solving the nonlinear equations system using the Newton method, the variables in
the nonlinear equations system are decoded back into the cooperative chromosome
form. Then, the cooperative chromosome is decomposed into multiple sub-
chromosomes. After that, all the sub-chromosomes are sent back to their own sub-
populations in order to perform selection and reproduction.

Step 6—select a pair of sub-chromosome for the reproduction process. The
selection process is based on their fitness value, where the lowest fitness value is
selected first.

Step 7—produce new generations. In this step, the genetic operators of crossover
and mutation are applied on the selected sub-chromosomes in order to produce new
generations. This process is performed up to the last sub-chromosome. Then, the
new generation is processed again, starting from Step 2.

Step 8—copy the cooperative chromosome into the external population. The
process is performed by copying selected cooperative chromosome that fulfil the
constraints and put the selected cooperative chromosome into external population.
This process is intended to keep the best solution in every generation and prevent it
from being lost in the reproduction process (Step 7). At this stage, two conditions
may occur: either the maximum number of generations is reached or the maximum
number of cooperative chromosomes in the external population is achieved. If these
two conditions are fulfilled, the procedure jumps to Step 10; otherwise, the proce-
dure continues to the next step. During this process, if the maximum number of
cooperative chromosomes in the external population is reached before the maxi-
mum number of generations is achieved, the cooperative chromosome that has the
lowest fitness value is deleted and replaced by a newly copied cooperative chromo-
some. However, if the maximum number of generations is reached before the
maximum number of cooperative chromosomes in the external population is
achieved, the procedure moves to Step 10.

Step 9—select some of the cooperative chromosomes from the external popula-
tion. This process refers to the elitism of external population concept. The elitism of
external population concept works where some (with y probability) of the cooper-
ative chromosomes from the external population are selected and combined with
the current sub-chromosomes. The selection process is based on their fitness value,
where the cooperative chromosomes from the external population that have the
highest fitness value are selected first. Then, this process goes back to Step 5.

Figure 2.
The formation of the cooperative chromosome.
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Step 10—choose the best solution. The best solution is chosen among all the
cooperative chromosomes in the external population. The selection is based on the
fitness values of the cooperative chromosomes, where the cooperative chromosome
with the highest fitness value is chosen.

Step 11—return to the best solution. This step decodes the selected cooperative
chromosome into its real value (the variable in the nonlinear equations system) and
gives the best solution set.

3. Case studies

In this section, the effectiveness and efficiency of the ANCGA is demonstrated.
The effectiveness of the proposed method refers to the ability of the ANCGA to
obtain the best result, while the efficiency refers to the ability of the ANCGA to
maintain its performance in producing the best result in several case studies. Two case
studies were used, namely, the S. cerevisiae pathway and the E. coli pathway. In order
to test the performance of the ANCGA, a Java program based on two Java libraries,
namely, jMetal [27] and JAMA of the version 1.0.3, was developed. The jMetal library
can be downloaded from http://jmetal.sourceforge.net/index.html, while the JAMA
version 1.0.3 can be accessed at http://math.nist.gov/javanumerics/jama/.

3.1 Case study 1: the ethanol production in S. cerevisiae pathway

In this case study, the ANCGA was used to optimise ethanol production in the
S. cerevisiae pathway. The GA was used to represent the chemical reactions in the
S. cerevisiae pathway, which were metabolites and enzymes. Details of the metab-
olites and enzymes, including the initial steady-state values, are presented in
Table 1. The pathway was suspended in a cell culture at p. 4.5 and had the
following ODE models [28].

Metabolite/enzyme Symbol Initial steady-state value

Glcin X1 0.0345

G6P X2 1.0110

FDP X3 9.1440

PEP X4 0.0095

ATP X5 1.1278

Vin Y1 19.70

VHK Y2 68.50

VPFK Y3 31.70

VGAPD Y4 49.90

VPK Y5 3440.00

VCarb Y6 14.31

VGro Y7 203.00

VATPase Y8 25.10

Table 1.
Details of metabolite and enzymes in case study 1.
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dX1

dt
¼ Vin � VHK

dX2

dt
¼ VHK � VPFK � VCarb

dX3

dt
¼ VPFK � VGAPD � 0:5VGro

dX4

dt
¼ 2VGAPD � VPK

dX5

dt
¼ 2VGAPD þ VPK � VHK � VCarb � VPFK � VATPase

(1)

Eq. (2) shows the fluxes at the steady-state condition.

