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Chapter

The Provenance of Arsenic in 
Southeast Asia Discovered by 
Trace Elements in Groundwater 
from the Lowlands of Nepal
Barbara Mueller

Abstract

Arsenic concentrations in groundwater extracted from quaternary alluvial 
sediments pose a serious health issue for inhabitants living in several countries in 
Southeast Asia. A widely approved hypothesis states that reductive dissolution of 
Fe-bearing minerals releases As oxyanions to ground water and the original source 
of As has to be located in mafic rocks occurring across the entire Himalayan belt. 
Yet, recent trace element analyses of ground water from the lowlands (Terai) of 
Nepal show a clear decoupling of As and Fe. The positive correlation of K, Na, and 
trace elements like Li, B, and Mo with arsenic points out to clay minerals hosting 
the toxic element. This pattern of trace elements found in the ground water of the 
Terai also advocates against an original source of As in mafic rocks. The lithophile 
elements like Li, B, P, Br, Sr, and U reflect trace element composition typical for 
felsic rocks as an origin of As. All the mentioned elements are components of clay 
minerals found ubiquitously in some of the most characteristic felsic rocks of the 
Nepal Himalaya: metapelites and leucogranites—all these rocks exhibiting a high 
abundance of especially B, P, and As besides Cd and Pb.

Keywords: arsenic, groundwater, trace elements, felsic, Himalaya

1. Introduction

Arsenic concentrations found in the groundwater in quaternary alluvial sedi-
ments in the lowland Terai region of Nepal and other countries of South Asia 
(Bangladesh, India, Nepal, Myanmar, China, Vietnam, Cambodia, and China) 
often exceed the World Health Organization (WHO) drinking water guideline 
(10 μg/L). The oral intake of arsenic causes various detrimental health issues: 
skin lesions including pigmentation changes, mainly on the upper chest, arms, 
and legs, keratosis of the palms of the hands and soles of the feet, and as the most 
severe effect, cancer of the skin and internal organs [1–3]. The origin of the arsenic 
contamination is clearly geogenic, and its elevated concentrations in natural ground 
waters are considered to be due to natural weathering of the Himalayan belt [4–9]. 
These quaternary alluvial sediments are carried by the Ganga-Brahmaputra river 
system and build up the Himalayan foreland basin and the Bengal fan—one of 
the largest modern fluvial deltas of the world [10, 11]. Arsenic is not known as an 
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element with a high abundance in the Earth’s continental crust. Sulfide-bearing 
mineral deposits are the most common sources of As which also has a strong affinity 
for pyrite. Weathering of pyrite leads to formation of hydrous iron oxides contain-
ing As, but clay minerals are important hosts of As as well. Sediments usually 
containing 1–20 mg/kg (near crustal abundance) of arsenic can already be a cause 
of high dissolved arsenic (>50 μg/L) in groundwater if one or both of two potential 
“triggers”—an increase in pH above 8.5 or the begin of reductive iron dissolution—
are initiated [12]. Pyrite represents the largest reservoir of As. Besides this iron 
sulfide, As is mainly concentrated in hydrous iron oxides and clay minerals. Arsenic 
can be easily solubilized in groundwaters depending on pH, redox conditions, 
temperature, and solution composition. The sediments of the Terai plain in Nepal 
are commonly reducing with a pH between 7.0 and 7.8. Beyond that, As in ground 
water is only weakly negatively or not correlated with Fe (decoupling of As) but 
positively correlated with lithophile elements like Na and K. Decoupling between 
aqueous As and Fe has also been described by [9, 13–15]. The mentioned elements 
are specifically derived from alumosilicates such as clay minerals during weather-
ing. More immobile elements such as Fe and Al will therefore be concentrated in the 
remnants. Clay minerals that are extremely fine-grained are noted to be compat-
ible of adsorbing arsenic to a high degree [16–18]. So far, there is basically a small 
number of source materials recognized as significant contributors to arsenic in the 
aquifer: for example, organic-rich or black shales, Holocene alluvial sediments with 
slow flushing rates, mineralized and mined areas (most often gold deposits), volca-
nogenic sources, and thermal springs. As there is no correlation found between As 
and Fe concentrations in groundwater in the Terai of Nepal, an obvious correlation 
between lithophile element concentration and As the initial source rocks is of felsic 
and not mafic composition. These trace elements in groundwater reflect the origin 
of the arsenic in the high Himalayas of Nepal.

