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Chapter

Fractal Structures of the Carbon
Nanotube System Arrays
Raïssa S. Noule and Victor K. Kuetche

Abstract

In this work, we investigate fractals in arrays of carbon nanotubes modeled by
an evolution equation derived by using a rigorous application of the reductive
perturbation formalism for the Maxwell equations and for the corresponding
Boltzmann kinetic equation of the distribution function of electrons in such
nanomaterials. We study the integrability properties of our dynamical system by
using the Weiss-Tabor-Carnevale analysis. Actually, following the leading order
analysis, we write the solution in the form of series of Laurent. We also use the
Kruskal’s simplification to find the solutions. Using the truncated Painlevé expan-
sion, we construct the auto-Backlund transformation of the system. We take
advantage of the above properties to construct a wide panel of structures with
fractals properties. As a result, we unearth some typical features, namely the fractal
dromion, the fractal lump, the stochastic and nonlocal fractal excitations. We also
address some physical implications of the results obtained.

Keywords: carbon nanotubes, Weiss-Tabor-Carnevale analysis, Kruskal’s
simplification, auto-Backlund transformation, fractal excitations

1. Introduction

Carbon nanotubes stand to be one of the wonder materials of the present century
[1–3] owing to their tremendous range of physical, mechanical, thermal, electronic,
and optical properties. They are found in some flat panel displays, some field-effect
transistors as emerging applications exploiting the good thermal and electronic con-
ductivities of the above nanomaterials. The carbon nanotubes were synthesized pre-
viously in 1991 as graphitic carbon needles with diameter ranging from 4 to 30 nm
and length up to 1 μm [4]. Large-scale synthesis [5] provided an impetus to research
in the area of carbon fiber growth, as well as in the production and characterization of
fullerene materials. Two years later [6], abundant single-shell tubes with diameters
of about 1 nm were synthesized. In the past few years, some studies of various
nonlinear effects in carbon nanotube arrays have been achieved. There are intrinsic
localized modes in strongly nonlinear systems of anharmonic lattices [7, 8], large-
amplitude oscillating modes with additional features of being nonlinear as well as
discrete [9], spin-wave propagation [10], propagation of short optical pulses with
dispersive nonmagnetic dielectric media [11], propagation of ultimately short optical
pulses in coupled graphene waveguides [12, 13].
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From the reductive perturbation method, Leblond and Mihalache [14, 15]
investigated the formation of ultrashort spatiotemporal optical waveforms in arrays
of carbon nanotubes while deriving a new coupled system. They actually used the
multiscale analysis for the Maxwell equations and for the corresponding Boltzmann
kinetic equation of the distribution function of electrons. The above authors [14]
showed that a perturbed few-cycle plane-wave input evolves into a robust two-
dimensional light bullet propagating without being dispersed and diffracted over
long distance with respect to the wavelength.

In the present work, our motivation is to investigate whether other types of
robust light bullets with different features can be supported by the previous arrays.
Actually, from the governing system derived by Leblond and Mihalache [14], we
need to tread into its structural properties of integrability while performing the
Weiss-Tabor-Carnevale approach [15] to such a problem and discuss in detail the
existence of fractal solutions to the system.

Weiss, Tabor and Carnevale [15] developed one of the most powerful methods
known as the Painlevé analysis [16] which is very useful in proving the integrability
of a model system. Such an analysis is helpful in generating some exact solutions, no
matter the model is integrable or not. Also, if ones wants only to prove the Painlevé
property of a model, the use of Kruskal’s simplification [17] for the WTC approach
is also addressable. Thus, if we need to find some more information from the model,
it is better to use the original WTC approach or some extended forms [18–21]. In
this work, we combine the standard WTC approach [15] with the Kruskal’s simpli-
fication [17] in view of simplifying the proof of the Painlevé integrability.

We organize the work as follows: in Section 2, we briefly present the physical
background of the system under investigation. In Section 3, we perform the WTC
method to the governing equations under study. Next, in Section 4, we take advan-
tage of the arbitrary functions generated by the previous analysis to discuss some
higher dimensional pattern formations of light bullets, namely the fractals. In the
last section, we end with a brief conclusion.