Vin ¼ 0:8122X�0:2344
2 Y1

VHK ¼ 2:8632X0:7464
1 X0:0243

5 Y2

VPFK ¼ 0:5232X0:7318
2 X�0:3941

5 Y3

VCarb ¼ 8:904� 10�4X8:6107
2 Y6

VGAPD ¼ 7:6092� 10�2X0:6159
3 X0:1308

5 Y4

Vgro ¼ 9:272� 10�2X0:05
3 X0:533

4 X�0:0822
5 Y7

VPK ¼ 9:471� 10�2X0:05
3 X0:533

4 X�0:0822
5 Y5

VATPase ¼ X5X8

(2)

For the total amount of chemical concentration involved, it can be formulated
as follows:

minF2 ¼ ∑
5

j¼1
Xj þ ∑

6

k¼1

Xk (3)

In the optimisation process, the GMA model was treated as a nonlinear equa-
tions system, where all the GMA models were set to be equal to 0. This gave all
the ODE models in Eq. (1) the following forms:

Vin � VHK ¼ 0

VHK � VPFK � VPol ¼ 0

VPFK � VGAPD � 0:5VGol ¼ 0

2VGAPD � VPK ¼ 0

2VGAPD þ VPK � VHK � VPol � VPFK � VATPase ¼ 0

(4)

For the metabolite concentration constraint, the constraint was set to 20%
from the steady-state value, which was in the range between 0.8 and 1.2 [8, 29].
Thus, the constraint for this case study became as follows:

X0:8
k ≤ Xk ≤ X1:2

k k ¼ 1, 2, 3,4, 5 (5)

Meanwhile, the enzyme concentration constraint was set in the range between
0 and 50 from the steady-state value [8, 29]. The enzyme concentration constraint
can be formulated as follows:

Y0
k ≤ Yk ≤ Y50

k k ¼ 1, 2, 3,4, 5, 8 (6)
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3.2 Case study 2: the tryptophan biosynthesis in E. coli pathway

For case study 2, the ANCGA was used to optimise the end product of this
pathway, which was trp production. The complete description of this pathway
was provided by Xiu and colleagues [30]. The GMA models of this pathway are
given as follows:

dX1

dt
¼ V11 � V12

dX2

dt
¼ V21 � V22

dX3

dt
¼ V31 � V32 � V33 � V34

(7)

where X1 is the mRNA concentration, X2 is the enzyme concentration and X3 is
the trp concentration. The rates of all reactions in this pathway at steady state are
given as follows:

V11 ¼ 0:6403X�5:87�10�4

3 X�0:8332
5

V12 ¼ 1:0233X1X
0:0035
4 X0:9965

11

V21 ¼ X1

V22 ¼ 1:4854X2X
�0:1349
4 X0:8651

12

V31 ¼ 0:5534X2X
�0:5573
3 X0:5573

6

V32 ¼ X3X4

V33 ¼ 0:9942X7:0426�10�4

3 X7

V34 ¼ 0:8925X3:5�10�6

3 X0:9760
4 X8X

�0:0240
9 X�3:5�10�6

10

(8)

The trp production in this case study is given by the reaction V34 [31]. This
leads to optimisation that can be formulated as follows:

maxF ¼ V34 (9)

For the total amount of chemical concentrations involved, it can be formulated
as follows:

minF2 ¼ ∑
5

k¼1

Xk þ X8 (10)

Similar to case study 1, the GMA model was set to be equal to 0, thus Eq. (8)
became as follows:

V11 � V12 ¼ 0

V21 � V22 ¼ 0

V31 � V32 � V33 � V34 ¼ 0

(11)

In this case study, the GA and CCA only represent several chemical concentra-
tions. This was because not all chemical concentrations were being tuned [1, 10, 11].
The chemical concentrations that tuned were X1 up to X6 and X8. These chemical
concentrations including their initial steady states are summarised in Table 2. For
the other chemical concentrations which were X7 and X9 up to X13, fixed values
were used [1, 10, 11]. Eq. (12) lists the range of these chemicals.
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X0:8
k ≤ Xk ≤ X1:2

k k ¼ 1, 2, 3

0≤ X4 ≤ 0:00624

4≤ X5 ≤ 10

500≤ X6 ≤ 5000

X7 ¼ 0:0022X5

0≤ X8 ≤ 1000

X9 ¼ 7:5

X10 ¼ 0:005

X11 ¼ 0:9

X12 ¼ 0:02

X13 ¼ 0

(12)

