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Chapter

Porous Low-Dielectric-Constant
Material for Semiconductor
Microelectronics
Yi-Lung Cheng and Chih-Yen Lee

Abstract

To provide high speed, low dynamic power dissipation, and low cross-talk noise
for microelectronic circuits, low-dielectric-constant (low-k) materials are required
as the inter- and intra-level dielectric (ILD) insulator of the back-end-of-line inter-
connects. Porous low-k materials have low-polarizability chemical compositions
and the introducing porosity in the film. Integration of porous low-k materials into
microelectronic circuits, however, poses a number of challenges because the
composition and porosity affected the resistance to damage during integration
processing and reduced the mechanical strength, thereby degrading the properties
and reliability. These issues arising from porous low-k materials are the subject of
the present chapter.

Keywords: porous low-k, porosity, Cu interconnects, BEOL, integration, plasma
damage, Cu drift, TDDB, reliability

1. Introduction

To obtain a high operation performance and to pack more chips in microelec-
tronics, the semiconductor industry spent a lot of efforts to accomplish successful
integration of the integrated circuits (ICs). As the dimensions of the device are
continuously shrinking with the advance of technology node, the carrier’s transit
time across the length of a transistor channel (called gate delay) decreases, while the
signal propagation through the interconnects [called resistance-capacitance (RC)
delay] increases, as shown in Figure 1. As a result, the effective speed of the device
is limited by the RC delay since 0.25 μm technology node [2–4]. The RC delay can
be reduced by using metals with low resistivity and dielectric materials with low
dielectric constant (k). Therefore, copper (Cu) and low-dielectric-constant (low-k)
materials have been introduced in back-end-of-line (BEOL) interconnects of ICs to
replace the conventional Al/SiO2 interconnects [4–7]. Cu with a resistivity of 1.7
μΩ-cm (2.7 μΩ-cm for Al) is becoming the common metallization material. Low-k
materials with k values lower than 4.0 (k value of SiO2) provide lower capacitance
between wires. To effectively reduce the k value of a dielectric film, low-polar
bonds and porosity are introduced into the film. The produced dielectric materials
are called porous low-k materials [8–10]. To provide a further low-k value, more
porosity is introduced into the low-k material; however, more integration
challenges arise.
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This chapter is an attempt to provide an overview of porous low-kmaterials. The
resulting issues and reliability during the integration of porous low-kmaterial in Cu
interconnects are discussed.

2. Low-k dielectric materials and deposition method

2.1 Low-k dielectric materials

The dielectric constant (k) of a dielectric material is generally described by
Clausius-Mossotti Eq. (1):

k� 1

kþ 2
¼ 4πN

3
α (1)

where k = ε/ε0, ε, and ε0 are the permittivity of the material and vacuum, N is
the number of molecules per unit volume (density), and α is the total polarizability,
including electronic (αe), distortion (αd), and orientation (αo) polarizabilities.
According to Eq. (1), decreasing the total polarizability (α) and/or density (N) is the
feasible method to effectively reduce the k value of a dielectric material. Reducing
the polarizability can be achieved by the use of low-polar bonds (like C-C, C-H,
Si-F, Si-CH3, etc.). Based on the used type of the low-polar bond, the produced low-
k dielectric material can be divided into two types: One type is organic polymer that
contains saturated and unsaturated and conjugated and aromatic hydrocarbons
[11]. However, this type low-k dielectric material is thermally unstable and has poor

Figure 1.
Gate and interconnect delay with technological generation (International Technology Roadmap for
Semiconductors [1]).
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mechanical strength and relatively high coefficient of thermal expansion (CTE). As
a result, the successful integration into the BEOL interconnects is still not achieved.

The other type is hybrid silica-based low-k dielectric material, which is the
mainstream inter-layer-dielectric (ILD) insulator used in BEOL interconnects. This
type of low-k dielectric material can be produced by doping fluorine or/and carbon
into the traditional SiO2 film. The formation of low-k dielectric materials are fluo-
rinated silicon glass (FSG) [11, 12] or carbon-doped silicon glass [SiCOH or called
organosilicate glass (OSG)] [11, 13]. Fluorine or carbon substitution lowers the k
value by decreasing the polarizability and increasing the free volume.

