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Chapter
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Different Bioreactors Designs 
Applied
Memory Tekere

Abstract

Microbial remediation of pollutants involves the use of microorganisms to 
degrade pollutants either completely to water and carbon dioxide (for organic pol-
lutants) or into less toxic forms. In the case of nonbiodegradable inorganic com-
pounds, bioremediation takes the form of bioaccumulation or conversion of one 
toxic species to a less toxic form for example Cr(VI) is converted to less toxic (III). 
Bioremediation is considered an environmentally friendly way for pollution clean-
up. Microbial clean up can be applied in situ (in place of contamination) or ex situ 
(off the site of contamination). In situ remediation in the natural environment is 
deemed slow and often times difficult to control and optimize the different param-
eters affecting the bioremediation. To this end, use of engineered bioreactors is 
preferred. Engineered bioreactors providing for optimum conditions for microbial 
growth and biodegradation have been developed for use in bioremediation pro-
cesses to achieve the different desired remediation goals. Bioreactors in use range 
in mode of operation from batch, continuous, and fed batch bioreactors and are 
designed to optimize microbial processes in relationship to contaminated media and 
nature of pollutant. Designed bioreactors for bioremediation range from packed, 
stirred tanks, airlift, slurry phase, and partitioning phase reactors amongst others.

Keywords: bioremediation, bioreactors, pollution, microorganisms, degradation

1. Introduction

Bioremediation is a natural process that relies on microorganisms and plants 
and/or their derivatives (enzymes or spent biomass) to degrade or alter environ-
mental contaminants as these organisms carry out their normal life functions [1, 2]. 
Bioremediation is considered an economical, versatile, efficient and eco-friendly 
way of dealing with environmental pollutants as compared to the physico-chemical 
methods [1–3]. The use of well-designed microbial bioreactors is acknowledged as 
an efficient way to ensure that microbial growth and processes occur in a controlled 
environment that provides the necessary optimum conditions [3–5]. This chapter 
focuses on microbial remediation in bioreactors so phytoremediation as facili-
tated by plants is not discussed. Several studies describe microbial remediation in 
designed bioreactors ranging from batch, continuous, and fed-batch operated mode 
which can be in different designs such as suspended carrier, slurry and fixed bed, 
membrane and fluidized bed reactors [4–8].
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The use of microbial bioreactors in remediation is very attractive in that the 
bioreactors offer the advantages of providing a controlled environment where it 
is possible to control critical process parameters to optimize the microbial biore-
mediation process. Another advantage is that there is flexibility in design of the 
bioreactor (size and configuration) to suit application or intended purpose of the 
reactor [6–9]. However, bioremediation in bioreactors if operated ex situ, requires 
relocation of pollutant, a process which can involve excavation for soils and sedi-
ments, transportation and possible containment or controlled handling of the con-
taminated media thus making the process expensive [4–6, 8, 9]. There is a potential 
for exposing other environments to the contamination. Also some pretreatment of 
contaminated media, e.g., drying and crushing, maybe required thus adding on to 
the process cost [8, 9].

2. Microbial bioremediation

As defined, microbial bioremediation makes use of microorganisms and/or their 
derivatives (enzymes or spent biomass) to clean-up environmental contaminants 
[7, 9, 10]. With microorganisms, it is important to note that microorganisms are 
everywhere and as such pollutants in the different environmental compartments 
always come into contact with microorganisms [1, 2]. Microbes break down/trans-
form pollutants via their inherent metabolic processes with or without slight path-
way modifications to allow the pollutant to be channeled into the normal microbial 
metabolic pathway for degradation/and biotransformation. Applied bioremediation 
methods therefore focus on tapping the naturally occurring microbial catabolic 
capabilities to degrade, transform or accumulate most of the synthetic compounds 
such as hydrocarbons (e.g., oil), polychlorinated biphenyls (PCBs), polyaromatic 
hydrocarbons (PAHs), radionuclides and metals [4, 6–8]. The natural existence of a 
large diversity of microbial species expands the variety of chemical pollutants that 
are degraded or detoxified.

