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Chapter

Measurement of Heat and Mass
Flow Characteristics of Nanofluid
in a Porous Parallel-Plate
Channel by Darcy-LTNE/LTE,
Brinkman-LTNE/LTE Models
Mohsan Hassan

Abstract

In current study, fully developed flow of Al2O3-water nanofluid with forced
convection heat transfer in channel is investigated with different models of heat and
mass distribution. The channel is filled with porous media of open-celled Cu metal
foams. The Darcy and Brinkman models are used for the mass flow; however, the
heat transfer distribution is examined through the local thermal equilibrium (LTE)
and the local thermal non-equilibrium (LTNE) models. Exact solutions for Darcy-
LTE, Brinkman-LTE, Darcy-LTNE, and Brinkman-LTNE models are obtained.
Temperature profiles by these different models are discussed under effect of nano-
particle concentration and compare the profiles with each other.

Keywords: nanofluid, porous media, Darcy-LTE, Brinkman-LTE, Darcy-LTNE,
Brinkman-LTNE models

1. Introduction

Studies on heat transfer in porous media have been augmented rapidly. The
porous media likely filled with metallic foams with open cells, metallic sintered
fiber felts, or metallic lattice frame structures have high thermal conductivity and
have much importance in different engineering areas such as heat transport
enhancement, thermal storage, solar thermal utilization, modeling of biological
tissues, etc. There are two main models, the local thermal equilibrium (LTE) and
the local thermal non-equilibrium (LTNE), which can be used to represent heat
transfer phenomena in a porous medium. The LTE model can be used effectively to
examine the heat transfer in porous media when the temperature difference
between the fluid phase and that of the solid phase is small. But not in all situations
the differences between temperatures are ignored. In these cases, the influence of
the interfacial surface and interstitial convective heat transfer coefficient became
major factors of heat exchange among the fluid and solid phases. In such cases,
LTNE model needs to be utilized.
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A number of researchers investigated heat transfer through LTE model in
porous media that are made of low-conductive materials. Poulikakos and
Kazmierczak [1] present a fully developed convective flow in a channel with
partially filled porous matrix. They modeled the problem of heat and mass flow in
the porous medium by using the Brinkman-LTE model to see the effect of param-
eters on the flow field and on the heat. Vafai and Kim [2] investigated the forced
convection flow in a porous medium channel through Forchheimer-LTE model
and found a significant increase in the rate of heat transfer as the inertia parame-
ter increases especially for high- to medium-permeability porous media. Gong
et al. [3] studied the influence of the thermal conductivity, permeability, and the
porous material’s thickness on heat transfer by using a Brinkman-LTE model in
annular duct. Their obtained results display that heat transfer is improved by
increasing either the thermal conductivity or the permeability. Cheng and Hsu [4]
studied the heat and mass flow in an annulus enclosed with porous media by using
Brinkman-LTE model under the influence of permeability and porosity. Mitrovic
and Maletic [5] got the results for heat and mass flow in a parallel-plate porous
channel by using the LTE model with respect to asymmetrical conditions.
Sheikholeslami et al. [6] investigated the free convection flow in permeable
enclosure by using Darcy-LTE model. In another study, he used the Darcy-LTE
model for free convection flow in porous cavity [7].

In highly thermal conductive porous media, solid has usually higher thermal
conductivity three to five times more than the fluid. In this case, the LTE model no
longer satisfies the requirements of modeling. Then two-energy equation LTNE
model is used to measure accurate temperature distribution in fluid and solid
phases. Kuznetsov [8] got the results of heat transport phenomena in narrow annu-
lus by using Darcy-LTNE model. Xu et al. [9] studied the Forchheimer-LTE/
Forchheimer-LTNE models for heat transfer in pore channel having different
thermal conductivities of fluid and solid phases and found the maximum heat
distribution in the case of LTE model as compared to LTNE model. Lu et al. [10]
described the force convection flow in cylinder fill with pore spume by using
Brinkman-LTNE models. Zhao et al. [11] discussed the heat and mass flow through
porous media in annulus by using Brinkman-LTNE. Ouyang et al. [12] briefly
studied the heat transport phenomena in equidistant-plate channel fill with porous
matrix. Xu et al. [13] investigated the mass flow by Brinkman model and LTNE
model for heat transfer in equidistant plates filled with mini-spume. Shaikh and
Memon [14] provided the numerical results for heat transport in round pipe with or
without pore medium by using Darcy-Brinkman-Forchheimer models along LTNE
model. Sheikholeslami and Houman [15] reported the transportation of fluid inside
a porous cavity through LTNE model.