4. Results and discussion

In performing the experiments, many parameter settings were used. The list of
all parameter settings used in this study is listed in Table 3, whereas Table 4
presents the parameter settings in producing the best result. The binary coding was
used to represent the chemical concentrations. For the Newton method, fixed

Reaction Initial steady-state value

X1 0.0345

X2 1.0110

X3 9.1440

X4 0.0095

X5 1.1278

X6 19.70

X8 25.10

Table 2.
Summary of reaction concentrations in case study 2.

Parameter Rate

Number of sub-populations Depend on the number of variables in nonlinear

equations system

Number of sub-chromosomes in sub-

population

[100,110,120,130,140,150]

Number of chromosomes in external

population P

[100,110,120,130,140,150]

Maximum number of generations [100,110,120,130,140,150]

Crossover rate [0.1,0.2,0.3,0.4,0.5]

Mutation rate [0.1,0.2,0.3,0.4,0.5]

Elitism rate [0.1,0.2,0.3,0.4,0.5]

Table 3.
List of all parameter settings used.
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parameters were used, namely, 50 for the maximum number of iterations and 10�6

for tolerance.
The full results obtained by the ANCGA when applied on S. cerevisiae pathway

are given in Table 5. At the best solution, the ANCGA was able to increase the F1
(ethanol production) up to 53.02 bigger than its initial steady-state value. For the F2
(total amount of chemical concentrations involved), the proposed method was able
to reduce it to 293.5249. All metabolites and enzymes fulfilled their constraints,
with all the metabolites staying in the range of 0.8–1.2, while all the enzymes were
in the range of 0–50. The performance of the ANCGA was assessed by comparing
the result obtained by ANCGA with other works, and the comparison results are
listed in Table 6. As shown in the table, the ANCGA produced higher results as
compared to other methods. In addition, to verify the results achieved by the
ANCGA, an average of 100 independent runs was recorded. The results are
summarised in Table 5. It shows that the average result for the metabolites and
enzymes fulfilled their constraints, whereby they were in their optimum range, thus
leading to the conclusion that the ANCGA is able to produce reliable results. It can
be said that the ANCGA can produce higher production of ethanol as compared to
the methods used in other studies.

Parameter Case study 1 Case study 2

Number of sub-populations 11 7

Number of sub-chromosomes in sub-population 150 140

Number of chromosomes in external population P 100 100

Maximum number of generations 150 130

Crossover rate 0.3 0.4

Mutation rate 0.1 0.1

Elitism rate 0.2 0.2

Table 4.
Parameter settings in producing optimum solution.

Variables Best solution 1 Average

X1 1.1240 0.9951

X2 1.0322 1.0018

X3 0.9900 1.0053

X4 1.1407 1.1297

X5 1.0001 0.9831

Y1 49.8103 49.9793

Y2 45.3702 45.0767

Y3 45.3452 49.8103

Y4 48.5112 47.4064

Y5 49.4448 49.3426

Y8 49.7563 49.7876

F1 53.0200 52.7499

F2 293.5249 294.5178

Table 5.
The full result of case study 1.
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The full results of the E. coli pathway are presented in Table 7. The ANCGA was
able to improve the F1 (production of trp) to 3.9774 from its initial steady state.
Meanwhile, the proposed method was able to reduce the F2 (total amount of chem-
ical concentrations involved) to 6006.4280. All variables representing the chemical
reaction followed their constraints and were in the optimum range. To assess the
performance of the ANCGA, the results achieved were compared to the results of
other methods, with the details of the comparison shown in Table 8. As presented
in the table, the F1 of the ANCGA was higher when compared to the methods
employed in other works. Similar to the previous case study, 100 experiments were
conducted, and the average result was calculated in order to validate the ANCGA
results. Table 7 presents the average result. From the data in Table 7, it can be
concluded that the ANCGA is reliable in performing the optimisation of this path-
way because the average of all the variables follows their constraints. From the
observations presented in Tables 7 and 8, it can be concluded that the ANCGA is
effective in optimising the trp production as well as producing reliable results.