2. Geology

All of the four major Himalayan tectonic units are exposed in the Terai (lowland 
of Nepal): (1) the Tethys Himalaya, delimited at the base by the South Tibetan 
Detachment system (STDS), (2) the Higher Himalayan Crystallines (HHC) delim-
ited at the base by the Main Central Thrust I (MCT I), (3) the Lesser Himalaya (LH) 
divided into upper and lower Lesser Himalaya is delimited at the base by the Main 
Boundary Thrust (MBT), and (4) the Siwaliks, delimitated at its base by the Main 
Frontal Thrust (MFT) as much as the quaternary foreland basin. In the Terai once, 
east-west flowing rivers built up the Archean crystalline formations deep beneath 
the Alluvium of the Terai as well as the marine sedimentary deposits forming the 
high Himalayas and the Siwalik formation. The debris of these formations can be 
found within confined space [19].

These four units include a wide range of diverse rocks of metamorphic, 
sedimentary, and igneous in origin. Their differential erosion is accounting for 
some of the groundwater arsenic heterogeneity seen in the foreland and delta 
(e.g., [5, 7, 20, 21]). In the realm of provenance of the Terai sediments, the 
Tethys Himalaya is made up of 10 km of various metasedimentary rocks (lime-
stones, calc-schists, shales, and quartzites) ranging from Cambrian to Jurassic. 
Leucogranites like the Manaslu leucogranite are also found emplaced within the 
Tethyan rocks (e.g., [22]).

The Terai region of Nepal itself is the direct prolongation of the Bengal Delta 
Plain (BDP), and it is the elongation of Indo-Gangetic trough. The Terai plain is 
composed of quaternary sediments including molasse units consisting of gravel, 
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sand, silt, and clay and represents an active foreland basin. The rivers in the Terai 
generally flow from north to south. All major rivers have their origin in the high 
Himalayas, while minor rivers also emerge from the proximate Siwalik Hills, and 
hence sediments are deposited in the form of a fan along the flanks of the Terai 
basin. Organic material is widespread in the fine sediments which were once depos-
ited in inter-fan lowlands, in wetlands, and in swamps [23–25].

The district of Nawalparasi is the most acute studied Terai province related to 
arsenic-contaminated groundwater in Nepal. The lithology of the Nawalparasi 
province sedimentary basin belongs to Holocene alluvium including the present-
day alluvial deposits, channel sand, and gravel deposits as well as outwash deposits 
[26]. The major river, the Narayani/Gandaki, which has its source in the Higher 
Himalaya, flows along the eastern boundary of the Nawalparasi district and 
exerted a major influence on the underlying unconsolidated Holocene fluvial 
deposits that include the floodplain aquifer system. Atypical for the Terai, where 
finer sediments typically increase toward the south, in Nawalparasi, fines pre-
dominate in the north, and sand and gravels are found near the Nepal-India border 
[27]. In the areas with fine-grained sediments, elevated concentrations of As are 
typically recorded [15, 28, 29].