The advantages of microbial bioremediation are that it has public acceptance, as 
it is a natural process [8]. It is a low cost technology in most cases when compared 
to other clean-up methods for hazardous waste [2]. It can be done in situ and ex situ, 
instead of contaminants being transferred from one form to another or one medium 
to another, complete destruction of target organic pollutants is possible [8]. Notable 
disadvantages are that bioremediation takes relatively long to achieve treatment 
goals, may not be effective on all contaminants, some products of biodegrada-
tion maybe more toxic or persistent than the parent compound, specificity of the 
biological processes with respect to microbial populations, pollutant and environ-
mental limitations is also a drawback and that specialized expertise are required in 
designing and implementing.

Bioremediation using microbial bioreactors finds application in soil, air and 
water environments including:

• Waste water and industrial effluent treatment

Microorganisms are the primary agents of any biological wastewater treat-
ment. Microorganisms are already present in waste water systems and feed on 
complex substances in the wastewater converting them to simpler substances thus 
assisting in achieving the treatment. Trickling filters, membrane bioreactors, 
slurry phase reactors and upflow anaerobic sludge blanket bioreactors (UASB) 
are some of the reactors that are used in waste water and industrial effluent 
treatment.
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• Soil and land treatment

Contaminants successfully treated include diesel fuel, fuel oils, oily sludge, 
wood-preserving wastes (PCP, PAHs, and creosote), coke wastes, and certain pesti-
cides [6, 8, 9]. Soil bioremediation has proven most successful in treating petroleum 
hydrocarbons and other less volatile, biodegradable contaminants. Slurry phase, 
stirred tanks, biofilters, partitioning phase and packed microbial reactors find 
application in contaminated soil remediation.

• Control of air pollution

Microorganisms are used in the bioremediation of organic and inorganic 
air pollutants in spent gases before release or escape into the atmosphere [5, 9]. 
Microorganisms oxidize pollutants such as H2S, SO2, VOCs, and reduce pollut-
ants such as NOx to nitrate and this assist to prevent likely environmental, health 
hazards and nuisances [5]. Bioscrubbers and biofilters are some of the bioreactor 
types often used in control of air pollution.

• Solid waste management

Microorganisms are chiefly responsible for the biodegradation of organic wastes 
in nature and they drive the decomposition processes that occur in landfills and 
composts. Anaerobic digesters are often applied mostly in the biotreatment solid 
waste.

2.1 Factors affecting microbial bioreactor performance

A number of issues are at play in all bioremediation technologies including when 
bioreactors are used. These are those that concern the contaminant, microbial com-
munity and the design, optimization and monitoring of the process [6, 8, 9]. The 
microbial science of bioremediation is therefore approached from many scientific 
frontiers: abiotic interactions (solubility, transport, sorption and photolysis), biotic 
interactions (taxonomic diversity, physiological, genetic and ecological interac-
tions). In the design and operation of bioreactors in remediation, many of these 
factors have to be optimized and controlled for best reactor performance [5, 10–12].

Variables that affect the operation and efficiency of a microbial bioreactor 
relate to biotic and abiotic factors that affect microbial growth and those factors 
that relate to the reactor design and configuration. Factors that affect microbial 
growth and activities in bioreactors include; environmental factors (temperature, 
pH, moisture), pollutant mix, pollutant concentration, macronutrient [5, 10–12]. 
Factors on reactor design include; size, configuration and mode of operation.

• Environmental related factors

Environmental conditions (temperature, pH, oxygen availability/electron, and 
salinity) affect growth; the metabolic activities of microorganisms and to some 
extent the behavior of the pollutant such as solubility and volatility [11]. In any pro-
cess optimization for biodegradation, it is always necessary to investigate the effects 
of the environmental conditions and optimize the process in relationship to all the 
relevant environmental conditions. Tekere et al. [13], established the optimum 
growth conditions with respect to pH, aeration and nutrients in the growth and 
degradation of pollutants by white rot fungi and found that optimized conditions 
result in high enzyme and degradation activities.
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• Temperature

There is always a temperature range at which microorganisms grow and survive 
(i.e., minimum, optimum and maximum survival temperature). In addition, 
there is always a temperature optimum at which biochemical processes take place 
to achieve required bio treatment by each microorganism [13]. Extremes of tem-
perature (too low or too high) affect both microbial growth and microbial enzyme 
catalyzed reactions [2]. With an increase in temperature within appropriate range, 
microbial metabolism increases and thus the rate of the bioremediation processes.