2. Physical ground of light propagation within the carbon nanotube
arrays

In a recent study, Belonenko et al. [22, 23] investigated both analytically and
numerically the propagation of light bullets within an array of carbon nanotubes.
They obtained an analytical function presenting some (2 + 1)-dimensional optical
soliton with some diffraction displays in propagation. In view of suppressing the
diffraction to obtain some robust light bullet waveform, the model is slightly mod-
ified [14] while deriving a new higher dimensional coupled system. Using the
calibration E ¼ �∂A=∂t, E and A being the electric field and the potential vectors,
respectively, and variable t being the time, taking into account of the dielectric and
magnetic properties of carbon nanotubes [24], the Maxwell equations reduce to the
following system

ΔA�Att=c
2 ¼ �μ0J, (1)

where subscripts denote the partial derivatives. Constants μ0 and c are magnetic
permeability and light velocity in vacuum, respectively. We have neglected the
diffraction blooming of the laser beam in the directions perpendicular to the prop-
agation plane. The current J is directed along the axis of the nanotubes, i.e., J ¼ Jzez,
where unitary vector ez spans the z-axis. Besides, we consider the case where the
wave field is polarized in the same direction, and A ¼ Aez.
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In order to determine the current, we use a semiclassical approximation [25]
taking into account the dispersion law from the quantum-mechanical model and the
evolution of the ensemble of particles by the classical Boltzmann kinetic equation in
the approximation of relaxation time. It comes

f t � qAt f p ¼ F0 � fð Þ=τ, (2)

where constant q stands for the electron charge. The relaxation time τ can be
assessed according to Ref. [26]. The quantity f is the distribution function of
electrons in the nanotubes depending upon the time t and the momentum

p � p pφ; pz

� �

of the electron. The azimuthal component pφ reads pφ ¼ sΔpφ, and

the axial component pz is merely denoted p below. It then appears that the integer s
characterizes the momentum quantization transverse to the nanotube. We also
mention that the function F0 is the equilibrium value of the distribution f and is
known as the Fermi-distribution function expressed as

F0 ¼ 1= 1þ exp E=kBT0ð Þ½ �, (3)

in which quantities kB, T0, and E stand for the Boltzmann constant, the abso-
lute temperature, and the energy in the conduction band, respectively. In account
of the zigzag-type carbon nanotubes, the energy E is given by the Huckel π-
electron approximation as follows

E ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 cos apð Þ cos πs=mð Þ þ 4 cos 2 πs=mð Þ
q

, (4)

with γ ¼ 2:7eV and a ¼ 3b=2ℏ where constant b ¼ 0:142nm represents the dis-
tance between the adjacent carbon atoms. Constant m is the number of hexagons
in the perimeter of a nanotube. The surface current density Js can hence be
expressed as

Js ¼
2q

2πℏ

ð ð

vfdpφdp, (5)

where the velocity v reads v ¼ ∂E=∂p. The distribution function f can be written as

f ¼ ∑
s
Δpφδ pφ � sΔpφ

� �

f s p; tð Þ, (6)

with quantity f s representing the longitudinal distribution function relative
to the azimuthal quantum number s. The volume current density J is hence
obtained as

J ¼
Nq

πℏ
∑
s

ð

vf sdp, (7)

where constant N represents the surface density of nanotubes in the xy-plane.
We use the powerful reductive perturbation method in the short-wave approx-

imation regime [13, 28]. Assuming that the typical duration of the pulse is very
small with respect to τ and the propagation length is very long with respect to the
wavelength, we introduce the fast and slow variables

θ ¼ t� x=Vð Þ=ε, ξ ¼ εx, (8)
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in which the quantities ε and V denote the small perturbative parameter and the
wave velocity, respectively. Accordingly, we address the following expansions

f s ¼ f 0 þ εf 1 þ⋯, A ¼ A0 þ εA1 þ⋯: (9)

Thus, at leading order ε�1, Eq. (2) yields

f 0t � qA0t f 0p ¼ 0, (10)

in which solution f 0 reads f 0 ¼ φ pþ qA0

� �

with φ being an arbitrary function.
However, at large t, the wave A vanishes and f 0 goes to its equilibrium value F0.
Thus, from Eq. (7), we write

J0 ¼
q

πℏ
∑
s

ð

v pþ qAð Þf 0 pð Þdp: (11)

Now, at leading order ε�2, the Maxwell equations transform to

V ¼ c: (12)

The order ε0 provides

2=cð Þ∂2A0=∂ξ∂θ ¼ μ0J0, (13)

which, with Eq. (11), stands for the governing model system.
The energy E is of the same order of magnitude as γ. Calculating

γ=kB ¼ 3:1� 104K shows that E is very large with respect to room temperature.
Thus, only the levels with the lowest energy are excited. Let us seek for this
minimum for a given parameter s. Hence, we find that

Emin ¼ γ∣1� 2∣ cos πs=mð Þk, (14)

for p ¼ �π=a when cos πs=mð Þ>0 and for p ¼ 0 when cos πs=mð Þ <0. Thus, as s
varies, the minimum of Emin is zero, i.e., s=m ¼ �1=3 or s=m ¼ �2=3. Therefore, for
m ¼ 6, s ¼ 2 or s ¼ 4. Besides, in other nanotubes, there is a nonzero gap between
valence and conduction bands. The gap is so great that the conductivity is very low.
Hence, only the nanotubes where m is multiple of 3 contributes. In this sense, the
expression of Es pð Þ reads

