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1. Introduction

Fire is one of the greatest inventions of human beings, no doubt. However, if not managed 

cautiously, it may be deadly hazardous causing inestimable harm to life and property. 

Polymeric materials comprising of hydrocarbon chains are prone to burning when exposed to 

fire, releasing enormous heat, flame and smoke. With polymers all around us today, the great 
significance of fire/flame retardant materials [FiRs] in our lives can be judiciously realized. 

Polymers can be made fire/flame retardant [FiR] by the inclusion of micro- and nano- FiR 

fillers or by the incorporation of FiR compounds in their backbone. This review paper focuses 
on the basic aspects of FiR polymers such as their composition, types of fillers and additives 
used, and their applications. The review also discusses briefly about bio-based FiRs, while 

emphasis will be particularly made on the developments in the field of vegetable oil–based 
FiRs and their applications.

Polymers celebrate prominent place in our daily lives. The extensive uses of polymers 
also raise our concerns and requirements for fire safety, as the polymers are highly com-

bustible, being mainly made up of carbon and hydrogen. When exposed to fire, polymers 
burn rapidly, releasing lot of heat and smoke, causing great damage to life and property. 
Thus, the use of FiRs has become mandatory from viewpoint of safety of life and environ-

ment. FiRs stop or inhibit the polymer combustion process, acting physically or chemically, 
by interfering with heating, pyrolysis, ignition, thermal degradation, i.e., various processes 

involved in polymer combustion. Thus, to improve FiR properties of polymers, it is very 

important to understand combustion which requires three main candidates: heat, oxygen  

and fuel (combusting material). When a substance is heated, its temperature rises to its 
pyrolysis temperature, and it produces char, liquid condensates and some gases (flammable 
and non-flammable). At still higher temperature, combustion temperature, these flammable 
gases produce large amount of light, heat and smoke on combining with oxygen (Figure 1).  
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The combustion cycle thus continues with the help of heat produced by combustion [1]. The 
disruption in this combustion cycle can cause flame retardancy, and can be achieved by the 

following mechanisms (Figure 2):

• incorporation of such materials in polymers that, on exposure to heat do not allow the 

temperature of material to rise to pyrolysis temperature,

• incorporation of materials that produce more non-flammable by-products and char during 
pyrolysis; the latter acts as an obstacle to heat and mass transfer between gas and con-

densed phase (condensed phase mechanism), and

• using FiRs that cause reduction in O
2
 concentration in flame zone, by releasing non-flam-

mable gases (gas phase mechanism).

FiRs comprise of additive FiRs, compounds (mineral fillers, hybrids) that are incorporated in 
polymers but they react with polymers only at higher temperatures, that is at the onset of fire, 
and reactive FiRs that are incorporated in polymer chains during synthesis.

There are many types of FiRs based on:

• minerals (oxides and hydroxides of metals, ex: magnesium hydroxide, aluminum hydrox-

ide, calcium carbonate; borates, ex: zinc borates)

• halogens

• phosphorus

• silicon

• nitrogen

• nanoparticles

Figure 1. Combustion cycle.
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Some examples of FiRs containing bromine and phosphorus are given in Figures 3 and 4.

Nanoparticles not only improve mechanical strength but also enhance flame retardance of poly-

mers. These include nanoclays, carbon nanotubes, sepiolites, silsesquioxane, silica and titanium 
nanoparticles, nano metal oxides and others (Figure 5). Figure 6 provides mechanism of flame 
retardance by nanoclays in a polymer composite. The selection of a particular nanoparticle as 
FiR, in polymer composite systems, depends upon its chemical structure and geometry.

Figure 2. Types of FiRs and their mode of action.

Figure 3. Bromine-based aliphatic and aromatic FiRs (a) hexabromocyclododecane, (b) tris (tribromoneopentyl) 
phosphate, (c) decabromodiphenyl ether, (d) tetrabromo bisphenol A, (e) bis (2–3-dibromopropylether) tetrabromo 
bisphenol A and (f) 1,2-ethylene bis (tetrabromophthalimide).
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Figure 4. Phosphorus containing FiRs (a) phosphinate salts (M = Al, Zn, R = alkyl), (b) ammonium polyphosphate, 
(c) 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, (d) bisphenol A diphosphate, (e) triphenylphosphate and  
(f) resorcinol diphosphate.