3. Material and methods

3.1 Sample collection

Around 20 years ago, co-workers from CAWST (Centre for Affordable 
Water Sanitation Technology) Calgary, Canada, in cooperation with ENPHO 
(Environment and Public Health Organization) Kathmandu, Nepal, began to 
install iron-assisted bio-sand filters built on the basis of arsenic removal from water 
using zero-valent iron (ZVI) media. The modified model now used in Nepal is 
known as Kanchan filter [30, 31]. Due to growing concerns about the malperfor-
mance of some of these filters, a groundwater sampling campaign was initiated by 
CAWST together with Eawag (Swiss Federal Institute for Environmental Science 
and Technology), Dübendorf, Switzerland. As reported in [32] and CAWST, 
the Kanchan filter efficiency under field conditions operating for a long period 
has scarcely been observed. Since a part of the Kanchan filters still had effluent 
arsenic concentrations exceeding the Nepal drinking water quality standard value 
(50 μg/l), groundwater, intermediately filtered, and effluent water for trace element 
analyses were sampled in October 2015 (post-monsoon). A second field campaign 
was arranged in pre-monsoon time (April 2017) in order to detect for differences 
in arsenic concentration in groundwater between the two seasons. Filters were also 
inspected at household levels. Measurements to improve the efficiency of the filters 
are under progress.

Thirty-five water samples from around Ramgram, the capital of the district 
Nawalparasi, were collected from hand pumps in October 2015 and again 
in April 2017. All pumps were thoroughly flushed before sample collection. 
Household for sample collections was selected referring to a register established 
by ENPHO including all groundwater samples exceeding the Nepal drinking 
water quality standard value (50 μg/L). Sampling sites consisted of groundwater 
from private tube wells located within the municipalities of Ramgram (former 
name, Parasi, the capital of the district Nawalparasi), Manari, Panchanagar, 
Sukauli, and Tilakpur (within proximity of Ramgram). Water samples were 
acidified with HNO3 and sent to the laboratory in Switzerland for further 
examination.
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3.2 Trace element analysis

All trace elements in the groundwater samples were determined by ICP-MS 
(Agilent Technology, 7500 Series, Agilent Technologies, Waldbronn, Germany) at 
Eawag, Dübendorf, Switzerland, after 1:2 dilution with 0.5 M HNO3. Each measure-
ment was conducted in triplicate. All ICP-MS determinations agreed to within 3–5% 
standard deviation [33].

4. Results and discussion

Figure 1a shows the correlation between As and Fe concentrations in the 
35 groundwater samples taken in spring 2017. Results from analyses of samples 
collected autumn 2015 exhibit very similar trends and are therefore not included 
in this section. There is no visible correlation between As and Fe, and the correla-
tion coefficient is only given for illustration. In contrast to the obvious decoupling 
between As and Fe, the concentration of As markedly and positively depends on the 
concentration of various lithophile elements (K shown as an example in Figure 1b). 
As is positively correlated with Na, Li, B, and Mo and negatively correlated with Ca, 
Mn, and As. Evidently, the reason for such a paradigm is mainly the derivation of As 
from silicates like clay minerals and feldspars and much less from Fe hydroxides and 
pyrite. Even though in [34] it is reported about a positive dependence of As on Fe in 
West Bengal and in [35] a positive correlation between As and Fe (r = 0.77) in the 
aquifer of the Nawalparasi district is also mentioned, a decoupling between aqueous 
As and Fe has also been observed in [13–15].

In [15] it is stated correctly that decoupling between Fe and As may result from 
sorption of Fe to other surfaces (i.e., clays) or precipitation of Fe(II) minerals, 
such as siderite. Anyways, the diagram in Figure 1b explicitly shows the cor-
relation between As and the lithophile element K as an example. K as well as Na, 
Mg, and Sr (replacement of Na and K) can easily be dissolved from interlayers 
of clay minerals, Na, K, and Sr as well from alkali feldspars or the borosilicate 
tourmaline. Li, B, and Mo represent common trace elements found in micas; Li 
and B moreover are main components of tourmaline (general formula, (Ca,K,Na)