Increased temperatures lead to higher solubility of many chemicals, and 
increased fluidity and diffusion rates. For example with pollutants, such as PAHs 
and heavy metals, their solubility and in turn bioavailability increases with tem-
perature [2, 7]. Temperature is thus a critical factor in the optimum operating 
efficiency of bioreactors to achieve best biotreatment results. Often specialized 
bioreactors are designed with provision for temperature control.

• pH

Similar to temperature, pH affects microbial growth and metabolic pro-
cesses. pH influences microbial cell ionic properties thus microbial growth. 
Microorganisms have minimum, optimum and maximum pH of growth with 
most bacteria for example growing optimally at pH 6–7.5, though there are some 
which thrive best at acidic pHs (acidophiles) or at alkaline pH (alkaliphiles). 
Fungi generally grow at pHs lower than that of bacteria. Reactor operating pH 
has to be set to provide the best pH conditions for growth and enzyme activities. 
Behavior of pollutants is also influenced by pH thus affecting their bioremedia-
tion. For example with metals, pH affects the redox and solubility of metals, 
different forms and valence have different effects on microorganisms [14]. Metal 
solubility increases with a decrease in medium pH and alkaline pH favor metal 
ion precipitation. Often lower pH values are required for metal attachment to 
the microbial cell surface [7, 14]. Microorganisms that produce acids result in 
increased solubility of the metal ions [10]. To provide for best pH conditions, 
buffers are used in media formulations, acids and bases can be added during the 
bioreactor process [13].

• Nutrients

Nutrients are required for growth and metabolism of the microorganisms. 
Several elements are required in biosynthesis and energy production. Carbon is the 
most basic element of living forms and is needed in greater quantities than other 
elements. Other elements that are important in ensuring a balanced nutritional 
bioreactor environment depending on the type of microorganism include hydro-
gen, oxygen, nitrogen, sulfur, phosphorus, iron, calcium and magnesium [10, 11]. 
All necessary macro- and micro- nutrients requirements are provided in reactor 
media. Microorganisms can use the pollutants they are degrading as primary energy 
sources or a primary source of energy is provided to the microorganism in the case 
of co metabolism of the pollutants.

• Moisture

Water is required to support microbial growth and catalysis. Cellular chemical 
reactions occur in aqueous conditions and water is required to ensure the correct 
osmotic pressure is maintained for microbial growth. The amount of water available 



5

Microbial Bioremediation and Different Bioreactors Designs Applied
DOI: http://dx.doi.org/10.5772/intechopen.83661

for microbial growth is called (aW). Most microorganisms grow at water activities 
of 0.98 or higher, osmotolerant species can however grow at a range of low aW [11].

• Electron acceptors

The presence of electron acceptors, e.g., oxygen in aerobic microbes and NO3
1−, 

SO4
2− and Fe (III) oxides in case of anaerobic microbes, also affects the biodegrada-

tion processes.

• Reactor design related factors

Bioreactors have to provide for the best conditions for microbial growth and 
biochemical process to occur. The reactor size, configuration and mode of opera-
tion are key reactor design factors. The reactor should provide favorable physical, 
biological and the combined physical-chemical conditions for the best biological 
remediation processes to be achieved. In designing the bioreactor, favorable physical 
conditions for transport of gases and liquids and solids over time that ensure that 
the physical entity of the bioreactor is favorably adapted to the biological system 
that performs the bioreactions are required [12, 15]. On the other hand there is need 
to ensure that the biophysical and biochemical events taking operate at optimum 
levels under real situation application.

Polluted samples for remediation can be fed into the reactor either as dry or 
slurry matter [9]. Pollutants with hydrophobic properties are often unavailable 
for microbial degradation, particularly if they are bound to soil matrix [7]. Their 
degradation is therefore limited by their transfer to liquid [4]. Minimizing mass 
transfer resistance was found to be a key factor in the degradation of hexachlorocy-
clohexane (HCH) in slurry batch bioreactors [4].