The minimum k value of the hybrid silica-based low-k dielectric material is
limited to be 2.6–2.7. To prevent a huge increase in the parasitic capacitance of
BEOL interconnects in the 45 nm or below technology nodes, a new low-k dielectric
material with k value less than 2.6 is required. The air has a minimum k value of
�1.0 in the world; as a result, the introduction of air pores in the existing low-k
dielectric film is the possible strategy to further reduce the k value. The produced
low-k dielectrics are porous, which are called “porous low-k dielectrics” [14, 15].
The k value of porous low-k dielectrics depends on the porosity and dielectric
constant of the film skeleton (k2) [16]:

k� 1

kþ 2
¼ V

k1 � 1

k1 þ 2
þ 1� Vð Þ k2 � 1

k2 þ 2
(2)

where k1 is the dielectric constant of the material inside the pores and V is the
average pore volume. The first term in the right side of Eq. (2) equals to zero if the
air is inside the pore (k1�1.0). As a result, porous low-k dielectrics with relatively
small k2 value and higher porosity can provide much lower k value. Currently,
porous low-k dielectrics have been successfully integrated into Cu interconnects
since 45 nm technology node. The widely used method to produce the porous low-k
dielectrics is co-deposition of a silica-like matrix together with a sacrificial organic
polymer (porogen) using plasma-enhanced chemical vapor deposition (PECVD).
Following, the sacrificial organic polymer in the deposited low-k dielectric material
is removed by ultraviolet (UV)-assisted thermal curing at a temperature range of
300–450°C in order to form the pores in the film. The precise composition and
porosity depend on the type of precursor molecules, the matrix/porogen ratio used
during deposition, and the curing conditions [17, 18].

2.2 Deposition method for porous low-k materials

Porous low-k dielectric materials can be produced by either spin-on technology
or chemical vapor deposition (CVD) method [14, 15, 17–20]. In the CVD method,
the deposition rate of CVD method is strongly dependent of the deposition tem-
perature. To obtain a suitable deposition rate, increasing the deposition temperature
is required to deposit the porous low-k dielectric material. However, the tempera-
ture of BEOL interconnects is limited to be less than 450°C because of melting
concern for metal conductors. With an assistant of plasma technology, the
deposition precursors are dissociated to form the active radicals under the electron
collision in the cold plasma. The generated active radicals with high reactivity
accelerate the deposition process, thus reducing the deposition temperature.

2.2.1 Spin-on technology

Spin-on technology has been used in semiconductor processing for photoresist
coating. It can also use to deposit the low-k dielectric material. The used dispensing
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liquid contains the deposition precursors for low-kmaterials, which is dropping into
the center of the substrate. The created centrifugal forces by rotating of the sub-
strate help to distribute the material on the surface. After the spinning step, a
heating (or bake) is required to remove solvent. The temperature is typically below
250°C. Finally, a curing at temperatures varying from 350 to 600°C is required to
obtain a stable film.

There are two methods to introduce the porosity into the film to produce porous
low-k dielectric materials by spin-on technology. One is through sol–gel process,
and the other is formed through the use of sacrificial particles (porogens) that are
desorbed during the curing process. In the sol–gel process, the formation of sub-
tractive porosity can be achieved by two approaches: the aging process and the
hierarchical organization of the primary particles in the sol (self-assembly) [21, 22].
The other method is the use of sacrificial porogens, in which molecular or supra-
molecular particles are added in the low-k dielectric precursor with the purpose of
tailoring the thermal stability. In the final curing process, these added molecular
particles are removed by pyrolysis effect. The detailed description about spin-on
technology to form porous low-k materials can be found elsewhere [23].

2.2.2 PECVD technology

PECVD is a complex process, involving a wide variety of scientific and technical
principles, including gas-phase reaction chemistry, thermodynamics, heat and
material transfer, fluid mechanics, surface and plasma reactions, thin film growth
mechanism, and reactors engineering. During the deposition process, the active
intermediates and structural units are formed in the gas phase and then absorbed in
the solid substrate. Finally, they migrate and react to form the matrix of the grow-
ing layer [11].

