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Chapter

Phytohormone-Mediated 
Homeostasis of Root System 
Architecture
Dongyang Xu and Masaaki K. Watahiki

Abstract

Unlike animals, most of the plants are sessile. This may be a reason why they 
developed the powerful ability of organ generation throughout their lifetime, 
which is distinct from the animals, whose generation potential is restricted in a 
certain period during development. Half part of the plant body, the root sys-
tem, is hidden under the ground, where there is a competition of resources, for 
example, water and nutrients or biotic stresses and abiotic stresses surrounding 
the root system. With its strong regeneration ability, the architecture of the root 
system is shaped by all of these environmental cues together with the internal 
developmental signals. In this process, phytohormones work as the regulatory 
molecules mediating the internal and external developmental signals, thus 
controlling the morphology and function of the root system architecture. This 
chapter introduces the development of root system regulated by various phyto-
hormones, like auxin, cytokinin, etc.
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1. Anatomy and development of root

1.1 Root system architecture

In different plant species, root system architecture (RSA) has diverse morpholo-
gies. There are basically two types of RSA, the taproot system (or allorhizic system) 
in gymnosperms and dicotyledons, like Arabidopsis thaliana (Arabidopsis), tomato 
(Solanum lycopersicum L.), carrot (Daucus carota), and poplar (Populus spp.) and 
the fibrous root system (or homorhizic system) in monocotyledons such as maize 
(Zea mays L.), rice (Oryza sativa L.), onion (Allium cepa), garlic (Allium sativum), 
and tulip (Tulipa spp.) [1]. The taproot system consists of a single thick central 
primary root (PR) with thin or no lateral roots (LRs); the fibrous root system has 
small and short-lived primary and adventitious roots (ARs) derived from shoots, 
stems, or leaves [1].

1.2  Intrinsic developmental signals and environmental conditions modify root 
system architecture

Arabidopsis as a eudicot has a taproot system, which consists of an embryonic 
radicle-derived PR and postembryonic-developed LRs and ARs. Root regeneration 
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exists throughout the plants’ lifetime; it is a distinctive feature of plants and con-
tributes to their robustness in adverse conditions.

In Arabidopsis, LRs initiate from pairs of pericycle cells that possess develop-
mental potential as plant stem cells. These pericycle cells are selected and directed 
to become LR founder cells and form LRs by both intrinsic and environmental 
signals [2–5]. The primary LR is initiated from the basal meristem of the PR, where 
root cap-derived auxin influences the amplitude of oscillatory gene expression in 
the basal meristem and the elongation zone of the root, which leads to the pre-
patterning of LR initiation sites [6, 7]. The pre-patterning process is marked by the 
expression of a series of genes, like GATA23, MEMBRANE-ASSOCIATED KINASE 
REGULATOR 4 (MAKR4), and IAA19 [7]. In the basal meristem and elongation 
zone, DR5::Luciferase expression was observed to rhythmically pulse with a period 
of ~6 h, which matched with the period of LR pre-branch site production [6]. It is 
recently reported that the source of auxin is provided by the cyclic programmed cell 
death of root cap cells [8, 9].

It is noteworthy that not all of the pre-branch sites emerge to be LRs [6]. The 
dormant pre-branch sites may present a selective mechanism for LR formation 
under certain growth conditions, such as water availability, nutrient levels, physical 
obstacles, or damage [5, 10–13]. It is interesting that many of the external signals 
converge on phytohormones to regulate root development. Among these phytohor-
mones, auxin functions as a central mediator.

Mechanical forces are important regulators for plant morphogenesis. LRs always 
emerge from the convex side of PR bending, resulting in a left-right alternation of 
LRs. Bending caused by gravitropic curvature led to the initiation of LRs, where 
a subcellular relocalization of PIN1 was observed [11]. Release the pericycle cells 
from the restraints of adjacent endodermis by targeted single cell ablation of 
endodermal cells triggered the pericycle to reenter the cell cycle and induced auxin-
dependent LR initiation [14]. Excision of the Arabidopsis PR leads to the promotion 
of LR formation, which is mediated by activated auxin biosynthesis and auxin 
transport [15].

2. Roles of phytohormones on root formation

2.1 Auxin

The phytohormone auxin which plays fundamental roles in many aspects of 
plant growth and development is also a well-documented key regulator of LR 
development [16, 17]. The natural auxin, indole-3-acetic acid (IAA), is mainly syn-
thesized in a two-step pathway from tryptophan. First, tryptophan is converted to 
indole-3-pyruvate (IPA) by the TAA1/SAV3 family of aminotransferases; IPA is then 
converted to IAA by the YUCCA (YUC) family of flavin monooxygenases [18–23]. 
Auxin biosynthesis has been shown to play an essential role on both programed and 
wound-induced LR and AR developments [15, 24, 25].

Polar auxin transport (PAT), mediated by auxin influx (AUX1 and LAXs) and 
efflux carriers (PINs and MDR/PGPs) [26–29], generates auxin gradients and 
maintains an auxin maximum to regulate LR formation and positioning [17, 30–33].