Despite the rapid development of bioreactors due to their widespread use in 
biotechnology, the aspects of maintaining stability and rates of bioprocesses are still 
areas to be addressed. Poor bioreactor construction and design, leading to inad-
equate mixing, may jeopardize the stability and performance of the process [15]. 
Mixing prevents thermal stratification, help maintain uniform conditions in the 
reactor, ensure good contact between microbial culture and media reactants. The 
importance of mixing in bioreactor cannot be over emphasized, poor mixing affect 
microbial process efficiency.

Hydraulic retention times (HRT) required to achieve the necessary remediation 
goals in the bioreactor have to be determined and optimized. Longer HRTs result in 
poor substrate loading which diminishes the microbial population, whereas shorter 
ones do not allow microorganisms to effectively degrade the pollutant and can result 
in microbial wash out from the system [16].

• Organism related factors

Organism related factors include population density, composition, inter and 
intraspecific interaction. Microbes are the most diverse forms of life and have 
developed a wide range of metabolic pathways that enable them to cope under the 
varying ecological conditions including exposure to xenobiotics. A whole range of 
environments ranging from aerobic, anaerobic, acidic, alkaline, and low to high 
temperature have been utilized as sources of microorganisms for bioremediation 
[13]. Only certain species of bacteria and fungi have proven their ability as potent 
pollutant degraders [13]. In the natural environment degradation of pollutants is 
often achieved through complex microbial population interactions. Single or mixed 
microbial cultures are used for pollutant remediation in bioreactors. In the event 
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where bioagumentation is applied the introduced organisms need to be able to co-
exist with indigenous residents.

Different microorganisms often have different metabolic capabilities, to this 
extend the evaluation of several strains of different microbial players have to be 
investigated in order to come up with the best degraders [13]. In screening and 
comparison of the bio-degradation of PAHs by white rot fungi [17], found out 
that newly screened white rot fungi strains had higher or comparable degradation 
capacity to the model well applauded P. chrysosporium, and these strains did not 
accumulate the metabolite quinone which accumulates as a dead end metabolite in 
P. chrysosporium.

Polluted environments provide sources of microorganisms resistant or acclima-
tized to the pollutant [18]. However microorganisms that are known to have certain 
inherent physiological characteristic, e.g., metabolism of known substrate with 
structural similarity to xenobiotics of interest and/or adaptation to certain envi-
ronmental conditions can be selected. This is the case in several studies that used 
microorganisms for pollutant degradation [11, 17–19].

• Pollutant related factors

Factors that affect bioremediation in bioreactors that are related to the pol-
lutant include: nature of pollutant, i.e., the physical and chemical properties 
including solubility, volatility, molecular complexity, concentration and toxicity. 
Investigations for most pollutant biodegradation have centered on how different 
concentrations, mixed pollutants, solubility and molecular structure can affect 
microbial bioremediation [17, 20]. In the case of PAHs, degradation decreases in the 
order alkane> branched chain alkanes>low molecular weight aromatics> cycloal-
kanes [17]. It should be noted however that some pollutants are resistant to biodeg-
radation (recalcitrant, i.e., resistant to degradation) they are degraded at very low 
pace even if the right microbial population and conditions are present.

3. Microbial bioreactors in bioremediation

Several laboratory, and pilot bioremediation studies have been done using 
microbial (fungi and bacteria) bioreactors [6, 8, 17, 18, 20]. Bioreactor technologies 
may offer effective means for treatment of many contaminants in groundwater, 
soil and air [4, 5, 7, 12]. The bioreactor type of choice for any application should 
be easy to operate and maintain for the selected purpose and application. Table 1 
presents some of the studies that involved the use of bioreactors in bioremediation. 
Flexibility to design bioreactor tailor made for different processes and remediation 
applications makes the use of bioreactors in bioremediation attractive [9]. The 
design should accommodate high biomass from cell growth, supply of necessary 
nutrients and also removal of waste components from the system. A description of 
some bioreactor types and their application is given in Sections 3.1–3.7.

