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Abstract

Imaging techniques of the posterior segment of the eye have gradually evolved 
and tremendously improved during the last decade. A widespread implementa-
tion of optical coherence tomography (OCT) for the management and diagnosis 
of retinal conditions, with a concurrent advance in integrative technology, led 
to the integration of the OCT into the microscope for its intraoperative use. 
Regarding posterior segment eye surgery, some of the most common diagnoses 
in which microscope-integrated OCT (MIOCT) can result of great value are 
epiretinal membrane, macular hole (MH), proliferative diabetic retinopathy 
(PDR) and, less frequently, for inflammatory diseases, chorioretinal biopsies, 
and retinal implants. The impact on the surgical procedure and, possibly, on 
the postoperative outcome could relate to the definition of whether or not a 
membrane has been entirely peeled, the presence of residual membranes, and the 
option to perform a dissection without the need of vital dyes. The possibility of 
correct topographical location of hemorrhages, suspect lesions, or implants can 
also facilitate the surgical decision-making during biopsies or prosthesis implan-
tation. Microscope-integrated OCT is a feasible and useful tool that can provide 
valuable information during surgery impact on decision-making, anatomic 
results, surgical safety and provide opportunity to individualize surgical treat-
ment for each patient.

Keywords: intraoperative optical coherence tomography, retinal surgery, 
vitreomacular interface, membrane peeling, retinal detachment

1. Introduction

The development of microsurgery enhanced the precision with which oph-
thalmic surgical procedures are currently performed. Its origins date back to 
1876, when the first binocular magnifying device was invented by T. Saemisch 
of Bonn [1]. It was not until 1953, with the manufacture of a microscope with 
coaxial illumination, that the use of the surgical microscope became more widely 
available and adapted to ocular surgery [2–4]. Three years later, in 1956, the term 
“microsurgery” was used for the first time by H. M. Dekking of Göningen [5]. 
Almost two decades before the use of binocular magnifying devices, Hermann von 
Helmholtz invented ophthalmoscopy in 1851 and allowed us to see, for the first 
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time, the human retina [6]. Under this rapidly evolving background, the develop-
ment of pars plana vitrectomy (PPV) in 1970 revolutionized retinal surgery with 
less invasive procedures and better results in terms of visual acuity and patient 
satisfaction [7].

In addition to the operating microscope, imaging techniques of the posterior 
segment of the eye have tremendously improved during the last two decades. 
Optical coherence tomography (OCT) became readily and more widely available 
during the last 10 years and has become one of the most commonly ordered diag-
nostic tests in ophthalmology [8–12]. The detail on the retinal architecture provided 
by OCT allows to better characterize, diagnose, manage, and give prognosis of a 
wide range of vitreoretinal conditions.

1.1 Integration of OCT into the operating theater

Further improvements in software and imaging started a new transition of this 
powerful technology to the operating room. Firstly, it was used as a perioperative 
tool to image pediatric patients, with clear limitations for image acquisition, portabil-
ity, and sterility [13, 14], and then as a handheld OCT scan head: Bioptigen SDOIS/
Envisu portable system (Bioptigen, Research Triangle Park, NC) and Optovue IVue 
(Optovue, Fremont, CA) [15–18]. Advantages of the handheld OCT imaging are 
flexibility of scan head orientation and dynamic positioning of the scan during 
acquisition. On the other hand, disadvantages were its poor reproducibility, optimal 
targeting, and the surgeon learning curve [16, 17, 19–21]. A further step forward 
was taken with the integration of an OCT scan head to the operating microscope, a 
model that allowed portability, stability, repeatability, efficiency, control from the 
foot pedal, and an easier learning curve for surgeons [16, 17, 22–24]. However, a major 
drawback of this system was the need to stop the surgical procedure to image the 
retina: a lack of real-time imaging. The 2-year results of the Prospective Intraoperative 
and Perioperative Ophthalmic ImagiNg With Optical CoherEncE TomogRaphy 
(PIONEER) study published in 2014 [17] demonstrated the potential of this imaging 
tool in the operating theater. A total of 531 eyes were enrolled, from which 256 under-
went posterior segment surgery. The three most frequent retinal procedures in this 
study were epiretinal membrane (ERM) peeling (35%), macular hole (MH) surgery 
(23%), and rhegmatogenous retinal detachment (RRD) repair (17%). Intraoperative 
OCT impacted on the surgeons’ understanding of the anatomical configuration of 
the region of interest and/or on the surgical procedure in 43% of the cases of retinal 
membrane peeling and impacted on surgical decision-making in at least 13% of the 
procedures in which the surgeon wanted to evaluate the outcome after initial mem-
brane peeling [17].