An important heat transfer fluid is nanofluid that is used in industries
because of high rates of heat transfer. The main purpose of nanofluids is to
achieve great enhancement in thermal or rheological properties. In a continuation
of achieving better thermal conductivity and thermal performance of nano-
material, many studies have been done [16–20]. Recently, Sheikholeslami [21]
demonstrated the nanofluid flow in a porous enclosure by Darcy law model. In
another study, he investigated the nanofluid flow in a porous media through non-
Darcy law model [22]. In current study, keeping in mind these thermal
properties of nanofluid, its fully developed convective flow in a parallel-plate
channel filled with highly porous media is investigated. For thermal transport in
porous media, LTE and LTNE models are utilized with Darcy and Brinkman
models. In addition, the temperature profiles under nanoparticle concentration
for both different approaches of heat transfer with constant heat flux at wall are
calculated and compared.
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2. Modeling and formulation

Consider the fully developed forced convection flow of nanofluid through a
parallel-plate porous channel filled with open-celled metallic foams. The schematic
diagram of the channel is shown in Figure 1.

Two infinite plates with height 2H are exposed by constant heat flux qw. In this
problem, Darcy-LTE, Brinkman-LTE, Darcy-LTNE, and Brinkman-LTNE models
are employed for mass flow and heat transfer process in porous media with
hydraulically and thermally fully developed conditions.

For fully developed fluid flow, momentum equation with Brinkman term is

0 ¼ �
dp

dx
þ
μe

ε

d2u

dy2
�
μnf

K
u: (1)

Here, u is the velocity, μe is the effective viscosity, μnf is the viscosity of

nanofluid, K is the permeability, and ε is the porosity.
Temperature distribution in porous media owns two basic models LTE and

LTNE. The LTE model containing one energy equation that treats the same value of
temperature for fluid and solid phases is given in Eq. (2), while the LTNE model
having two-energy equations that treats the different values of the temperatures for
solid and fluid phases is shown in Eqs. (3) and (4):

ρCp

� �

e
u
∂Tf

∂x
¼ ke

∂
2Tf

∂y2
, (2)

0 ¼ kse
∂
2Ts

∂y2
� hA Ts � Tf

� �

, (3)

ρCp

� �

e
u
∂Tf

∂x
¼ kfe

∂
2Tf

∂y2
þ hA Ts � Tf

� �

: (4)

In the above equation, Tf is the temperature of fluid phase, Ts is the temperature

of solid phase, h is the heat transfer coefficient, A is the specific surface area, ρCp is

Figure 1.
Geometry of problem.
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the heat capacity, ke is the effective thermal conductivity, kfe is the fluid phase’s

thermal conductivity, and kse is the solid phase’s thermal conductivity.
For corresponding boundary conditions, the temperature of the solid

and the fluid at the wall interface will be the same, and velocity is considered to
be zero:

y ¼ H : u ¼ 0, Tf ¼ Ts ¼ Tw,

y ¼ �H : u ¼ 0, Tf ¼ Ts ¼ Tw,
(5)

where Tw is the temperature at interface.
The total heat flux qw is shared among the solid and fluid phases’ subject to their

temperature gradients and effective conductivities at the wall:

y ¼ H : kfe
∂Tf

∂y
þ kse

∂Ts

∂y
¼ qw,

y ¼ �H : kfe
∂Tf

∂y
þ kse

∂Ts

∂y
¼ qw:

(6)

The boundary condition cross-ponding to symmetry condition can be used as

y ¼ 0 :

∂u

∂y
¼ 0,

∂Tf

∂y
¼

∂Tf

∂y
¼ 0 (7)

In obtaining the analytical solutions of the above governing equations, the
following dimensionless parameters are employed:

Y ¼
y

H
,U ¼

u

um
, P ¼

K

μfum

dp

dx
, θs ¼

Ts � Tw

qwH=ks
,

θf ¼
Tf � Tw

qwH=ks
, s ¼

K

H2 , C ¼
kf
ks
, D ¼

hAH2

ks
:

(8)

2.1 Darcy-LTNE model

In this case, Darcy model for fluid flow and LTNE model for temperature
distribution in solid and fluid phases are utilized. In the Darcy model, the velocity
distribution is taken to be uniformed. So, the energy equations for solid and fluid
phases are dimensionless as

kse
ks

d2θs

dY2 �D θs � θf
� �

¼ 0, (9)

C
kfe
kf

d2θf

dY2 þD θs � θf
� �

¼ 1: (10)

2.2 Darcy-LTE model

In this case, the energy equation for the LTE model is normalized as

C
ke
kf

d2θf

dY2 ¼ 1 (11)
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2.3 Brinkman-LTNE model

In this part, the Brinkman and LTNE models for heat and mass transfer are
utilized. The dimensionless governing equations are obtained as

1

ε

μe

μf

d2U

dY2 � s2
μnf

μf
U þ P

 !

¼ 1, (12)

kse
ks

d2θs

dY2 �D θs � θf
� �

¼ 0, (13)

C
kfe
kf

d2θf

dY2 þD θs � θf
� �

¼ U: (14)

2.4 Brinkman-LTE model

For the Brinkman and LTE models, governing equations in dimensionless
form are

1

ε

μe

μf

d2U

dY2 � s2
μnf

μf
U þ P

 !