3.1 Slurry phase bioreactors

Slurry phase bioreactors, as the name implies treats polluted media that is within 
a slurry phase. Alternative names are bio-slurry reactors and slurry phase biologi-
cal treatment. Slurry bioreactors offer an ex situ environmentally friendly way for 
remediating mostly soils and sediments from petrochemical hydrocarbons, tars, 
creosotes, chlorinated solvents, herbicides, pesticides and explosives or when a solid 
substrate that is formulated into a slurry is used [4, 6, 25, 26]. Hydrophobic nature 
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of most persistent chemicals makes them sorb to soil or sediments and not easily 
accessible for biodegradation.

Operation of the slurry reactor can be in batch, semi-continuous and continuous 
mode, with the batch process being the most common one [6, 26]. Figure 1 shows 
an illustration of a simplified slurry reactor. Water is mixed with the contaminated 
solid matrix in suitable ratios and this enhances contact between microorganisms, 
pollutant, media and oxygen. Pollutants that are solubilized become more bioavail-
able. Table 2 shows some of the studies that have involved the use of slurry phase 
bioreactors in bioremediation.

3.2 Partitioning bioreactors

Partitioning bioreactors are used in bioremediation when two phases need to 
be achieved, e.g., such as for organic solvents or water immiscible compounds in 

Bioreactor type Application details Reference(s)

Packed bed Different fungi and bacteria used for remediation of 
organochlorine pesticides, PAHs, pharmaceuticals, amines, 
and textile dyes. Packing material varied from organic 
material (sawdust, wood chips) to inert solid materials 
(polyurethane foam, poraver stones); chlorinated aliphatic 
compounds

[14, 17, 21–23]

Fluidised bed Treatment of pharmaceuticals using fungi [20, 22]

Two-phase 
partitioning

Benzene biodegradation by cow dung microflora [24]

Slurry phase Bacterial and fungal remediation of soil from VOC, 
organochlorines, PAHs, 2,4-dichlorophenoxyacetic acid

[4, 6, 25, 26]

Suspended carrier Fungi used for remediation of organochlorine pesticides, 
PAHs, textile dyes.

[21]

Up-flow anaerobic 
stage reactor (UASR)

Bacterial degradation of tylosin [16]

Membrane bioreactor Textile dye in waste water; pharmaceuticals, 
1,2-dichloroethane, 1,2-dichlorobenzene and 2-chlorophenol 
groundwater; metal recovery

[27–31]

Air lift Textile dye effluent decolorization by fungi, olive mill 
effluent, cellulose industry bleaching effluent

[15, 32, 33]

Biotrickling filter Municipal waste water, brewery waste, olive oil mill waste 
water, VOC contaminated air

[32, 34]

Upflow Anaerobic 
Sludge Blanket

Potato waste water, BTEX [9, 35]

Sequence batch 
reactor

Nanosilver, Nanofullerenes [36]

Continuous flow 
Bioreactor

PCP and creosote by some Pseudomonas species [37]

Nonisothermal 
bioreactors

Degradation of phenol by fungal laccase [38]

Continuously stirred 
tank bioreactor 
(CSTR)

For hydrocarbon-rich industrial wastewater effluents by 
mixed microbial cultures, petroleum hydrocarbon

[7, 8]

Table 1. 
Studies that involved the use of bioreactors in bioremediation.
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aqueous solutions. Reactors are designed with the aqueous and organic phase, and 
can be single or multiphased [24]. With toxic hazardous waste, toxicity to degrad-
ing microorganisms is a problem. In partitioning bioreactors, there is a two-phase 
system where a water immiscible and biocompatible organic solvent is allowed to 
float on the surface of a cell containing aqueous phase [45]. This means that high 
amounts of hazardous waste dissolved in a solvent can be added to the reactor 
without the microorganism experiencing inhibitory concentrations of the pollut-
ant [24, 45, 46]. A rigorous process involving selection of the solvent, taking into 
consideration the biological, physical, operational, environmental and economic 
factors is necessary in developing an efficient partitioning biotreatment system. 
Partitioning reactors find application in the remediation of toxic compounds from 
petrochemical industry such as benzene as well as VOC in waste gases of many 
industrial processes [45, 47, 48]. Angelucci et al. [49], successfully tested a continu-
ous two-phase-partitioning reactor in the treatment of tannery wastewater. Several 
other studies involving phase partitioning bioreactors are described [24, 45–50].