In the current semiconductor industry, the production of the porous low-k
dielectric material is relied on PECVD technology because the formation material is
more thermally stable and the k value can be lower than 2.0. The subtractive
porosity approach is the widely accepted method. In this method, a low-k (generally
is SiCOH) skeleton precursor mixed with a porogen precursor is introduced into
the reactor during the deposition. After the deposition, a dual-phase SiCOH-CHx

material is formed after the deposition. Tetramethylcyclotetrasiloxane (TMCTS),
octamethylcyclotetrasiloxane (OMCTS), decamethylcyclopentasiloxane
(DMCPS), and diethoxymethylsilane (DEMS) are the widely used skeleton
precursors [24–27]. These skeleton precursors have a common property with a
sufficiently low dissociation level under rf power in order to keep the sufficient
hardness for the produced porous low-k dielectric material. The porogen precursor
is organic molecule with sufficient volatility. Unsaturated cyclic hydrocarbons like
terpinenes or norbornenes, linear alkenes, or molecules with strained rings like
cycloalkene oxides or butadiene monoxide are the commonly used porogen
precursors [11, 28].

Following, it is necessary to remove the labile organic fraction CxHy from the as-
deposited SiCOH-CxHy film to form pores in the film. Thermal annealing, electron
beam, or ultraviolet (UV) irradiation methods are provided to remove the labile
organic fraction CxHy [29–31]. To reach better removal efficiency, it can be done by
UV-assisted curing. However, the temperature of the curing has to be limited at
�400°C. The mechanical strength (elastic modulus and hardness) of the porous
low-k dielectric material can also be improved by UV-assisted curing because the
UV curing can rearrange and enhance the cross-linking of the skeleton of the low-k
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material by breaking a fraction of mainly the Si-CH3 (Si-Me) bonds. The improve-
ment effect is associated to the used wavelength, temperature, and time of the UV
curing [32, 33].

Currently, a promising method to deposition of the porous low-k dielectric film
is using a single precursor molecule consisting of skeleton with embedded (or
grafted) porogen precursor. An example of such a porous SiCOH material is
Applied Materials’ Black Diamond 3 (BD3) dielectric film. The UV curing is
also modified to create more uniform porosity and improve the mechanical
properties [8, 33].

2.3 Characterizations of porous low-k dielectric materials

In order to successfully integrate the porous low-k dielectric material into Cu
interconnects, their physical, chemical, mechanical, and electric properties are
important consideration factors. Table 1 lists the main characterization techniques
for porous low-k dielectric materials. Detailed principles and operation procedures
can be found elsewhere [34, 35].

Table 2 lists the main properties of porous low-k dielectric materials and
compares to other generations of ILD materials (including SiO2, FSG, and OSG)
[36–38]. In addition to providing a lower k value, porous low-k dielectric materials
possess the degrading material properties. The degradation is more pronounced
with increasing porosity (for the reduction of k value) for porous low-k dielectric
materials. Therefore, the use of porous low-k dielectric materials in the ICs is
becoming more challenging.

Table 1.
Characterization techniques for porous low-k dielectric materials.
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3. Integration of porous low-k dielectric materials in Cu interconnects

As Cu metallization replaced Al metallization in BEOL interconnects, the
fabrication process was also switched to damascene approach from metal etching
approach because the Cu etching formation compounds are hardly volatile at low
temperature or the etch rate is relatively slow [39]. In the damascene pattering
process, a dielectric is firstly etched, and then a Cu metallization is filled and
polished. To prevent Cu diffusion and improve the adhesion with the dielectric
layer, a barrier is required to surround the Cu wire [40, 41].

Dual-damascene patterning process is widely used to fabricate BEOL intercon-
nects. In this method, both trench and via are patterned in a dielectric film
simultaneously, and Cu metallization is filled into both trench and via. Compared to
single-damascene patterning process, this method can reduce the processing step of
Cu metallization. According to the order of via and trench pattering, dual-damascene
patterning process has two types: “Via first” and “Trench first” processes [42, 43].
Generally, “Via first” dual-damascene process is widely used, plotted in Figure 2.