¼ 1, (15)

C
ke
kf

d2θf

dY2 ¼ U: (16)

The dimensionless boundary conditions are

Y ¼ 1 : U ¼ 0, θf ¼ θs ¼ 1,

y ¼ 0 :

dU

dY
¼ 0,

dθf
dY

¼
dθs
dY

¼ 0,

y ¼ �1 : U ¼ 0, θf ¼ θs ¼ 1:

(17)

2.5 Physical properties

In the above equations, the effective viscosity μe is defined as

μe ¼ 1þ 2:5εð Þμnf , (18)

where

μnf ¼
μf

1� ϕð Þ2:5
: (19)

In the above equation, ϕ is the nanoparticle volume fraction and μf is the

viscosity of base fluid.
Since the heat is transferred via nanofluid in porous media, the effective thermal

conductivity is as follows:

ke ¼
kmknf

εkm þ 1� εð Þknf
, (20)

kfe ¼ εknf , (21)

kse ¼ 1� εð Þknf : (22)
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In the above equation, knf is given as

knf ¼
kp þ 2kf þ 2 kp � kf

� �

ϕ

kp þ 2kf � kp � kf
� �

ϕ
kf , (23)

where kf is the thermal conductivity of fluid, kp is the thermal conductivity of

nanoparticle, and km is the thermal conductivity of medium.

3. Results and discussion

The behavior of nanoparticle concentration on temperature distributions in solid
and fluid phases is displayed in section. For fluid phase, consider the nanofluid
which is repaired by water and alumina oxide nanoparticles. The porous medium is
taken as solid phase that is made by open-celled copper metallic foams. The
governing equations for physical problem are demonstrated by taking Brinkman-
LTNE/Brinkman-LTE and Darcy-LTNE/Darcy-LTE models and converted into
non-dimensionless form to find its exact solution. The exact solutions of these
equations are obtained by using computational software Mathematica 9. To see the
effects of nanoparticle concentration, the values of other embedding parameters are
taken to be fixed as ε ¼ 0:7, s ¼ 0:64, C ¼ 0:0015, and D ¼ 1.

The influence of nanoparticle concentration on the temperature profiles of fluid
and solid phases for Brinkman-LTNE and Darcy-LTNE models is shown in
Figure 2. It shows that the temperature profiles of fluid and solid are increased due
to improvement in thermal physical properties of fluids especially thermal conduc-
tivity through increasing the concentrations of nanoparticles. Here negative sign
shows that fluid transfers the heat to the wall. In this regard, temperature profiles of
solid phase in both models are increased because of increasing the temperature of
fluid phase by nanoparticle concentrations. The temperature variation for
Brinkman-LTNE and Darcy-LTNE models has similar trend, but the temperature
profile of Brinkman-LTNE models is found maximum as compared to the Darcy-
LTNE models.

Figure 2.
Effect of nanoparticle concentrations on the temperature profiles of Brinkman-LTNE and Darcy-LTNE models.
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The temperature profiles for Brinkman-LTE and Darcy-LTE models with
effects of nanoparticle concentration are displayed in Figure 3. In Figure 3, it is
seen that the temperature profiles for both models are amplified by increasing the
nanoparticle concentrations. In comparison of models, it is noted that the effects
of nanoparticle concentrations are dominant in the case of LTE as compared to
LTNE. Moreover, the temperature at wall for LTE and LTNE models is the same but
with maximum boost in the case of LTNE models at center. Moreover, the heat
transfer with LTNE approach is smaller as compared to LTE approach because of
thermal resistance due to solid phase.

4. Conclusions

A fully developed heat and mass flow of Al2O3-water nanofluid in a parallel-
plate channel filled with porous media of Cu material is investigated by using
Darcy-LTE/Darcy-LTNE and Brinkman-LTE/Brinkman-LTNE models. It is found
that the distribution of temperature is improved in both approaches of heat
transfer by using nanofluid. But temperature distribution is overestimated in LTE
approach as compared to LTNE approach. This overestimate results are due to
neglecting the difference between thermal conductivities of fluid and solid phase.

Nomenclature

u velocity
μe effective viscosity
μnf viscosity of nanofluid

μf viscosity of base fluid

ε porosity
Tf temperature of fluid

Ts temperature of solid phase
Tw temperature at interface

Figure 3.
Effect of nanoparticle concentrations on the temperature profile of Brinkman-LTE and Darcy-LTE models.
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ρCp heat capacity
ϕ nanoparticle volume fraction
K permeability
ke effective thermal conductivity
km thermal conductivity of medium
kfe thermal conductivity of fluid phase

kse thermal conductivity of solid phase
kp thermal conductivity of nanoparticle
kf thermal conductivity of base fluid

qw heat flux
h heat transfer coefficient
H height
A specific surface area
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