3.3 Stirred tank bioreactors

A continuous stirred tank bioreactor consists of a cylindrical vessel with motor 
driven central shaft that supports one or more agitators (impellers). Stirred tank 
bioreactors are the predominantly used design for submerged cultures. Stirred tank 
bioreactors are mechanically agitated where the stirrers are the main gas-dispersing 
tools and provide high values of mass transfer rates coupled with excellent mixing. 
Advantages of the STR include the efficient gas transfer to growing cells, good 
mixing of the contents and flexible operating conditions, besides the commercial 
availability of the bioreactors. The main shortcoming of the stirred tank bioreactor 
is its mechanical agitation which requires energy and stirring can cause shear strain 
on microbial cells.

Gargouri et al. [7] evaluated the use of a continuously stirred tank bioreactor 
(CSTR) in the treatment of hydrocarbon-rich industrial wastewaters and achieved 

Figure 1. 
Simplified slurry reactor [26].
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successful bioremediation using an acclimatized microbial consortium. The 
residual total petroleum hydrocarbon (TPH) decreased from 320 –8 mg TPH l−1. 
The reactor used is shown in Figure 2. Bi [51], applied a continuously stirred tank 
reactor for bioremediation of ethanol, toluene and benzyl alcohol by P. putida.

3.4 Biofilters

A basic biofilter bioreactor consist of a large media bed where pollutants are 
passed through and get degraded by the microorganisms. Biofilters are amongst 
the oldest environmental bioremediation techniques. Biofilters are used mostly 
in waste water treatment as well as in the control of air pollution [34, 52, 53]. A 
number of materials are used for bed media such as peat, composted yard waste, 
bark, coarse soil, gravel or plastic shapes. A typical example of a biofilter is the 
trickling filter which finds extensive application in the treatment of different 
liquid effluents or waste waters or waste that is constituted into liquid. A trickling 
filter is usually a round, vertical tank that contains a support rack and is filled with 
aggregate, ceramic or plastic media and in the middle of the tank is a vertical pipe 
that has a rotary connection with spray nozzles on the top end [34]. A spray arm is 
attached to the rotary connection and has spray nozzles installed along its length for 

Pollutant Microorganism(s) Bioremediation details Reference(s)

Petroleum hydrocarbons 
in oil sludge

Indigenous microbial 
consortium

24% biodegradation 
of Total Petroleum 
Hydrocarbon in oily 
waste

[39]

2,4,6-trinitrotoluene 
(TNT)

Mixed soil bacteria under 
anoxic/microaerophilic 
conditions

99% of 10,000 mg kg−1 
was degraded in 82 days 
under co-metabolism 
with molasses

[40]

PAHs in creosote Degradation by Pseudomonas 

fluorescens, Pseudomonas 

stutzeri, and an Alcaligenes 
species

93.4% of creosote 
degraded in 12 weeks

[41]

Explosives 
2,4,6-trinitrotoluene 
(TNT) and 
2,4,6-trinitrobenzene 
(TNB)

Selected Gram positive 
bacterial isolates

Complete removal 
of the explosive after 
80 days

[42]

Hexachlorocyclohexane 
(HCH)

White rot fungi Bjerkandera 

adusta

Maximal degradations 
of 94.5, 78.5 and 66.1% 
were attained after 
30 days for the-HCH 
isomers, respectively

[4]

High molecular weight 
PAH in soil

PAH-degrading consortium Pyrene degraded 
at 19 mg L−1 day−1, 
chrysene and 
benzo[a]pyrene 
respectively at 3.5 and 
0.94 mg L−1 day−1.