Table 2.
Properties of various dielectric materials.

Figure 2.
Via first dual-damascene patterning process: (A) Dielectrics (SiN/SiCN, SiCOH, SiO2) deposition. (B) Via-1
lithography and RIE. (C) ARC plug. (D) M-2 trench lithography and RIE. (E) Etching stop layer opening.
(F) Metal barrier and Cu seed deposition. (G) Electroplating Cu deposition. (H) Cu CMP.
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During the fabrication of BEOL interconnects, the used porous low-k dielectric
material as an interconnecting insulator undergoes dielectric deposition, photore-
sist, etching, stripping, Cu metallization deposition, and chemical mechanical
polishing (CMP) processes. Plasma damage, moisture/chemicals adsorption, Cu
diffusion, and mechanical stress occurred on the porous low-k dielectric materials.
These issues would reduce the electrical characteristics and reliability of the porous
low-k dielectric materials. The mechanism and the resulting effect will be discussed
in the following section.

In order to reduce the plasma-induced damage and pattern small features, the
metal hardmask method and the multilayer resist method, as plotted in Figures 3
and 4, respectively, are proposed since 32 nm technology node [44–46]. In the
metal hardmask process, the resist is stripped prior to the trench and via etching
into the porous low-k ILD; therefore, resist-stripping process-induced damage can
be minimal. However, the polymer may remain on the sidewalls of the trenches
during the trench etching step. The remaining polymer must be removed without
damaging the porous low-k dielectric material. Additionally, the stress in the metal
layer must be minimized to avoid pattern deformation after the etching process.
Metal residues can form on the etched surfaces and block etching of the porous low-
k dielectric material.

In the advanced technology nodes, the multilayer resist method is preferred
because it has an advantage to pattern small features. However, the porous low-k
dielectric material is fully exposed to the resist strips. In order to avoid

Figure 3.
Metal hardmask dual-damascene patterning process: (A) TiN, ARC, and resist deposition. (B) M-2 metal
hardmask RIE. (C) M-2 trench lithography. (D) Via-1 lithography. (E) Via-1 RIE. (F) M-2 oxide hardmask
RIE. (G) M-2/Via-1 RIE and M-1 capping layer RIE. (H) M-2/Via-1 Cu metallization.
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plasma-induced damage on the porous low-k dielectric material, low-plasma-
damage resist-stripping process is required for the multilayer resist method.

4. Electrical and reliability characteristics of porous low-k dielectric
materials

As porous low-k dielectric materials are used in the BEOL interconnects, the
change in the k value during the integration must be minimal. Additionally, the
electrical properties and reliability are the most important concerns. As a result,
the leakage current of the porous low-k dielectric between metal lines should be
maintained low. The time-dependent dielectric breakdown (TDDB) failure time
of the integrated BEOL structure at operating conditions should meet the
specifications.

4.1 Conduction mechanisms in porous low-k dielectrics

In a crystalline solid, as the electrons overcome the bandgap (or called energy
gap), the resulting current is detected. The bandgap is defined as the difference
between the energy of the lowest conduction band and that of the highest valence
band. For thermally deposited SiO2 dielectric film, the bandgap is around 8.9 eV
[47]. As carbon is doped into SiO2 dielectric film to form SiOCH low-k dielectric

Figure 4.
Multilayer resist dual-damascene process: (A) ARC and resist coating. (B) Via-1 lithography. (C) Via-1 RIE.
(D) Multilayer resist coating and M-2 trench lithography. (E) LTO and OPL RIE. (F) M-2 trench RIE. (G)
OPL strip and M-1 capping layer RIE. (H) M-2/Via-1 Cu metallization.
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material, the bandgap was determined to be between 8.0 and 10.0 eV, depending on
the low-k dielectric types and the characterization techniques [48–50]. If the carbon
content in the low-k dielectric film is not incorporated in the matrix network but
primarily exists as terminal methyl groups, its bandgap is similar to that of SiO2

film. However, if the carbon content is present in the network bonds by forming Si-
C-Si bridging structure, the bandgap value would drop dramatically. As porosity is
introduced into the SiOCH low-k dielectric material, the bandgap of porous SiOCH
low-k dielectrics (k = 2.0–3.3) is in the range between 7.5 and 10 eV [51]. The effect
of porosity on the bandgap of porous SiOCH low-k dielectrics is not pronounced.
More investigation about bandgap determination for porous low-k dielectric mate-
rials is required.