Figure 1. 
(a) Apparent decoupling between Fe (mg/l) and As (μg/l). The correlation coefficient (r) is included in the 
diagram for illustration though it is not significant. (b) Correlation between K (mg/l) and As (μg/l).
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(Al,Fe,Li,Mg, Mn)3(Al,Cr, Fe,V)6(BO3)3(Si,Al,B)6O18(OH,F)4). Besides this said, 
tourmaline is one of the very rare minerals fitting a significant amount of boron 
in its structure. As reported in [36], authors found tourmaline-containing aqui-
fers enriched in As in West Bengal, India; in [37] it is clearly described how trace 
elements of groundwater in the Terai of Nepal refer to the origin of the mentioned 
soil minerals being decomposed from tertiary leucogranites (rich in B) in the High 
Himalayas. As Fe is predominantly contained in the octahedral layer of clay min-
erals such as biotite (general formula, K(Mg,Fe2+,Mn2+)3[(OH,F)2|(Al,Fe3+,Ti3+)
Si3O10]) and fits hardly in the interlayer, so it is not possible to exchange Fe against 
K or Na. However, the likely source of As due to the positive correlation between 
Na, K, and As points out to silicate minerals as As can be readily adsorbed on the 
surface and edges of these minerals. Muscovite KAl2[(OH,F)2|AlSi3O10] is another 
frequent clay mineral found in the sediments of Nawalparasi and is well known as 
a carrier of K and Li, B, and Mo as trace elements.

This obvious decoupling of As from Fe in the groundwater excludes Fe minerals 
like Fe hydroxides and pyrite being the source of arsenic in the alluvial sediments.

Above all, several trace elements (Li, B, P, V, Cr, Mn, Cu, Zn, Se, Br, Sr, Mo, Cd, 
P, and U) analyzed in the groundwater samples of Nawalparasi boreholes are among 
the most prominent besides arsenic which could be found in relevant concentra-
tions. Particularly the presence of the lithophile Li, B, P, Mn, Br, Sr, and U in the 
groundwater is a striking feature. Siderophile elements like Cu or Zn could be found 
in minor concentrations or in a few samples only. The immediate attention was 
attracted by boron as this element is rarely found in significant amounts in common 
minerals like silicates. Tourmaline is one of the very rare minerals incorporating a 
significant portion of boron in its structure. As already mentioned in [38], boron 
in spring waters in the Peshawar basin and surroundings in the Himalayan foreland 
of Pakistan is closely associated with igneous complexes (most probably with the 
tourmaline-rich tertiary leucogranites). Even boron is widely known to be present 
in salt water; such an influence can be neglected in landlocked Nepal having no link 
to the ocean. Thermal springs can be located in various areas of the Nepal Himalaya, 
but their influence is considered to be marginal taking the widespread occurrence 
of tertiary leucogranites besides metapelites and black shales into account. Above 
all, in [39], elevated boron in metasedimentary rocks of the lesser Himalaya (up to 
322 ppm) as well as in the Manaslu leucogranite (up to 950 ppm) where tourma-
line represents the boron-containing mineral is reported. Tourmaline-containing 
aquifers enriched in As in West Bengal, India were detected in [36]. These authors 
conclude therefore that the heavy mineral assemblage of these aquifers (opaque 
minerals, garnet, tourmaline, kyanite, rutile, and zircon) prove a mixed metamor-
phic and igneous provenance for the eroded and deposited materials.

As the anion S was hardly detectable, the oxidation of pyrite in the sediments 
(suggested, e.g., by [40]) which would lead to an increased concentration of SO4

2− 
in the groundwater can be clearly ruled out as an mechanism of arsenic release into 
groundwater. Despite these convincing facts, ophiolites were seen as the initial 
source of arsenic contained in arsenopyrite (e.g., [6, 16]). But ophiolites do not exist 
in the Nepalese Himalaya.