[43]

Chlorpyrifos Enriched indigenous soil 
microorganism

Degradation of 48% 
in aerobic and 31% in 
anaerobic soil slurries

[44]

Table 2. 
Some examples of remediation studies in slurry phase bioreactor.
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distribution of the waste water. Microorganisms grow in biofilm forms on the pack-
ing material surface and are responsible for the degradation of the pollutants from 
the effluent. Schmidt and Anderson [34] described the use of a trickling biofilter 
in the removal of high concentrations of 1-butanol from contaminated air. The 
potential application of the biotrickling filter in industrial off gas treatment was 
evaluated in the removal of high concentrations of 1-butanol from contaminated 
air with efficiency exceeding 80% for butanol concentrations of 0.4–1.2 g m−3 [34]. 
The laboratory-scale perlite-packed biotrickling filter was operated for 60 days 
and demonstrated effective and efficient removal of butanol concentrations up to 
4.65 g m−3 with a maximum elimination capacity of 100 g m−3 h−1 [34].

3.5 Packed bed bioreactors

Packed bed bioreactor systems provide for microbial growth on fixed film sub-
strata. In order to obtain compact reactors and ensure greater treatment reliability, 
fixed film reactors are used. They offer the advantage that dilute aqueous solutions 
can be remediated at high biomass without the need to separate biomass and the 
treated effluent [13, 54]. In packed bed biofilm biotreatment processes, unlike 
suspension cultures there is no need to incorporate special measures such as cen-
trifugation and membrane filters to retain the biomass. This feature makes the use 
of packed bed reactors particularly appropriate in bioreactors systems where large 
substrate—flow through is required. The concentration of cells in a given volume 
may be increased, a factor that leads to enhanced efficiency/productivity of the 
bioreactor and decreased volume of bioreactors [55]. While high biomass concen-
trations can be easily maintained, the medium to biofilm mass transfer of substrate 
is the rate limiting process in packed bed bioreactors [54, 56]. Within the biofilm 
there are considerable differences in the microorganisms’ microenvironment, 
depending on the distance from the surface of the biofilm [54]. Substrates such as 

Figure 2. 
Schematic diagram of the aerobic continuously stirred tank bioreactor (CSTR) used for continuous 
experiments [7].
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oxygen, carbon and nitrogen sources have to cross the biofilm—liquid interface 
by diffusion, thus a diffusion gradient occurs. To calculate the kinetics of conver-
sion in the biofilm processes, two important processes that occur in the system are 
considered and these are (i) transport of solutes over the biofilm and (ii) combined 
reactions and diffusion inside the biofilm [54]. In the packed bed reactors, develop-
ment of excess microbial biomass also occurs leading to hydraulic channeling or loss 
of interstitial fluid volume. To overcome the severe constraints of hydraulic hold up 
within the interior of the reactor extra-capillary space transverse flow bioreactors 
were developed [57].

Selection of suitable substances as packing materials is an important consideration. 
Materials that have been used include nylon web, polyurethane foam, silicone tubing, 
sintered glass, porous ceramics, propylene, stainless steel, agarose and agar gel beads 
[58–67]. The ideal support should be chemically inert in physiological growth medium, 
rigid and porous to facilitate mycelial attachment and re-usable after removal of the 
fungus. Figure 4 shows a  Simplified diagram of a laboratory based packed bed biore-
actor. Examples of remediation studies in packed bed reactors are given in Table 3.

3.6 Airlift bioreactors

Airlift bioreactors can provide an attractive treatment alternative for treatment of 
gaseous or volatile air pollutants. Frequently, the most limiting factor in the perfor-
mance of these reactors is that they are susceptible to being limited by gas-liquid mass 
transfer and by poor mixing of the liquid phase, particularly when they are operating 
at high cell densities [68, 69]. The bioreactor performance is dependent on the pump-
ing (injection) of air and the liquid circulation. The airlift bioreactor can have a forced 

Support Experimental study details References

Polyurethane foam Anaerobic fixed film horizontal flow bench scale reactor. 
Benzene, toluene, ethylbenzene, and xylene, BTEX removal 
with efficiency of 75–99% in 11.4 hrs

[58]

Laterite stones Microbial consortium anaerobic degradation of textile azo dyes, 
61.7% degradation of 55 μg mL−1 of simulated effluent dye.

[59]

Coconut shell bio-char Congo red dye degradation in batch and continuous packed bed 
bioreactors by Brevibacillus parabrevis. A 95.71% removal of in 
6 days of 150 ppm dye.