Es ¼ 2γ∣ cos ap=2ð Þ∣, (15)

for s=m ¼ 1=3 and

Es ¼ 2γ∣ sin ap=2ð Þ∣, (16)

for s=m ¼ 2=3. Calculating the velocity v ¼ ∂E=∂p, where variable p is
substituted by p� qA0, and considering the value at which the minimum is
reached, we get

v ¼ �aγ sgn sin aqA0=2
� �� �

cos aqA0=2
� �

, (17)

where sgn Xð Þ denotes the sign of X in both cases.
The current J0 can hence be expressed as
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J0 ¼ �Q sgn sin aqA0=2
� �� �

cos aqA0=2
� �

, (18)

where Q ¼ 4Nqγ=πℏð ÞΦ γ=kBT0ð Þ. The function Φ reads

Φ Xð Þ ¼

ðπ=2

�π=2
dx= 1þ exp 2Xj sin xjð Þ½ �: (19)

Inserting Eq. (18) into (13) yields the evolution equation. As a matter of illus-
tration, we assume that 0 < aqA0=2 < π and define A0

0 such that

aqA0
0=2 ¼ aqA0=2� π=2. Hence, we obtain

∂
2A0

0=∂ξ∂θ ¼ �R sin aqA0
0=2

� �

, (20)

with R ¼ 2Nqγ=πε0ℏcð ÞΦ γ=kBT0ð Þ. Assuming ∣aqA0=2∣>π, we can set

A″

0 ¼ A0 þ π=aq. Therefore, Eq. (20) remains. This shows that Eq. (20) is valid for
any A0. Retaining the second transverse derivative in the wave Eq. (13), we
derive the following

∂
2A0

0=∂ξ∂θ ¼ c=2ð Þ∂2A0
0=∂y

2 � R sin aqA0
0=2

� �

, (21)

which can be known as the two-dimensional sine-Gordon equation. Eq. (21) can
be written as

AT ¼ �BC, CT ¼ AB, BZ ¼ Cþ

ðT

BYYdT, (22)

provided B ¼ E0=Er, Z ¼ x=Lr, T ¼ t� x=cð Þ=tr, and Y ¼ y=wr, with

Er ¼ 2= aqtr
� �

, Lr ¼ �UEr=R, and wr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ctrLr=2
p

. The assumption limT!�∞A ¼ U is
regarded. The system (22) has been investigated by means of a modified Euler
scheme in Z in each substep of which the equations relative to the variable T are
solved by a scheme of the same type [14]. Unlikely, we develop an analytical
scheme known as the WTC formalism in view of studying the full integrability of
the system above while unearthing other kinds of light bullet waveforms with
compact supports.

3. Painlevé analysis

According to the standard WTC method [15], if equation Eq. (22) is Painlevé
integrable, then all the possible solutions of the system can be written in the full
Laurent series as follows

A ¼ ∑
∞

k¼0

Akg
kþα, B ¼ ∑

∞

k¼0

Bkg
kþβ, C ¼ ∑

∞

k¼0

Ckg
kþγ, (23)

with sufficient arbitrary functions among Ak, Bk, Ck, and g, where
g ¼ g Y;Z;Tð Þ, Ak ¼ Ak Y;Z;Tð Þ, Bk ¼ Bk Y;Z;Tð Þ, and Ck ¼ Ck Y;Z;Tð Þ (k being
nonzero integers) are analytical functions within the neighborhood of g ¼ 0. The
constants α, β, and γ should all be negative integers.

The leading order analysis provides the following

α ¼ γ ¼ �2, β ¼ �1 (24)
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and

A0 ¼ 2 gZ gT � g2Y
� �

, B0 ¼ 2iεgT, C0 ¼ �iεA0, (25)

where ε ¼ �1 and i2 ¼ �1.
In order to obtain the recursion relations to determine the functions Ak, Bk, and

Ck, we substitute Eqs. (23)–(25) into (22). This leads us to the following algebraic
system

MkVk ¼ T k, (26)

where Mk is a square matrix, Vk ¼ Ak;Bk;Ckð ÞT, and T k ¼ Ak;Bk; Ckð ÞT with

Ak ¼ �Bk�2,ZT þ Bk�2,YY

� k� 2ð Þ Bk�1,Z gT þ Bk�1,T gZ � 2Bk�1,Y gY þ Bk�1 gZT � gYY
� �� �

þ ∑
k�1

j¼1
AjBk�j,

(27)

and

Bk ¼ �Ak�1,T � ∑
k�1

j¼1
CjBk�j, (28)

with

Ck ¼ �Ck�1,T þ ∑
k�1

j¼1
AjBk�j, (29)

provided Ak ¼ Bk ¼ Ck ¼ 0 for k <0. The matrix Mk is given by

Mk ¼

�B0 k k� 3ð ÞA0=2 0

k� 2ð ÞgT C0 B0

�B0 �A0 k� 2ð ÞgT

0

B

@

1

C

A
: (30)