Microscope-integrated OCT (MIOCT) provided real-time imaging when 
integrative technological progress allowed to incorporate a scanner head/system 
which is, ideally, coaxial and parafocal with the optical system to the operating 
microscope [25–28]. Haag-Streit (Haag-Streit, Koeniz, Switzerland), Leica (Leica 
Microsystems, Buffalo Grove, IL, USA), and Zeiss (Carl Zeiss Meditec, Jena, 
Germany) have currently available commercial MIOCT systems: iOCT, EnFocus, 
and Rescan 700, respectively [29–34]. Despite outcomes are still debatable, litera-
ture reports have suggested the feasibility and potentially significant usefulness 
of an intraoperative MIOCT [35–38]. The 3-year results of the Determination of 
Feasibility of Intraoperative Spectral-Domain Microscope Combined/Integrated 
OCT Visualization during En Face Retinal And Ophthalmic Surgery (DISCOVER) 
study were published in 2018 [33]. In this report, 877 eyes were enrolled, and 593 
of those underwent retinal surgery. The use of MIOCT altered surgical decision-
making in 29.2% of the procedures [33].
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In order to enhance the intraoperative use of MIOCT, optimized features like 
automation, effective display systems, and better software analysis are required for 
the near future. The recent devices allow real-time and static capture acquisition 
of anterior and posterior segment images during surgery [31–34]. Nevertheless, 
they lack automation, and surgeon or assistant input can be necessary. The imaging 
scan is delivered to the surgeon in a dual manner: as an external display screen or a 
heads-up display within the oculars, providing versatility and facilitating its intra-
operative use (Figure 1) [33]. Microscope-integrated OCT provides the surgeon 
with an additional tool to better evaluate the case in a real-time fashion, enhance 
surgical precision, and facilitate surgical decision-making.

2. Surgical implications

The intraoperative advantages of the MIOCT during surgery are wide. Table 1 
summarizes the potential surgical implications according to different pathologies.

2.1 Vitreoretinal interface disorders

Conditions comprising vitreoretinal interface disorders (MH, vitreomacular 
traction (VMT), and ERM) result in one of the best scenarios for the use of MIOCT 
[34, 35, 37, 39, 40]. Intraoperative visualization of vitreomacular interface com-
ponents and alterations can potentially contribute to surgical decision-making in 
membrane peeling procedures, because of the readiness to obtain real-time imaging 
of subclinical alterations (e.g., residual membranes, retinal elevations, microarchi-
tectural perturbations in the distances between ellipsoid zone and retinal pigment 
epithelium (RPE), as well as alterations of the inner retinal surface) [15–17, 33, 
39–42]. The ability to perform a membrane peeling with the MIOCT could result in 
a reduction of the use of vital dyes, a minimization of the risk of retinal pharmaco-
toxicity, and a reduction of surgical time [35, 43–45].

Figure 1. 
Display modalities of the microscope-integrated optical coherence tomography in the ZEISS RESCAN 700. 
(A) Heads-up display, showing a vertical and horizontal OCT scan within the oculars. (B) An external 
display screen allows the surgeon to review the scans in a more detailed manner. Images courtesy of Carl Zeiss 
Meditec.
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Figure 2. 
Intraoperative assessment after internal limiting membrane (ILM) peeling with preservative-free 
triamcinolone of a macular hole (MH). (A) Color screenshot of the surgical video that delineates the area of 
the ILM peeling. White triamcinolone particles can be easily seen. (B) Horizontal scan just inferior to the MH. 
(C) the two-dimensional vertical image scan evidences the transitional zone of the ILM peeling; the red arrow 
demonstrates the border of the ILM tear inferiorly. Hyperreflective foci correlating with triamcinolone particles 
can be appreciated in the vitreous cavity, and an ILM remnant stained with triamcinolone is evidenced in the 
inferior border of the MH (orange arrow).

2.1.1 Macular hole

The dynamic nature of the internal limiting membrane (ILM) peeling has been 
evidenced with MIOCT [39, 46]. Modifications of the retinal ultrastructure and 
geometry of MH during the ILM peeling have been described [17, 31, 42, 47–49]. 
Assessment of the border of the ILM peeling (Figure 2), residual ILM, retinal 
trauma (Figure 3), and anatomical closure (Figure 4) can be easily made in a 
real-time fashion [39, 46]. A volume increase and base area increase of MH, with a 
concurrent decrease in the apex height, have been evidenced following ILM peeling 

Table 1. 
Surgical implications of microscope-integrated optical coherence tomography.
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[39, 46, 47, 50]. Additionally, the distance between ellipsoid zone and RPE and 
the lateral extension of this expansion have been documented and associated with 
anatomical and functional outcomes [16, 17, 41, 42, 47, 50–52].

2.1.2 Vitreomacular traction syndrome

The use of MIOCT for these cases poses a potentially useful role. Release of the 
traction can be confirmed; dynamic anatomical modifications, changes in outer 
retinal relations of ellipsoid zone and EPR and residual membranes, and formations 
of full-thickness macular or retinal holes can be identified as well [15, 17, 20, 33].