In conclusion, the diagram in Figure 2 presents the most prominent trace ele-
ments in groundwater from Nawalparasi district in comparison with the few avail-
able data of the Macusani obsidian glass (peraluminous in composition, enriched 
in As-B-F-P). The data for comparison are taken from [41]. In [42], it was already 
declared that these volcanic rocks are compositionally and mineralogically equiva-
lent to the Manaslu leucogranite. In article [41], it is reported for the first time that a 
significant accumulation of arsenic in a peraluminous glass from Macusani (SE Peru) 
which is representative of anatectic melts is derived from metasedimentary crustal 
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protoliths. In this glass, the authors of [41] found accumulations by factors of 10–100 
for As, compared with the mean continental crust values and other incompatible 
trace elements (e.g., Be, B, Rb, Sn, Sb, and Ta), and by factors of 100–200 for Li, Cd, 
and Cs. In a second article [43], the authors of reference [41] state that remarkable 
concentrations of Cd (up to ~300 ppm) could be found in quartz-hosted fluid and 
melt inclusions in hydrous peraluminous systems (pegmatites and leucogranites) for 
the first time ever. A distinct number of the groundwater samples used for this study 
show detectable concentrations of Cd. Significant amounts of Li, B, Zn, As, and Pb 
were also found in quartz-hosted fluid inclusions from the Huanuni tin deposit in 
Bolivia (hosted in peraluminous granites with ASI ≥ 1.1) [44]. The indicative trace 
elements of leucogranites (Li, B, P, Mn, Zn, As, Sr, Pb, and U) are similarly detected 
in the ground water in Nawalparasi. The high concentration of Sr in groundwater 
can be based by the frequent occurrence of calcium carbonates in the soil hosting the 
groundwater. In study [45], the authors mentioned lithologies like rhyolite and shale 
(greywackes) representing a greater risk of elevated As in groundwaters.

As frequently described in the literature, low-grade metapelites are often 
considered as protoliths of peraluminous granites (see, e.g., [22, 46, 47]) where 
concentrations of As, Sb, Be, B, Ba, and Rb by a factor of 5–10 higher than their 
average crustal abundances (2–5 ppm) [48–50] were not unusual. The leucogranites 
(two-mica or muscovite-tourmaline mica) found in the Himalayas of Nepal are 
undoubtedly peraluminous in composition (see, e.g., [22, 51, 52]) and coherently 
a comparison with the findings from [41] is warranted. Most of the leucogranites 
analyzed in [51] are peraluminous (ASI > 1.1) to strongly peraluminous (ASI ≥ 1.1). 
According to Ref. [53], lead represents one of the rare elements usually behaving 
incompatible during crustal melting. Pb can be significantly enriched in low T 
S-type granite melts, especially if the proportion of partial melting remains low. 
Moreover, muscovite, known as being a major mineral of metapelitic sources, 
can exhibit relatively high Pb contents. The leucogranites in the Nepal Himalayas 
are widely described to be of crustal origin and are derived from vapor-absent 
muscovite-dehydration melting of pelitic and psammitic protoliths during the Late 
Miocene (see, e.g., [47, 54–59]).

Figure 2. 
The most noticeable trace elements in groundwater from Nawalparasi district (green triangles) compared with the 
few available data of the Macusani obsidian glass (peraluminous in composition, enriched in As-B-F-P). The data 
for comparison (purple stars) are taken from [41]. Note the logarithmic scale for comparison of concentrations.
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As described above, arsenic is primarily dissolved from micas as a major con-
stituent of sediment hosting the groundwater in Nawalparasi. Keeping in mind that 
the Manaslu area is the watershed of the Nawalparasi water system, assuming the 
leucogranites as the original source of the arsenic is evidently warranted.

5. Conclusions

So far it was considered that As is mainly released from iron (hydr)oxides, but 
a major host for sorption and release of As are alumosilicates such as clay minerals 
(including micas) into groundwater. The apparent decoupling of the concentrations 
of Fe and As and the positive correlation between concentrations of Na, K, and As 
in the groundwater are a significant evidence that As cannot be released from Fe 
minerals predominantly—so silicates represent the fundamental source of As in 
sediments. Clay minerals preferentially lose Na and K from their interlayers during 
chemical weathering and hence become enriched in immobile elements such as 
Fe and Al. Moreover, the trace elements detected in the groundwater samples of 
Nawalparasi are well known to be contained in peraluminous obsidian glasses from 
Peru enriched in As-B-F-P. These glasses equal the leucogranites in the Manaslu area 
North of Nawalparasi in their geochemistry and represent the original host rocks of 
arsenic.
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