Auxin signaling is known to be an integrator of endogenous and exogenous 
signals for root branching [17, 30, 34, 35]. It begins with the degradation of a class of 
AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) through TRANSPORT INHIBITOR 
RESPONSE 1 (TIR1) auxin receptor [36, 37], resulting in the activation of the 
AUXIN RESPONSE FACTOR (ARF) [38, 39]. ARF7 and ARF19 transcription 
factors further induce the expression of downstream target genes like LATERAL 
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ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) 
family genes LBD16/ASL18 and LBD29/ASL16, promoting LR initiation at the 
protoxylem-pole pericycle cells [40–43].

2.2 Cytokinin

Cytokinin is also a main player in root development. In higher plants, isopen-
tenyladenine (iP), trans-zeatin (tZ), and dihydrozeatin (dZ) are the predominant 
cytokinins [44]. Cytokinin level and patterning in plant are controlled by a fine 
equilibrium between cytokinin synthesis and catabolism [44, 45]. Cytokinin bio-
synthesis is dependent on the activity of ATP/ADP-isopentenyltransferase (IPT) and 
LONELY GUY (LOG) gene family [46–48], and the metabolism is mainly through 
the CYTOKININ OXIDASE/DEHYDROGENASE (CKX) genes [44, 45]. Cytokinin 
can also be inactivated through conjugation to glucose [49]. The spatial and tem-
poral distribution of cytokinin is in part due to the specific expression of cytokinin 
synthesis and catabolism genes [45, 47, 48, 50–52].

In Arabidopsis, cytokinin signaling starts with the perception by the transmem-
brane cytokinin receptors ARABIDOPSIS HISTIDINE KINASE (AHK), AHK2, 
AHK3, and AHK4/WOL1/CRE1 [53–55], which target the histidine phosphotrans-
fer protein AHPs to activate the type-A and type-B ARABIDOPSIS RESPONSE 
REGULATORS (ARRs) that negatively and positively regulate cytokinin signaling, 
respectively [55–61]. Two type-A ARRs, ARR7, and ARR15 were induced by both 
cytokine and auxin and are essential for embryonic root development [62].

Although some evidences showed that cytokinins act as both local and long-
distance signals [51, 63–65], and some transporter proteins have been shown to be 
involved in cytokine transport [66–70], the molecular mechanisms of cytokinin 
transport are still not well characterized.

Postembryonic root development is regulated by the root apical meristem 
(RAM), where cytokinin is known to act antagonistically with auxin to control the 
balance of cell division in the division zone and cell differentiation in the transition 
zone, which is essential for the maintenance of the RAM and affects the growth 
and patterning of the root [64, 71]. Application of cytokinin reduces the number of 
meristem cells and the size of RAM and promotes cell differentiation in the transi-
tion zone; cytokinin biosynthesis and signaling mutants as well as CKX overexpres-
sion mutants have a larger RAM with more meristem cells [45, 64, 72]. Conversely, 
auxin treatment increases meristem size and promotes cell division in the proximal 
meristem, and auxin transporter PIN mutants display a smaller RAM [64, 73]. 
The cross-talk of cytokine and auxin in regulating RAM activity was shown to 
converge on the auxin-inducible AUX/IAA family gene SHORT HYPOCOTYL 2/
INDOLE-3-ACETIC ACID 3 (SHY2/IAA3) in the transition zone, where cytokinin 
activates SHY2 via the AHK3/ARR1 two-component signaling pathway to suppress 
PIN3 and PIN7 expression and promote cell differentiation, while auxin suppressed 
SHY2 protein, leading to the activation of PINs and promotion of cell division 
[71]. Furthermore, Moubayidin et al. [74] revealed that in transition zone, SCR, a 
member of the GRAS family of transcription factors, directly represses the expres-
sion of ARR1, which controls auxin production via the ASB1 gene and sustains stem 
cell activity, to simultaneously control stem cell division and differentiation and 
ensure coherent root growth. Cytokinin affects the expression of multiple PINs 
differentially in a tissue-specific manner to regulate auxin distribution [75, 76]. 
Auxin-cytokinin interactions lead the generation of distinct hormonal response 
zones, thus controlling the development of root vascular tissue.

On contrary to auxin, which is a positive regulator of LR development, cytokinin 
acts as a negative regulator of LR formation. Cytokinin suppresses LR initiation 
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through downregulating PIN expression and preventing the establishment of auxin 
gradient in LR founder cells [77]. Mutants with reduced cytokinin level or deficient 
cytokinin signaling increased the number of LRs [45, 58, 60, 78], while cytokinin 
treatment suppresses LR initiation and development [77, 79, 80]. Li et al. [80] 
reported that cytokinins inhibit LR initiation by blocking the cell cycle of pericycle 
founder cell at G2 to M transition phase while promoting LR elongation by stimula-
tion of the G1 to S transition.