2.1.3 Epiretinal membrane

Outer retinal modifications have also been documented following ERM and/
or ILM peel in ERM. A decrease in subretinal reflectivity appreciated after these 
procedures correlates with a considerable expansion of the distance between 
the ellipsoid zone and the RPE [16, 17, 42, 47, 51]. These changes have been also 

Figure 3. 
Intraoperative scan after internal limiting membrane (ILM) peeling of a macular hole (MH). The imaging 
scan demonstrates a residual fragment of ILM in the nasal border of the MH (white arrow). Additionally, an 
indentation in the internal retinal layers is evidenced secondary to excessive manipulation of that area during the 
ILM peeling procedure (orange arrow). Preretinal hemorrhages are seen superotemporal to the optic nerve head.

Figure 4. 
Optical coherence tomography scan under the heavy liquid after internal limiting membrane (ILM) peeling. 
Anatomic closure was achieved after performing a gently passive suction maneuver with a 25G silicone-tipped 
cannula.



Novel Diagnostic Methods in Ophthalmology

6

associated with visual and anatomical recovery rates; however, further studies are 
needed to confirm this correlation [51].

2.2 Retinal detachment

The surgical benefit of real-time OCT imaging in retinal detachment (RD) 
repair may not be straightforward. However, intraoperative anatomical features 
could be relevant for the prognosis of these cases [17, 24, 33]. Additionally, complex 
cases with severe vitreoproliferative retinopathy could be assisted with real-time 
imaging and successfully addressed (Figure 5B). It has been evidenced that nearly 
all eyes undergoing surgery with perfluorocarbon liquid tamponade have some 
degree of subretinal fluid (Figure 5A,B) [24, 53]. According to the literature, foveal 
microarchitecture, the amount of submacular fluid, and the integrity of the ellip-
soid zone following application of perfluorocarbon liquid may be of significance 
for the visual outcomes [17, 24, 33]. In cases where subretinal migration of perfluo-
rocarbon liquid is present, correct visualization of the liquid bubbles and complete 
removal can be verified [53]. Detection of subclinical MH, occult membranes, or 
retinal breaks is possible with this technology, an advantage that modifies the surgi-
cal procedure and has an impact on the patient outcome [33].

2.3 Proliferative diabetic retinopathy

Vitreoretinal proliferation in diabetic retinopathy poses some of the most 
complex cases of vitreoretinal surgeries. The use of MIOCT can facilitate the correct 

Figure 5. 
Color photographs and microscope-integrated optical coherence tomography (MIOCT) scans of retinal 
detachment surgeries. (A) Real-time horizontal and vertical MIOCT scans during retinal detachment repair 
under perfluorocarbon liquid evidence the progressive displacement of subretinal fluid (arrowhead) and a discrete 
subclinical remnant of subretinal fluid under the perfluorocarbon liquid (asterisk) [33]. (B) Complex retinal 
detachment repair. Color photograph evidences severe vitreoretinal proliferation and subretinal band; endodiathermy 
has been applied superiorly (left image). Visualization under perfluorocarbon liquid after retinectomy shows a 
flattened retina (center image). Horizontal and vertical MIOCT scans evidence the reattached retina with scant 
subclinical subretinal fluid and some residual focal membranes and retinal thickening (right images) [65].
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identification and visualization of the surgical planes to aid membrane dissection, 
delineate areas of retinal detachment, or topographically localize hemorrhages (e.g., 
subhyaloid, sub-ILM, or subretinal hemorrhages) [31, 33, 54]. Cases of proliferative 
diabetic retinopathy with clinically significant macular edema can be optimally 
assessed to decide if an ILM peeling is needed (Figure 6) [55–58]. These clinical 
circumstances could potentially represent a scenario in which the use of MIOCT can 
facilitate surgery and enhance outcomes.

2.4 Pediatric retinal surgery

The age and cooperation of the pediatric patients make MIOCT a potentially 
useful tool to deploy in the examination under general anesthesia, in order to 
improve the understanding of pathologies such as retinopathy of prematurity 
(ROP), shaken baby syndrome, or any other vitreoretinal conditions that do not 
necessarily require VPP, like retinoblastoma [59–62]. Retinoschisis, preretinal 
structures and membranes, as well as lamellar or full-thickness retinal holes, which 
were not previously appreciated during an office examination, can be evidenced in 
ROP or shaken baby syndromes, respectively [59, 62].

2.5 Other vitreoretinal conditions

Chorioretinal biopsy cases could be benefitted by the correct identification of 
the anatomical layers conforming the surgical plane and differentiation between 
normal tissue and lesion. The aid of MIOCT can impact on retinal prostheses 
implantation (e.g., Argus II implants for retinitis pigmentosa), providing precise 
information of the implant location and allowing a correct positioning [33, 63, 64].

3. Conclusion

The rapid technological evolution of our era has allowed us to consider this 
potentially powerful field of imaging to further improve retinal surgery. Evidence 
has demonstrated that MIOCT is feasible and useful in the operating theater, 
providing valuable information to evaluate the surgical field in real time which 
can alter surgical decision-making, positively impact on short- and long-term 

Figure 6. 
Macular scan after pars plana vitrectomy in a patient with proliferative diabetic retinopathy. The b-scans 
evidence minor cystic edema and preserved macular architecture. After image assessment, the surgeon decided 
not to perform internal limiting membrane peeling.
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