The conduction mechanisms of low-k dielectric materials are commonly
described by Schottky emission (SE), Poole-Frenkel (PF) emission, and Fowler-
Nordheim (FN) tunneling [52–54], as shown in the following Eqs. (3)–(5):

• Schottky emission (SE)

JSE ¼ A∗T2 exp �q
ϕSE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qE=4πε0εr
p

kT

 #"

(3)

• Poole-Frenkel (PF) emission

JSE � E exp �q
ϕPF �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qE=4πε0εr
p

kT

 #"

(4)

• Fowler-Nordheim (FN) tunneling

JFN � E2 exp
�8π

ffiffiffiffiffiffiffiffiffi

2m∗

p
qϕFNð Þ3=2

3qhE

" #

(5)

where J is current density, A* is Richardson constant,T is temperature, q is the
elementary charge, φ is barrier height, E is electric field, εo is permittivity of free
space, εr is dielectric constant, m* is effective electron mass, and h is Planck’s
constant.

SE and PF emissions are field-enhanced thermal excitation conduction models.
The excited electrons enter the conduction band from the low-k interface and the
trap states with coulomb potentials for SE and PF emissions, respectively. FN
tunneling conduction is caused by electrons tunneling from the metal Fermi energy
or trapping sites in the material itself into the low-k dielectric conduction band. SE
and PF emission currents are associated with the field and temperature. The former
exhibits a strong temperature dependency. However, FN tunneling current exhibits
a strong field dependency and is independent of temperature. Generally, PF emis-
sion is more likely the dominant conduction mechanism in low-k dielectric mate-
rials, especially at low fields. At high field, the dominant conduction mechanism
transfers to FN tunneling [55, 56].

In the integrated interconnects, the barrier height at both the low-k/metal and
the low-k/Si interfaces is around 4 eV, and the barrier height at the etching-stop
layer/metal interface is less than 2.0 eV [57]. Therefore, the interface-controlled SE
emission occurs.
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4.2 Reliability of porous low-k dielectric materials

The breakdown field and TDDB failure time are the main reliability items for a
dielectric material [58, 59]. Figure 5 plots the relatively breakdown field of various
dielectric materials used as BEOL ILDs. Compared to other dielectric materials, the
porous low-k dielectrics have relatively weak breakdown field, and the decreasing
magnitude is amplified with increasing the porosity [60]. The pores in the porous
low-k dielectrics are treated as defective cells, shortening the percolation path.
Additionally, porous low-k dielectrics have weaker bonds, higher trap densities, or
lower barrier heights at the metal–insulator interface.

TDDB testing is performed by applying an electric stress on a tested dielectric
material for a period of time. The stressing field is lower than the breakdown field
of the tested dielectric material. The leakage current is monitored with the stressing
time. During the electric stress, electric damage occurs in a dielectric material,
converting the resistance state of a dielectric material from high to low. This leads to
the loss of the insulating properties for a dielectric material. As a conducting path
between a dielectric is formed, the leakage sharply increases. Therefore, the dielec-
tric breakdown occurs. This stressing time is defined as the breakdown time of a
dielectric material.

TDDB is strongly related to the property of a tested dielectric film and the
applied electric field. As a result, as the technology node advances to 45 nm or
below technology nodes, TDBB is becoming a critical reliability issue. In addition to
using porous low-k dielectrics with a lower breakdown field, the interconnect
dimensions are reduced which increases the lateral electric field across the BEOL
dielectric. However, in real Cu damascene interconnects, the integration perfor-
mance strongly dominates TDDB results. The interface of Cu/capping layer, line-
edge-roughness line-to-line overlay errors, and via-to-line misalignment are the
dominated TDDB failure mechanisms [61–65].