[60]

Polyurethane foam Bacterial degradation of malathion in batch and continuous 
packed bed bioreactors, removal at 89% for up to 145.4 mg L−1 
day−1

[61]

Wire Mesh Fungal degradation of textile effluent [62]

Wood chips Chlorophenol degradation by Phanerochaete chrysosporium [63]

Sugarcane bagasse Degradation of dyes and industrial effluents by Garnoderma 

weberianum B-18 immobilized in a lab-scale packed-bed 
bioreactor. 55–98% for different dyes tested

[64]

Celite Perchlorate-Contaminated groundwater 800 μg L−l reduced to 
less than 4 μ−1 at 0.3 h retention time

[66]

Polyurethane foam Biodegradation of an actual petroleum wastewater by an 
immobilized biomass of Bacillus cereus

[66]

Polyurethane foam and 
alginate beads

Benzene biodegradation Bacillus sp. M3 at 84 in alginate beads 
and 90% on polyurethane foam within 9 days

[67]

Table 3. 
Some examples of remediation studies in packed bed reactors.
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flow in an internal or external loop as shown in Figure 5. Specific volatile organic 
chemicals may be completely degraded by a microorganism at normal temperature 
and pressure without producing a second polluted byproduct [70]. Nikakhtari and 
Hill [68], applied and External Loop Airlift Bioreactor with a small amount (99% 
porosity) of a stainless steel mesh packing inserted in the riser section for bioremedia-
tion of a phenol polluted air stream. Phenol removal of 100% was achieved using the 
bacterium Pseudomonas putida, and at a phenol loading rate of 22,160 mg h−1 m−3, 
thus demonstrating the novelty and potential VOCs bioremediation application of the 
reactor at high loading rates. Figure 5 presents a  schematic diagram of airlift bioreac-
tor. Several other studies involving the use of airlift bioreactors [19, 69–71].

3.7 Membrane bioreactor

Membrane bioreactors (MBR) combine the use of a membrane that forms a filtra-
tion system and the biological process. The membrane provides a physical barrier that 
separates the liquid from the solid and ensures retention of the solids and good quality 
effluent. The quality of the treated effluent from the membrane bioreactor is of high 
quality than that achieved by employing other techniques, enabling optimal function-
ing of the secondary treatment system [72, 73]. MBR offer the advantages that often 
smaller tank size is used and filtration function of the membrane ensures that solids 
are separated from treated effluent. Membrane fouling has been recognized however 
as a major drawback in the application of membrane bioreactors in bioremediation. 
Also membranes are often expensive thus making the process costly. Development 

Figure 3. 
Schematic diagram of biotrickling filter [34].
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of low cost membrane filters is an ongoing feature in the science of MBR [72]. MBR 
reactors have been used in the biological treatment of domestic and industrial waste 
water. MBR have been evaluated in the remediation of pentachlorophenol in concen-
tration ranges that occur in waste water [73], textile waste water [27], 1,2-dichloro-
ethane, 1,2-dichlorobenzene and 2-chlorophenol [30].

3.8 Other bioreactors in bioremediation

Due to flexibility in bioreactor designs, the configuration of reactors is 
numerous. While an effort has been made here to describe some of the common 

Figure 4. 
Simplified diagram of a laboratory based packed bed bioreactor [21].

Figure 5. 
Schematic diagram of airlift bioreactor with (a) external recirculation and (b) internal recirculation [15].
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bioreactors used for different bioremediation applications, several other bioreactor 
types have not been discussed. These include the UASB which find major applica-
tion in anaerobic digestion of waste waters as well as solid wastes, bio-scrubbers 
which are applied in off gas air pollution control, continuous stirred tank reactors as 
well as rotating contactor reactors.

4. Conclusions

It is evident that a wide range of microbial bioreactors have been developed and 
evaluated in the bioremediation of a wide range of pollutants in water, air and soil. 
Also a wide range of pollutants in physical and chemical properties are amenable 
to microbial degradation. Very diverse microbial species have the capability of 
pollutant degradation naturally and the use of well-developed optimized microbial 
bioreactors ensure improved rates of degradation when compared to degradation 
that happens in situ in the environment under natural environmental conditions.
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