Figure 5. Some nanofillers used for fire/flame retardance.
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FiRs are tested by UL 94 V, limited oxygen index, cone calorimeter, and other tests. Several 
prospects of FiRs have been described in detail in previously published reviews [1–3].

The strategies to improve fire/flame resistance are primarily governed by the nature and 

chemical structure of polymers, their mode of decomposition, fire safety level required and 
the performance of the polymer product. Today, our rising concerns towards human health 
and environment protection, together with the fire safety of life and property, have driven us 
to develop FiRs that are cost effective, less/non-toxic, environment-friendly and are conducive 

to optimum fire safety performance. Bio-based FiRs are ideal alternatives in this context, dis-

cussed briefly in following section.

2. Bio-based FiRs

Fast depleting petroleum resources, high prices of petro-based chemicals, health and environ-

mental hazards caused by these, worldwide legislations and also ban on the use of some com-

pounds have drastically influenced the world of polymer materials, so also FiRs. Thus it has 
become imperative to use bio-based resources in the field of FiRs. Biomolecules such as carbohy-

drates (cellulose, starch, chitosan, alginates), proteins, lipids (vegetable oils, cardanol) and phe-

nolic compounds (lignin, tannin) can be used as such or can be derivatised to obtain bio-based 

Figure 6. Mechanism of flame retardance by nanoclays.
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building blocks. The latter can be further modified to obtain FiRs, based on their chemical struc-

ture and inherent thermal properties. To assess the use of bio-based materials as FiRs, it is neces-

sary to inspect their composition and thermal behavior. Apart from this, bio-based materials 
should meet some other criteria as well, to be used as FiRs, that is, (i) these materials should bear 
sufficiently high thermal stability in compliance with their processing, (ii) their charring abil-
ity should be high, (iii) they should bear functional groups such as hydroxyls, carboxylic acids, 

amines, double bonds and others, that may undergo chemical transformations, and (iv) there 

should be inclusion of elements (P, N, Si) that are capable of introducing flame retardancy. Bio-
based materials can be used by themselves as an ideal component of FiRs, or in combination with 
traditional FiRs such as P, N or with melamine, boric acid and also by chemical modifications.

2.1. Why biomolecules mentioned above are used in the field of FiRs?

Lignin is used as an additive to increase the fire retardance of polymers. At high tempera-

tures, it gives the highest char yield. This char residue slows down combustion as it forms a 
protective layer. Lignin has been used in combination with boric acid, melamine, aluminum 
phosphate, urea and other FiRs. Proteins and deoxyribonucleic acid [DNA] are used in the 
field as both contain important elements, N and P, showing flame retardance. Both are capable 
to form films over textiles. The protein coating increases the burning time and slows down the 
burning rate. DNA, a natural intumescent FiR, contains C, N and P. Carbohydrates are used as 
charring agents as they contain oxygen. Starch is used as matrix and also as FiR coating in tex-

tiles through layer-by-layer technique. Chitosan as a carbon source is also used as FiR in textile 
coating by layer-by-layer technique. This technique improves FiR ability of the coated fabrics 
by declining their thermal decomposition and decreasing their burning time. Lipids such as 
fatty acids, vegetable oils, cardanol and others are also used as FiRs. Phosphorylation is the 

most frequently used method to introduce fire retardance in bio-based materials. Chitosan, 
lignin, vegetable oils, cardanol, and others have successfully undergone phosphorylation.

Past years have witnessed great research and development in this field. Several fire protec-

tion solutions have cropped up utilizing bio-based resources and complying with “Green 

Chemistry” principles. However, even with gigantic number of solutions available, it is not 

easy to assess which one is the most successful. In this context what should significantly be kept 
in mind is (i) overall performance of FiRs, (ii) environmental and health hazards associated 
with their processing, formulation and application, and (iii) cost effectiveness of raw materials 
used and processes involved. Vegetable oils [VO] are domestically abundant, cost-effective 
and non-toxic. They contain several functional groups that can be tailor-made by different 
chemical transformations through “greener” methods for different applications such as FiRs.

3. Vegetable oil based FiRs

VO can be modified by P, Si, halogens such as chlorine and bromine, to be used as FiRs. Such 
VO derivatives can be used as plasticizers for PVC (Figure 7). During thermal degradation, 
they provide carbon and acid sources that enhance flame retardancy by promoting char residue 
formation [4].

