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Chapter

Prologue: Nanofibers
Gustavo M. Do Nascimento

1. Introduction

The preparation of polymers with morphology well determined in the nanomet-
ric range is one of the great challenges in the polymer science and technology. The 
possibility to prepare nanofibers (or nanofibers) brings the opportunity to produce 
polymers with new or reinforced properties. Many ways have been developed to 
synthesize polymeric nanofibers, for instance, the polymerization into media having 
large organic acids. The interfacial polymerization can also form nanofibers at an 
aqueous-organic interface. Hence, a great variety of “bottom-up” approaches, such 
as electrospinning, interfacial, seeding, and micellar, can be employed to obtain pure 
polymeric nanofibers. The preparation of nanostructured polymers by self-assembly 
with reduced post-synthesis processing warrants further applications, especially 
in the field of biotechnology and removable resources. The notable applications 
include tissue engineering, biosensors, filtration, wound dressings, drug delivery, 
and enzyme immobilization. In this chapter, the state-of-the-art results of synthesis, 
spectroscopic characterization, and applications of polyaniline nanofibers will be 
reviewed. The main goal of this work is to contribute to the rationalization of some 
important results obtained in this wonder area of polymeric nanofibers.

2. Nanofibers

Despite that nanofibers are produced for a long time, only in recent years, 
the scientific interest in this field has rapidly increased. The reason for that is, 
probably, owing to the improvement of the synthetic pathways in the production 
of better nanofibers. In addition, the combination of spectroscopic and micro-
scopic techniques leads to a better corrletion between structure and properties of 
nanofibers. Figure 1 shows that in 2018, more than 6000 papers having “nanofi-
ber” or “nanofibre” as keyword were published. In addition, Figure 2 shows that 
at least 20 different research fields have more than 1000 papers published related 
to “nanofiber” or “nanofibre.” These two graphs clearly show that nanofibers are 
one of the focuses in the science of advanced materials.

Our group has dedicated to the preparation and characterization of polyaniline 
nanofibers [1–10]. Among the different techniques used for structural investiga-
tion, resonance Raman spectroscopy is the most important technique for these 
systems. Thus, in this chapter, mainly the Raman results obtained for polyaniline 
(PANI) will be discussed.

3. Nanofibers of conductive polymers

Nowadays, the preparation of conductive polymers with organized morphology 
and structure is a desired deal. Since the discovery of poly(acetylene) doping process 
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in the early 1970s [11–16] and posterior investigation of its properties mainly done by 
Hideki Shirakawa, Alan J. Heeger, and Alan G. MacDiarmid (see Figure 3), the field 
of conductive polymers brings many contributions to different applications: from 
batteries to organic light-emitting diode (OLED) displays. The preparation of nano-
structured conductive polymers can turn the polymer more efficiently to applications. 
The doping process [17–25] in conjugated polymers is characterized by the passage 
from an insulating or semiconducting state with low conductivity, typically ranging 
from 10−10 to 10−5 Scm−1, to a “metallic” regime (ca. 1–104 Scm−1; see Figure 3).

Reversibility is one main characteristic of chemical doping; in fact, the 
polymer can return to its original state without major changes in its structure. 
Counterions stabilize the doped state in the polymeric chain. The conductivity 
can be modulated only by adjusting the doping level, varying from non-doped 
insulating state to highly doped or metallic. All conductive polymers (and their 
derivatives), for example, among others, may be doped by p (oxidation) or n 
(reduction) through chemical and/or electrochemical process [16–18]. The doping 
process can also be characterized by no loss or gain of electrons from external 

Figure 1. 
Number of publications by year having the keyword “nanofiber” or “nanofibre” in the text. The research was 
done in November 25, 2018, using Web of Science database. The total score found are 54,611 papers.

Figure 2. 
Number of publications by year having the keyword “nanofiber” or “nanofibre” in the text divided by the main 
research areas or categories. The research was done in November 25, 2018, by using Web of Science database.
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agents. This is the point for polyanilines (see Figure 4), and this process is named 
internal redox process.

PANI-ES is formed after protonation with the appearance of the free radical 
tail of band in the NIR spectral region (starting from ca. 1.6 eV or 780 nm), which 
is attributed to a charge transfer from the highest occupied energy level of the 
benzene ring (HOMO) to the lowest unoccupied energy level of a semiquinone 
(polarons) ring (LUMO) [25].

Figure 3. 
The Nobel winners (Hideki Shirakawa, Alan J. Heeger, and Alan G. MacDiarmid) and the chemical 
structures of the most common conductive polymers. The conductivity values for different materials are 
displayed in comparison with conducting polymers before and after the doping process. The doping causes 
(addition of nonstoichiometric chemical species in quantities commonly low ≤10%) dramatic changes in the 
electronic, electrical, magnetic, optical, and structural properties of the polymer.

Figure 4. 
Generalized representation of chemical structure of PANI and its most common forms.
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PANI nanofibers can be prepared by using different routes, and the resulting 
polymer shows improvement in its electrical, thermal, and mechanical stabilities. 
The conventional synthesis of polyaniline, based on the oxidative polymerization 
of aniline in the presence of a strong acid dopant, typically results in an irregular 
granular morphology with a very small percentage of nanoscale fibers. Highly 
uniform PANI nanofibers with diameter ranging from 30 to 120 nm, depending on 
the dopant, are prepared by interfacial polymerization [26, 27]. The diffusion of 
the formed product from the interfacial solvent-solvent region to the bulk of the 
solvent can suppress uncontrolled polymer growth by isolating the fibers from the 
excess of reagents. In fact, the addition of certain surfactants to such an interfacial 
system grants further control over the diameter of the nanofibers. Isolation of the 
nanostructured PANI from the solution can be achieved by filtration in a nanopo-
rous filters or dialyzed, and then the cleaned solution containing the nanofibers is 
centrifuged in order to separate the nanofibers from the solution.