Work by F1 F2

Xu [11] 52.38 297.664

Rodriguez-Acosta et al. [29] 52.31 295.270

Previous method [17] 52.91 294.800

ANCGA 53.02 293.5249

Table 6.
Comparison with other works for case study 1.

Variables Best solution Average

X1 0.8064 1.0742

X2 0.8046 1.1085

X3 0.8000 0.8000

X4 0.0054 0.0054

X5 4.0116 4.4694

X6 5000 5000

X8 1000 1000

F1 3.9774 3.9616

F2 6006.4280 6007.4575

Table 7.
The full result of case study 2.

Work by F1 F2

Marin-Sanguino et al. [10] 3.062 6006.1412

Vera et al. [1] 3.05 6007.1314

Xu [11] 3.946 6007.7814

Previous method [17] 3.9759 6006.5581

ANCGA 3.9774 6006.4280

Table 8.
Comparison with other works for case study 2.
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The external population concept used by ANCGA can be validated by comparing
it with the previous method proposed in [17]. The aim of the external population
concept was to reduce the computational time and the number of generations. To
learn the effect of the external population concept, several experiments were
conducted. To investigate the decrease in the number of generations, F1 was set to
52.5 for case study 1 and 3.90 for case study 2. After F1 was achieved, the process was
stopped. This helped to investigate which method required more generations in
achieving the target production. Figures 3 and 4 illustrate the comparisons of all case
studies. In both figures, the maximum number of the external population was smaller
as compared to the maximum number of the previous method in achieving F1. This
was caused by the concept of external population that was introduced in this study.
By using this concept, the best solutions found in the iteration process could be
maintained and thus enabled the number of generations to be reduced. In addition, it
was found that this concept tended to converge faster than the previous method. This
meant that the use of the external population concept allowed faster search of the best
solution. In conclusion, the external population concept had an impact in reducing
the number of generations and helped in faster convergence as compared to previous
methods. To determine the statistical significance between the proposed method and
previous methods, the paired t-test and theWilcoxon signed-rank test were used. The
result of the statistical tests showed that all p-values were <0.05, thus confirming
that the proposed method significantly improved the previous method.

Meanwhile, to investigate the decrease in computational time, the maximum
number of generations was not set, but F1 was set to 52.5 for case study 1 and 3.9 for
case study 2. After F1 was achieved, the process was terminated. Table 9 lists the

Figure 3.
The comparison of results of elitism concept and non-elitism concept for case study 1.

Figure 4.
The comparison of results of elitism concept and non-elitism concept for case study 2.
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computational time results, and it was found that the ANCGA required less time as
compared to the method in [17]. This situation occurred because the high-quality
solutions were stored in the external population and then combined with the cur-
rent solution in the optimisation process. Copying the high-quality solutions into
the external population prevented them from being lost (because the optimisation
process involving crossover and mutation operation could lose the high-quality
solutions). By storing the high-quality solutions into the external population, it
would be able to keep the best solution until the optimisation process stopped. To
determine the significant improvement of the proposed method against the previ-
ous method, the paired t-test and the Wilcoxon signed-rank test were used. The
p-value from both tests was <0.05. From this finding, the proposed method and the
previous method were statistically different from each other, and the improvement
of the proposed method could be accepted.

5. Conclusion

Improving production has become an important issue in the optimisation of
biochemical systems. Many factors need to be considered to ensure optimal produc-
tion. In this work, a hybrid method for constraint optimisation of the biochemical
systems production known as the ANCGA was presented. The ANCGA was devel-
oped based on a previous method [17], where the ANCGA combined the Newton
method, GA and CCA. This study introduced a concept of external population. The
aim of this concept was to reduce computational time. In this work, the biochemical
system was modelled by a nonlinear equations system. In the optimisation process,
the Newton method was employed to deal with a system of nonlinear equations. The
GA and CCA were then applied to fine-tune the chemical concentration value in the
nonlinear system in order to search for the best solution. During the optimisation
process, the high-quality solutions were copied and stored into the external popula-
tion. The purpose of this process was to avoid the loss of high-quality solutions during
the optimisation process. Then, some solutions from the external population were
mixed with the next generation of solutions. By doing this, the computational time
and number of generations were reduced. In the present study, the proposed method
was applied on two case studies, and better results were obtained as compared to the
methods presented in other works. In addition, the results were validated, and they
demonstrated that the constraints of all the components in the biochemical system
were fulfilled. Thus, it can be concluded that the performance of the ANCGA is
effective and reliable in producing the best result.
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Method Case study 1 Case study 2

ANCGA 75.56 38.07

Previous method [17] 80.40 40.45

Table 9.
The computation times obtained (in second).