Flame Retardants8



In the synthesis of FiR polymers from VO, the advantage is taken of the presence of functional 
groups in VO such as double bonds, hydroxyl and ester groups which undergo derivatization 
reactions such as epoxidation, esterification, urethanation, alcoholysis and others (Figure 8). 

The inserted epoxide, ester, urethane groups or the alcoholyzed products are then modified 
accordingly by phosphorylation, silylation, boronation, halogenation and others resulting in 

FiRs [5]. The polymerization on double bonds can also be done by using styrene, divinyl ben-

zene, dicyclopentadiene, and norbornadiene. Soybean and sunflower oils were reacted with 
acrylic acid and N-bromosuccinimide. The bromoacrylated products were then copolymerized 
with styrene, and this resulted in the formation of rigid FiR polymer [6, 7]. Bromine containing 
FiRs release hydrogen bromide during combustion, causing toxicity and corrosion. Therefore, 
P, Si and B containing polymers are significantly popular relative to those containing halogen 
because the combustion products they produce are non-toxic, while the latter release corro-

sives, pollute environment, erode instruments and are hazardous to human health.

VO derivatives have also shown dual behavior as they render flame retardancy and also plas-

ticizing effect to polyvinyl chloride (PVC) materials, which find wide applications in pack-

aging, pipes, toys, wire and cable. PVC materials show excellent mechanical and physical 
properties, not in neat form, but when combined with plasticizers, such as dioctyl phthalate 

[DOP] and dibutyl phthalate. However, there are disadvantages associated with the use of 
these plasticizers with PVC, such as diffusion of these plasticizers into surroundings, dete-

rioration in the performance of PVC materials due to loss of plasticizers, and often being 

Figure 7. Phosphorus containing VO based derivatives, where (a-c) 9, 10-Dihydro-9-oxa-10-phosphaphenenthrene-
10-oxide groups containing soybean oil based derivatives, (d-e) diphenyl phosphine oxide containing sunflower oil 
based derivatives, (f-g) cashew nut shell liquid based derivatives, and (h-j) diethyl phosphate and chlorinated phosphate 

derivatives of castor oil [4].
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susceptible to burning easily. The latter restricts their application in wire and cable that 
demand FiR properties. Thus, bio-based plasticizers that improve mechanical properties and 
flame retardancy (by supplying acid, carbon and gas source during thermal degradation of 
PVC materials) are welcomed [8–10].

VO-based FiRs and FiR plasticizers are prepared by different chemical transformations as 
mentioned above. Some of these have been discussed briefly in following sections:

By epoxidation: Epoxidation is carried out at the double bonds of VO. Epoxidized VO, fol-
lowed by further derivatization such as ring opening of oxirane forming polyols, and also 

urethanation, produce FiRs. Castor oil [CO] was esterified at hydroxyl groups and then 
epoxidized at unsaturation producing epoxidized CO polyol ester, and the latter was treated 
with phosphorus oxychloride forming chloro phosphate ester of CO [ClPECO]. ClPECO was 
substituted in place of 50 wt% DOP for plasticizing PVC. ClPECO and DOP were blended 
with PVC in different ratio producing PVC films that showed high limited oxygen index 
[LOI] and improved thermal stability. During thermal degradation, the fatty acid chains of 
CO in ClPECO provided carbon source and the generated phosphorus containing compo-

nents promoted the formation of char residual. Thus ClPECO improved plasticization and 
also flame retardancy of PVC (Figure 9) [4, 8]. CO was epoxidized at double bond and then 
the inserted oxirane ring was modified with diethyl phosphate in presence of triphenylphos-

phine producing phosphate ester, which was blended with PVC. The plasticized PVC showed 
high Tg, improved thermal stability and high LOI values [11, 12]. Phosphorylated polyol 
polyurethanes [PU] were prepared by epoxidation of soybean oil followed by epoxide ring 

opening reaction with phosphoric acid, and the treatment of formed phosphorylated polyols 

with polymeric diphenylmethane diisocyanate [PMDI]. These PU showed flame retardancy 
same as commercial PU [13]. In another example, two types of polyols were prepared from 
rapeseed oil, one through epoxidation followed by ring opening reaction and the other one 