Through mutant analysis Chang et al. [81] showed that cytokinin biosynthesis 
genes IPT3 and IPT5 and all three cytokinin receptor genes AHK2, AHK3, and 
CRE1/AHK4 act redundantly during LR initiation, and early stages of lateral root 
primordia (LRP) formation are particularly cytokinin sensitive. They suggest that 
cytokinin may serve as a positional signal for new LRP formation. In rice, ERF3 
interacts with WOX11 to promote crown root initiation and elongation by regulat-
ing the cytokinin-responsive gene RR2 [82]. Cytokinin has also been shown to 
modulate LR formation by mediating environmental cues. Jeon et al. [83] showed 
that CYTOKININ RESPONSE FACTOR 2 (CRF2) and CRF3 encoding APETALA2 
transcription factors regulate Arabidopsis LR initiation under cold stress.

2.3 Other phytohormones

Other phytohormones, like abscisic acid (ABA), gibberellic acid (GA), brassino-
steroid (BR), jasmonic acid (JA), ethylene, and strigolactone (SL), also participate 
in root growth and development.

Signora et al. [84] showed that ABA plays an important role in mediating the 
effects of nitrate on LR formation in Arabidopsis. Brady et al. [85] reported that 
ABSCISIC ACID INSENSITIVE 3 (ABI3) is involved in auxin signaling and LR 
development. De Smet et al. [86] reported that ABA application leads to the inhi-
bition of LR development immediately after the emergence of the LRP from the 
parent root and prior to the activation of the LR meristem in an auxin-independent 
manner. Shkolnik-Inbar and Bar-Zvi [87] showed that ABI4, which encodes an 
ABA-regulated AP2 domain transcription factor, mediates ABA and cytokinin inhi-
bition of LR formation through the reduction of PAT. Ding et al. [88] reported that 
ABA signaling and auxin homeostasis regulate WRKY46 to modulate the develop-
ment of LR in osmotic/salt stress condition.

Hansen [89] reported on the GA-mediated light dependent promotion and inhi-
bition of AR formation. Through mutant analysis, Yaxley et al. [90] showed that GA 
is important for normal root elongation in pea. Fu and Harberd [91] showed that 
auxin regulates root growth through GA-mediated DELLA protein destabilization. 
Steffens et al. [92] showed that GA is ineffective on its own but acts synergistically 
with ethylene to promote the number of penetrating roots and the growth rate of 
emerged roots in deepwater rice.

BR is a positive regulator of root development [93]. Bao et al. [94] showed that 
BRs interact with auxin to promote LR development.

JA, a crucial plant defense hormone, also participated in the regulation of root 
development. Raya-González et al. [95] observed that low concentrations of JA 
inhibited PR growth through an auxin-independent manner and promoted LR 
formation auxin-dependently, and JA receptor COI1 is involved in JA-induced LR 
formation and LR positioning. Cross-talk between JA and auxin has been frequently 
reported. JA has been reported to be implicated in YUC9-mediated auxin biosyn-
thesis in wounded leaves in Arabidopsis [96]. Cai et al. [97] also reported a cross-
talk between JA and auxin biosynthesis during LR formation mediated by ERF109. 
Gutierrez et al. [98] showed that auxin controls Arabidopsis AR initiation through 
the regulation of JA homeostasis.
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Ethylene is also a well-known phytohormone that participates in the plant 
defense signaling pathways. Strader et al. [99] reported that ethylene interact with 
auxin to control root cell expansion. Ivanchenko et al. [100] observed application 
of low level of ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) 
promotes LRP initiation, while higher doses of ACC strongly inhibits LRP initiation 
but promotes LRP emergence; this regulation of LR initiation and emergence by 
ethylene is through interactions with auxin. Lewis et al. [101] reported that ethylene 
suppresses LR formation through promotion of PIN3 and PIN7-mediated auxin 
efflux to prevent local auxin accumulation.

Jiang et al. [102] showed that SL analog GR24 negatively influenced LR priming 
and emergence, which is dependent on the intimate connection with auxins and 
cytokinins, with the PAT capacity as a central player.

3. Conclusions

The root system of higher plants is modified by intrinsic developmental 
signals and diverse environmental cues. Both the internal and the external 
signals converged on phytohormones to regulate the formation of a highly 
plastic and adaptive RSA, which sustains the growth of plants even in adverse 
conditions. Several lines of evidences suggest that cross-talks among different 
phytohormones are essential for the regulation of root development, and auxin 
plays a central role in these processes. Although auxin and cytokinin as the key 
regulators of root development have been extensively studied, the roles of other 
phytohormones still need to be further characterized to give us a full view of 
plant root development.
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Acronyms and abbreviations

RSA root system architecture
PR primary root
LR lateral root
AR adventitious root
IAA indole-3-acetic acid
PAT polar auxin transport
iP isopentenyladenine
tZ trans-zeatin
dZ dihydrozeatin
RAM root apical meristem
LRPs lateral root primordia
ABA abscisic acid
GA gibberellic acid
BR brassinosteroid
JA jasmonic acid
SL strigolactone
ACC 1-aminocyclopropane-1-carboxylic acid
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