Typically, TDDB testing is done at high fields (voltages) to accelerate the test.
To predict lifetime from high voltage/field conditions to operating conditions,

Figure 5.
Relative breakdown field of various dielectric films.
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TDDB lifetime model is required and critical for prediction. The commonly used
TDDB lifetime models are summarized in Table 3 [66–68]. Each TDDB lifetime
model has its theoretical fundamentals, but cannot explain all observed TDDB
phenomenon. Moreover, for the choice of TDDB lifetime model, it is necessary to
consider that the breakdown mechanism under testing conditions is also the domi-
nant mechanism under operating conditions.

In these used TDDB lifetime models, E, 1/E, and power-law models are field-
driven models, while E1/2 model is a current-driven model. Moreover, E model is
the most conservative model because it gives the shortest dielectric lifetime in the
lower-field conditions, and 1/E model is the optimistic model providing the longest
predicted lifetime. The E1/2 mode is widely accepted TDDB lifetime model for
porous low-k dielectrics.

5. Integration issues of porous low-k dielectric materials

During the integration of porous low-k dielectrics into Cu interconnects, the
fabricating processes can seriously degrade material properties, electrical charac-
teristics, and reliability. Moreover, the porosity can act as a fast penetration
media for reactive species or contamination during the integration, accelerating
degradations.

The main key issues associated with porous low-k dielectrics are schematically
shown in Figure 6. The key issues will be discussed and the improvement actions
will be provided in this section.

5.1 Plasma-induced damage

Plasma is an aggressive medium which produces vacuum ultraviolet (VUV) and
ultraviolet (UV) photons, energetic ions, electrons, and highly reactive radicals
[69]. Exposure to plasma causes physical damage and chemical modifications on
porous low-k dielectric materials [70, 71]. Under plasma irradiation, Si-CH3 and
Si-H groups in the porous SiCOH low-k dielectric material are extracted from the
network and then converted into the Si-O or Si-OH groups, leading to densification

Table 3.
TDDB lifetime models for dielectric materials.
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and k-value increase. Moreover, plasma-induced damage makes porous low-k
dielectric materials hydrophilic from hydrophobic, facilitating moisture uptake.

Plasma-induced damage on the porous low-k dielectric materials depends on the
porosity, the used plasma reactors, power, and gas [72–76]. Therefore, for porous
low-k dielectric materials that are irradiated under a plasma with higher density,
inductively coupling plasma (ICP) reactor, or O2 plasma, more damage on low-k
dielectrics is expected.

To minimize the plasma-induced damage on the porous low-k dielectric mate-
rials, H2-based plasma in remote-plasma (RP) system is an alternative for resist-
stripping process. [77–81]. Figure 7(a) and (b) exhibits the breakdown field and
TDDB failure time (TTF) of the porous low-k dielectric film after H2/He plasma
treatment [80, 81]. For porous low-k dielectric films operated in RP system, a
higher breakdown field and a longer TTF were observed as compared to those
operated in capacitance coupling plasma (CCP) system. In the RP system, neither
deep UV light radiation nor ion bombardment is acted on the porous low-k dielec-
tric film, mitigating plasma-induced damage. Additionally, the trends of tempera-
ture dependence of reliability characteristics are different for H2/He plasma
treatments in the CCP and RP systems. The breakdown field and TTF of H2/He
plasma-treated porous low-k dielectric film in CCP system decrease, while those in
CCP system improve with increasing of the operation temperature. Moreover, as

Figure 7.
(a) Breakdown field. (b) Time-to-fail of H2/He plasma-treated porous low-k dielectric films operated in CCP
and RP systems as a function of operation temperature [81].

Figure 6.
Main integration issues of porous low-k dielectrics in BEOL interconnects.
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the operation temperature of H2/He plasma treatment in RP system is increased to
350°C, the plasma-treated porous low-k dielectric films have better reliability than
the pristine samples. The improvement mechanism is attributed to the removal of
carbon-based porogen residues from the porous low-k dielectric film by H2/He
plasma treatment at 350°C [82].