Figure 8. Chemical routes to produce VO derivatives [5].
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by transesterification with triethanolamine. PU foams were prepared by replacing 70% of 

petrochemical polyols by each of these polyols, adding expandable graphite [EG] as filler and 
then these formulations were treated with PMDI forming two-component PU. EG has stacked 
layers which are intercalated with acids (sulfuric, nitric, and acetic). Under the influence of 

Figure 9. Phosphorus and halogen containing FiRs from castor oil [8].
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high temperatures, EG reacts with acids releasing H
2
O, CO

2
, SO

2
 gases that cause expansion 

of graphite that behaves as physical barrier for heat and mass transfer. EG modified PU foams 
were characterized by flammability test by cone calorimeter to determine certain parameters 

(time to ignition, heat release rate, peak of heat release rate, time to peak of heat release 

Figure 10. Phosphaphenanthrene containing FiR from castor oil [17].
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rate, total smoke release, maximum average rate of heat emission), and by combustion and 

thermal stability analyses. The inclusion of EG into VO-based PU foam reduced flammability, 
prolonged the combustion time, increased the average burning temperature and rendered 

overall good thermal properties and flame resistance to VO-based PU foam [7]. In another 
approach, CO was epoxidized, and phosphaphenanthrene [PPP] groups were inserted on 

epoxidized CO by oxirane ring opening reaction. The hydroxyl groups of CO and hydroxyl 
groups formed during oxirane ring opening reaction were esterified in the next step. This CO 
polyester with PPP groups was blended with PVC (partially replacing DOP). The modified 
CO polyester improved thermal stability of PVC by promoting the formation of char residue. 
The thermal degradation of PPP groups produces phosphorus rich layers that prevent oxy-

gen and heat transfer, rendering PVC more thermally stable and flame retardant. Long fatty 
acid chains of CO form a rigid char skeleton preventing char from collapsing [14].

By glycerolysis: Glycerolysis of CO was accomplished with glycerol, in presence of sodium 
methoxide and triethanolamine forming monoglyceride and diglyceride of CO [15, 16]. 
The latter were further epoxidized at double bonds, and the epoxy ring opening reaction 
with diethylphosphate resulted in the formation of P containing flame retardant polyol. 
The flame retardant polyol formed PU foams in one shot process with PMDI. Such PU 
foams were analyzed with thermogravimetric analysis, flammability tests and cone calo-

rimetric measurement, which showed excellent fire resistance performance of these PU, 
with only 3% P incorporation, compared to pure PU [15]. In another attempt, glycerolyzed 
products of CO, monoglyceride and diglyceride, were epoxidized and PPP groups were 

inserted in CO mono- and diglycerides by epoxide ring opening reaction. The hydroxyl 
groups of CO and those formed by epoxide ring opening were further esterified and these 
PPP-containing CO polyols were used as plasticizer for PVC, partially replacing with DOP 
(Figure 10). Thus plasticized, PVC showed high LOI (35.95%) values, improved thermal 
stability and reduced flammability [17]. Monoglyceride obtained by glycerolysis of Nahar 
seed oil, epichlorohydrin, bisphenol A and tetrabromobisphenol A were reacted together 

in an alkaline medium and then nanoclay was incorporated in different weight percent-
ages (1, 2.5, and 5 wt%). These nanocomposites showed high LOI values ranging from 40 
to 45. Flame retardance of these nanocomposites is related to the incorporation of nanoclay 
that acts as thermal insulator and mass transport barrier during thermal decomposition of 

epoxy, and also promotes char formation [18].

Thus, VO can be modified in several ways for their applications as FiRs. With numerous types 
of nanoparticulate systems and synthesis methods cropping up and the advent of newer tech-

niques of analyses of FiRs, there is immense scope for utilization of VO as “green” FiRs.

4. Summary

With the presence of polymers in every sphere of daily life, the use of FiRs poses greater safety, 
health and environment concerns, also keeping in mind the demands for non-toxicity, cost 
effectiveness, level of performance and degree of “greenness” of the final product. The polymer 

Introductory Chapter: Flame Retardants
http://dx.doi.org/10.5772/intechopen.82783

13



matrices are extensively diverse, and therefore no strategy claims as an ideal solution of fire/
flame retardance. The research still continues on the topic in the quest for better and yet better.

FiRs. To some extent, bio-based FiRs do fill the gap.
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