Another approach is the synthesis of PANI nanofibers or nanotubes by making 
use of large organic acids. These acids form micelles upon which aniline is polym-
erized and doped. Fiber with diameters from 30 to 60 nm can be modulated by 
reagent ratios [28–31]. PANI nanofibers can also be obtained in ionic liquids (ILs) 
as synthetic media [2, 6]. There is a large variety of ionic liquids, and the most used 
ones are derived from imidazolium ring, pyridinium ring, quaternary ammonium, 
and tertiary phosphonium cations. The most unusual characteristic of these systems 
is that, although they are liquids, they present structural organization and can act 
as a template-like system, and PANI nanofibers are obtained when the aniline is 
polymerized in these media.

4. Raman spectroscopy of polyaniline nanofibers

Raman spectroscopy is a technique par excellence for probing the vibrational 
frequencies by inelastic scattering the incident light (see Figure 5) [32–35]. In the 
conventional Raman spectroscopy, the intensities of the Raman bands are linearly 
proportional to the intensity of the incident light and proportional to the square of 
the polarizability tensor. However, when the laser line falls within the region of a per-
mitted electronic transition, the Raman bands that are tightly coupled or associated 
with the excited electronic state have a tremendous increase of about 105–6 times; this 
is what characterizes the resonance Raman effect. In the case of multi-chromophoric 
system, like polyaniline, just by tuning an appropriate laser radiation on an electronic 
transition of the polymer, the spectrum changes dramatically (see Figure 6).

PANI shows a characteristic Raman bands for each oxidized or protonated form 
[36–40]. The presence of a free carrier tail absorption in the UV–VIS–NIR spectra 
for both PANI nanofibers/nanotubes prepared with NSA (β-naphthalenesulfonic 
acid) or with DBSA (dodecybenzenesulfonic acid) confirmed that polymeric chains 
have an extended conformation. In addition, the band at 609 cm−1 is sensible to 
conformation changes of the PANI chains [1, 3]. The studies of doping and heat-
ing behavior of PANI-NSA nanofibers show the loss of the fibrous morphology 
of PANI after treatment with HCl solution [4]. However, the PANI nanofibers are 
more susceptible to cross-linking (bands at 578 and 1340 cm−1; see Figure 6) than 
conventional PANI, and after heating at 200°C, it is possible to dope the polymer 
with HCl and maintain the nanostructured morphology.

PANI nanofibers prepared from interfacial polymerization were also character-
ized by Raman spectroscopy. Bands at 200 and 296 cm−1 related to Cring-N-Cring 
deformation and lattice modes of polaron segments of PANI practically disappear 
in the Raman spectra of PANI nanofibers. The changes indicate the increase of the 
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torsion angles of the Cring-N-Cring segments. In addition, the FTIR spectra for PANI 
nanofibers display higher changes in the region from 2000 to 4000 cm−1. Both data 
are associated to the formation of bipolarons (protonated, spinless units) in the 
PANI nanofiber backbone higher than the conventional PANI. The PANI nanofiber 
morphology permits major diffusion of the ions inside the polymeric matrix leading 
to a more effective protonation of the polymeric chain [5]. In addition, only for 
PANI nanofibers with a diameter of 30.0 nm, low dispersion of the νC〓N band 
is seen (see Figure 7). The Raman dispersion is associated to the electron–phonon 
coupling into a conjugated structure. In other words, very low D values indicated 
more electronic homogeneity into the PANI nanofibers, due to the stacking of 
quinoid-quinoid rings, leading to high torsion Cring-N-Cring angles.

Figure 5. 
Schematic representation of Raman effect. The Raman scattering was discovered by C. V. Raman and is 
characterized by inelastic scattering of the incident radiation (νo) with laser energy (EO). The scattered light 
has two components: Stokes radiation (νs) with lower energy than Eo (Es < Eo) and the anti-stoke radiation 
(νas) with higher energy than Eo (Eas > Eo).

Figure 6. 
Resonance Raman spectra of PANI-NSA after heating at indicated temperatures and doping with HCl. For 
comparison the SEM images are also given.
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5. Conclusion

The structural studies of the polyaniline nanofibers by using resonance Raman 
spectroscopy, as the main technique, have been decisive to elucidate intra- and 
interchain interactions and chemical and thermal stabilities of PANI nanofibers. 
The presence of phenoxazine rings is observed in PANI nanofibers formed in micel-
lar media. The presence of these rings is crucial for stacking and stabilization of 
the fibers. In addition, the changes in bands at low energies are associated with an 
increase in the torsion angles of Cring-N-Cring segments due to the formation of bipo-
larons (protonated, spinless units) in the PANI nanofibers. The major diffusion of 
the ions inside the nanofiber gives a more effective protonation. However, only with 
the previous thermal treatment, it is possible to retain the nanofiber morphology.

Hence, the π-stacking between quinoid rings and the presence of π-π stacking 
formed by phenoxazine rings can be the driving forces for the formation of the fiber 
morphology of PANI. The quality of the PANI nanofibers can be monitored by the 
influence over the Raman dispersion curves. Finally, the example of characterization 
of PANI nanofibers by using Raman spectroscopy can be applied to other nanofiber 
materials with the improvement of future nanofiber structural studies.

Figure 7. 
Raman dispersion of PANI nanofibers.
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