13

An Improved Algorithm for Optimising the Production of Biochemical Systems
DOI: http://dx.doi.org/10.5772/intechopen.83611



Author details

Mohd Arfian Ismail1*, Vitaliy Mezhuyev1, Mohd Saberi Mohamad2,3,
Shahreen Kasim4 and Ashraf Osman Ibrahim5,6

1 Faculty of Computer Systems and Software Engineering, Universiti Malaysia
Pahang, Gambang, Pahang, Malaysia

2 Institute For Artificial Intelligence and Big Data, Universiti Malaysia Kelantan,
City Campus, Kota Bharu, Kelantan, Malaysia

3 Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan,
Jeli Campus, Jeli, Kelantan, Malaysia

4 Soft Computing and Data Mining Centre, Faculty of Computer Science and
Information Technology, Universiti Tun Hussein Onn, Johor, Malaysia

5 Faculty of Computer Science and Information Technology, Alzaiem Alazhari
University, Khartoum North, Sudan

6 Arab Open University, Khartoum, Sudan

*Address all correspondence to: arfian@ump.edu.my

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

14

Recent Trends in Artificial Neural Networks - From Training to Prediction



References

[1] Vera J, Gonzalez-Alcon C, Marin-
Sanguino A, Torres N. Optimization of
biochemical systems through
mathematical programming: Methods
and applications. Computers &
Operations Research. 2010;37(8):
1427-1438

[2] Sowa SW, Baldea M, Contreras LM.
Optimizing metabolite production using
periodic oscillations. PLoS
Computational Biology. 2014;10(6):
e1003658

[3] Sakamoto N. Characterization of the
transit and transition times for a
pathway unit of Michaelis–Menten
mechanism. Biochimica et Biophysica
Acta (BBA) - General Subjects. 2003;
1623(1):6-12

[4] Planes FJ, Beasley JE. A critical
examination of stoichiometric and path-
finding approaches to metabolic
pathways. Briefings in Bioinformatics.
2008;9(5):422-436

[5] Salleh A, Mohamad M, Deris S, Illias
R. Identifying minimal genomes and
essential genes in metabolic model using
flux balance analysis. In: Selamat A,
Nguyen N, Haron H, editors. Intelligent
Information and Database Systems
SE - 43. Vol. 7802. Berlin, Heidelberg:
Springer; 2013. pp. 414-423

[6] Fell D. Metabolic control analysis. In:
Alberghina L, Westerhoff HV, editors.
Systems Biology SE - 80. Vol. 13. Berlin,
Heidelberg: Springer; 2005. pp. 69-80

[7]Voit EO. Biochemical systems theory:
A review. ISRN Biomathematics. 2013;
2013:1-15

[8] Link H, Vera J, Weuster-Botz D,
Darias NT, Franco-Lara E. Multi-
objective steady state optimization of
biochemical reaction networks using a
constrained genetic algorithm.

Computers and Chemical Engineering.
2008;32(8):1707-1713

[9] Xu G. Bi-objective optimization of
biochemical systems by linear
programming. Applied Mathematics
and Computation. 2012;218(14):
7562-7572

[10]Marin-Sanguino A, Voit EO,
Gonzalez-Alcon C, Torres NV.
Optimization of biotechnological
systems through geometric
programming. Theoretical Biology and
Medical Modelling. 2007;4:38-54

[11] Xu G. Steady-state optimization of
biochemical systems through geometric
programming. European Journal of
Operational Research. 2013;225(1):
12-20

[12]Mariano AP et al. Optimization
strategies based on sequential quadratic
programming applied for a
fermentation process for butanol
production. Applied Biochemistry and
Biotechnology. 2009;159(2):366-381

[13] Balsa-Canto E, Banga JR, Egea JA,
Fernandez-Villaverde A, Hijas-Liste
GM. Global optimization in systems
biology: Stochastic methods and their
applications. In: Goryanin II, Goryachev
AB, editors. Advances in Systems
Biology. Vol. 736. New York: Springer;
2012. pp. 409-424