The dielectric property of the plasma-damaged low-k dielectrics can be recov-
ered by applying silylation agents such as hexamethyldisilazane (HMDS),
trimethylchlorosilane (TMCS), and dichlorodimethylsilane (DMDCS), depositing
hydrophobic agents from hydrocarbon plasma and using a thermal treatment to
eliminate the adsorbed hydroxyl (OH) groups and the physisorbed water [83–86].

5.2 Moisture uptake

During the integration processing, the porous low-k dielectric films are damaged
and are transferred to be hydrophilic. The hydrophilic surface tends to uptake
moisture in subsequent process steps. Due to a high k value of water (�80), only a
small amount of moisture adsorption in the low-k dielectric film increases the
effective k value significantly [87]. As the porosity increases in the porous low-k
dielectric film, the pores connect each other to form “open pores,” which serve as
the fast diffusion path for moisture. The adsorbed moisture degrades reliability
performance of porous low-k dielectric films, as shown in Figure 8 [88]. The TDDB
failure time is reduced by a factor of approximately 10 for the moisture-uptake low-
k dielectric film and slightly decreases as the moisture immersion time increases. An
annealing step is demonstrated to remove moisture and improve the film reliability,
as also presented in Figure 8. However, even with thermal annealing at 400 C for
1 h, TDDB performance was only partially restored, being poorer than that of the
fresh sample.

As the moisture is adsorbed in the low-k dielectric film, there are two types:
physisorbed and chemisorbed moisture [89]. The physisorbed moisture starts to be

Figure 8.
Cumulative probability of TDDB failure times of porous low-k dielectric films as functions of the moisture
immersion time [88].
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desorbed at 190°C. After the 400°C annealing, most physically adsorbed moisture is
desorbed. The chemisorbed moisture has the higher bonding energy; thus, it can be
desorbed by a thermal annealing with the temperature above 600°C. As a result, the
temperature of annealing is required to be elevated to 600–1000°C in order to
remove the adsorbed water from porous low-k dielectric films. However, this tem-
perature is not suitable to use in the BEOL interconnects because porous low-k
dielectric films become unstable at temperature above 600°C.

To reach a better recovery for moisturized low-k dielectric films, a combination
of UV curing and silylation process has been provided. UV curing and silylation
processes can be done in the same chamber to save the processing step. The UV-
assisted restoration is performed at elevated temperatures using a gaseous hydro-
carbon in the curing ambient. The efficiency of recovery can be optimized with the
process parameters, including UV wavelength and intensity, substrate temperature,
UV curing time, chamber pressure, and reactant gas mixture [90, 91].

5.3 Cu drift

Due to a high diffusivity, Cu is easily oxidized to Cu mobile ion and then diffuses
into ILDs under thermal and/or electrical bias [92, 93]. The diffused Cu ions could
generate shallow energy levels in the bandgap of the porous low-k dielectric film
[94]. These generated states act as defect centers, facilitating PF type conduction.
Additionally, the penetration of Cu atoms or ions contributes to field enhancement
locally inside the dielectric or at the electrode of electron injection [95]. These
effects result in the significant degradation in the electric characteristics and
reliability for the porous low-k dielectric films.

To prevent or minimize the diffusion of Cu ions and Cu barriers, including metal
and dielectric barriers, are required for Cu metallization. Figure 9 plots the Cu ion

Figure 9.
Cu ion concentration in dense and porous low-k SiOCH films with and without capping SiCNH layer after
annealing as function of temperature [96].
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concentration Nm(T) in the various low-k dielectric films after thermal stress as a
function of annealing temperature [96]. The Cu penetration is enhanced at
increased temperatures. The larger Cu ion concentration in the porous low-k
dielectric film after annealing indicates that the pores in the low-k dielectric
film induced the rapid migration of Cu ions. Additionally, the porous low-k
dielectric film had the lowest activation energy (0.57 eV) with a value close to
those reported elsewhere (0.42–0.60 eV) [97, 98]. The SiCNH capping layers on
the low-k dielectric films increased the activation energy to �0.81 eV for both
dense and porous low-k films, suggesting that the SiCNH capping layer acts as a
Cu barrier and prevents possible Cu migration. The use of SiCNH capping layer as a
Cu barrier increases the effective k value of BEOL ILD, being a main concern.