[14]Mariano AP et al. Genetic
algorithms (binary and real codes) for
the optimisation of a fermentation
process for butanol production.
International Journal of Chemical
Reactor Engineering. 2010;8. DOI:
10.2202/1542-6580.2333

[15] Elsayed SM, Sarker RA, Essam DL.
A new genetic algorithm for solving
optimization problems. Engineering

15

An Improved Algorithm for Optimising the Production of Biochemical Systems
DOI: http://dx.doi.org/10.5772/intechopen.83611



Applications of Artificial Intelligence.
2014;27:57-69

[16]Deng H et al. The application of
multiobjective genetic algorithm to the
parameter optimization of single-well
potential stochastic resonance algorithm
aimed at simultaneous determination
of multiple weak chromatographic
peaks. The Scientific World Journal.
2014;2014

[17] Ismail MA, Deris S, Mohamad MS,
Abdullah A. A newton cooperative
genetic algorithm method for in silico
optimization of metabolic pathway
production. PLoS One. 2015;10(5):
e0126199

[18]Grosan C, Abraham A. A new
approach for solving nonlinear
equations systems. IEEE Transactions
on Systems, Man and Cybernetics, Part
A: Systems and Humans. 2008;38(3):
698-714

[19] Luo Y-Z, Tang G-J, Zhou L-N.
Hybrid approach for solving systems of
nonlinear equations using chaos
optimization and quasi-Newton
method. Applied Soft Computing. 2008;
8(2):1068-1073

[20] Babaei M. A general approach to
approximate solutions of nonlinear
differential equations using particle
swarm optimization. Applied Soft
Computing. 2013;13(7):3354-3365

[21] Ramos H, Monteiro MTT. A new
approach based on the Newton’s method
to solve systems of nonlinear equations.
Journal of Computational and Applied
Mathematics. 2017;318:3-13

[22] Ahmad F, Tohidi E, Carrasco JA. A
parameterized multi-step Newton
method for solving systems of nonlinear
equations. Numerical Algorithms. 2016;
71(3):631-653

[23] Liu C-S, Atluri SN. A novel time
integration method for solving a large

system of non-linear algebraic
equations. Computer Modeling in
Engineering and Sciences. 2008;31(2):
71-83

[24] Taheri S, Mammadov M. Solving
systems of nonlinear equations using a
globally convergent optimization
algorithm. Global Journal of Technology
& Optimization. 2013;3:132-138

[25]Gu J, Gu M, Cao C, Gu X. A novel
competitive co-evolutionary quantum
genetic algorithm for stochastic job shop
scheduling problem. Computers and
Operations Research. 2010;37(5):
927-937

[26] Ismail MA, Asmuni H, Othman MR.
The fuzzy cooperative genetic algorithm
(FCoGA): The optimisation of a fuzzy
model through incorporation of a
cooperative coevolutionary method.
Journal of Computing. 2011;3(11):81-90

[27]Durillo JJ, Nebro AJ. jMetal: A Java
framework for multi-objective
optimization. Advances in Engineering
Software. 2011;42(10):760-771

[28]Galazzo JL, Bailey JE. Fermentation
pathway kinetics and metabolic flux
control in suspended and immobilized
Saccharomyces cerevisiae. Enzyme and
Microbial Technology. 1990;12(3):
162-172

[29] Rodriguez-Acosta F, Regalado CM,
Torres NV. Non-linear optimization of
biotechnological processes by stochastic
algorithms: Application to the
maximization of the production rate of
ethanol, glycerol and carbohydrates by
Saccharomyces cerevisiae. Journal of
Biotechnology. 1999;65(1):15-28

[30] Xiu Z-L, Zeng A-P, Deckwer W-D.
Model analysis concerning the effects of
growth rate and intracellular tryptophan
level on the stability and dynamics of
tryptophan biosynthesis in bacteria.
Journal of Biotechnology. 1997;58(2):
125-140

16

Recent Trends in Artificial Neural Networks - From Training to Prediction



[31]Marin-Sanguino A, Torres NV.
Optimization of tryptophan production
in bacteria. Design of a strategy for
genetic manipulation of the tryptophan
operon for tryptophan flux
maximization. Biotechnology Progress.
2000;16(2):133-145

17

An Improved Algorithm for Optimising the Production of Biochemical Systems
DOI: http://dx.doi.org/10.5772/intechopen.83611