The deposition of metal barrier can also prevent Cu migration. However, due to
a high resistivity of metal barrier, the overall resistivity of the metal line signifi-
cantly increases in the scaling interconnect pitch. Additionally, barrier metals like
tantalum (Ta) deposited by physical vapor deposition penetrate into low-k
dielectric in a way similar to Cu, causing low-k dielectric degradation. Moreover,
the metal barrier-induced damage increases as the porosity of the low-k dielectric
increases [99, 100].

Currently, self-forming barrier [101], atomic layer deposition (ALD) barrier
[102], and self-assembled monolayer (SAM) [103, 104] processes are promising
methods to prevent metal penetration. However, the integration with the porous
low-k dielectric must be controlled precisely to meet all requirements.

5.4 CMP-induced damage

The purpose of chemical mechanical polishing (CMP) is to produce
planarization topography by means of both mechanical polishing and chemical
reaction. A simultaneous interaction between polishing slurry, a semiconductor
wafer, and a polyurethane pad occurred. Thus, the chemical, mechanical, and
material properties of the pad, wafer surface, and slurry determine the controlla-
bility and quality of CMP process.

In Cu metallization, CMP process is used to remove the excess Cu film and the
barrier metal. There are three main steps in Cu CMP process. Firstly, the excess Cu
film is polished. Then, as reaching the interface, both metal barrier and Cu film are
polished. Finally, to ensure that all metals are removed from the field regions in all
parts of the wafer, over-polishing in the last step is necessary. Thus, the used
dielectric insulator is polished simultaneously. To reach high degree of planarization
and avoid Cu dishing, dielectric erosion, and interface quality degradation
(dangling bonds, generation, metal contaminants, and moisture presence), precise
control CMP process is required [105, 106].

As the porous low-k dielectric film is used as an interconnecting insulator,
peeling, delamination, and cracking may occur under CMP process because it has
not enough mechanical strength to survive the large mechanical stress process.
Therefore, improving the elastic modulus or hardness of the porous low-k dielectric
film is required. Figure 10 shows the change in the hardness of porous low-k
dielectric materials as a function of UV curing time [107, 108]. By increasing UV
curing time after the porous low-k dielectric film deposition, the hardness (H) can
be improved. Moreover, CMP-induced peeling was checked to determine the min-
imum hardness for integration of the porous low-k dielectric film into BEOL inter-
connects. At a UV curing time of less than 300 s for the porous low- k dielectric
films, peeling was observed. Peeling was worse at shorter UV curing times. As UV
curing time is greater than 300 s, the wafer exhibited peeling-free for the porous
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low-k dielectric films, indicating that the minimum hardness for integration of the
porous low-k dielectric film into BEOL interconnects is 1.2 GPa.

The other problem of Cu CMP problem is that the V-shape corners in the porous
low-k trenches are formed due to the higher mechanical force. This would become a
potential critical path for porous low-k dielectric breakdown owing to field
enhancement along the CMP interface.

6. Conclusions

To improve the performance of ICs, porous low-k dielectric materials have been
used as an interconnecting insulator for providing lower parasitic capacitance
between the wires to reduce RC time delay. Porous low-k dielectric materials can be
achieved by introducing low-polarizability chemical bonds and porosity into the
film. During the integration, the semiconductor processing induces damage on the
porous low-k dielectric material, making the dielectric material densification
hydrophilic, facilitating moisture uptake, and inducing Cu and barrier metal pene-
tration. These lead to k value increase and reliability degradation for the porous
low-k dielectric material. Moreover, high porosity and large pore size in the porous
low-k dielectric materials make them sensitive to integration-induced damages.
Moreover, porosity in the low-k dielectric material weakens the hardness and
enhances the local field of the film, resulting in CMP damage and reliability chal-
lenges. Therefore, in order to achieve a successful implementation of advanced
porous low-k dielectric films in the future BEOL interconnects, optimization and
innovation of material science and integration processing are needed.

Figure 10.
Hardness of porous low-k dielectric materials as a function of UV curing time [107].
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