Thus, the determinant Δk of the matrix Mk is given by

Δk ¼ � kþ 1ð Þ k� 2ð Þ k� 2ð Þ k� 4ð Þ gZ gT � g2Y
� �

g2T: (31)

If the determinant Δk of the cœfficient matrix Mk is not equal to zero, then the
functions Ak, Bk, and Ck can be obtained from Eq. (26) straightforwardly as unique
solutions. Nonetheless, when

k∈ �1; 2; 2;4f g, (32)

resonances occur.
The resonance at k ¼ �1 corresponds to the singularity manifold g, which is an

arbitrary function, and the case k ¼ 0, which is then satisfied identically by the
leading order analysis provided by Eq. (25). If the model is Painlevé integrable, we
require two resonance conditions at k ¼ 2;4, which are satisfied identically such
that the other four arbitrary functions among Ak, Bk, and Ck can be introduced into
the general series expansion given by Eq. (23).
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For k ¼ 1, we can easily obtain from Eq. (26)

A1 ¼
ιε gTB0, Z þ gZB0,T � 2gYB0,Y þ gZT�gYYð ÞB0 þ C0,T

� �

gT
,

B1 ¼
gTB0, Z þ gZB0,T � 2gYB0,Y þ gZT�gYYð ÞB0 þ 2C0,T

A0
,

C1 ¼ � ιεA1:

(33)

On the other hand, solving the case for k ¼ 2, the following resonance condition
is derived

�B0,ZT þ B0,YY þ C1,T ¼ 0: (34)

It is straightforward to see that the resonance condition given by Eq. (34) is
satisfied identically because of Eqs. (25) and (33). Then, we have, after solving
Eq. (26),

B2 ¼
C1,T � A1B1 � B0A2

A0
, C2 ¼ �ιεA2, (35)

where one of the quantities among A2 and C2 is arbitrary.
For k ¼ 3, Eq. (26) gives us

A3 ¼
ιε

2gT
�B1,ZT þ B1,YY � gTB2,Z � gZB2,T þ 2gYB2,Y

� �

þ
ιε

2gT
� gZT�gYYð ÞB2 þ A1B2 þ A2B1

� �

B3 ¼
1

2A0
�3B1,ZT þ 3B1,YY � 3gTB2,Z � 3gZB2,T þ 6gYB2,Y

� �

þ
1

2A0
�3 gZT�gYYð ÞB2 þ 2C2,T þ A1B2 þ A2B1

� �

,

C3 ¼ � ιεA3:

(36)

Let us emphasize that ∂g=∂T � gT, and so on.
For k ¼ 4, we can obtain

A4 ¼
ιε

6gT
A4 þ 2C4 � 4gTC4

� �

, B4 ¼
1

3A0
A4 � C4 þ 2gTC4

� �

, (37)

where C4 is an arbitrary function.
Nevertheless, let us make a remark that throughout the above study, the follow-

ing relations are derived:

Bk � ιεCk ¼ 0, k ¼ 1; 2; 3;4ð Þ: (38)

Then, for k ¼ 4, Eq. (38) verifies the resonance condition. All of the resonance
conditions with four arbitrary functions are satisfied identically. Hence, the system
(22) is Painlevé integrable. Its complete integrability will be established if some
other essential properties such as the Bäcklund transformation (BT) and the Hirota
bilinearization [27–30] are derived.

The Painlevé analysis can also be used to obtain other interesting properties [15]
of the (2 + 1)-dimensional coupled system above. In this work, we use the standard
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truncation of the WTC expansion to obtain the BT and the Hirota bilinearization
[27–30] of the system (22). By setting

Akþ1 ¼ Bk ¼ Ckþ1 ¼ 0, for k≥ 2, (39)

Eq. (23) with (24) becomes a standard truncated expansion

A ¼ A0=g
2 þ A1=g þ A2, B ¼ B0=g þ B1, C ¼ C0=g

2 þ C1=g þ C2: (40)

After vanishing A3 and B3, and using Eq. (38), we can reduce the system (36) to

B1,ZT ¼ A2B1 þ B1,YY , A2,T ¼ �B1C2, C2,T ¼ A2B1: (41)

From Eq. (41), it follows that A2, B1, C2 is a solution of the system (22). Besides,
the truncated expansion Eq. (40) actually stands for a BT. Generally, in order to
construct a typical family of solution to Eq. (22) in a simple manner, it is useful to
consider very simple expressions of A2, B1, and C2. For convenience, we fix the
original seed solution as

A2 ¼ ν, B1 ¼ 0, C2 ¼ �ιεν, (42)

with parameter ν being an arbitrary constant. The seed solution is actually used
for constructing many other solutions. However, many other classes of solutions are
obtained for other existing seed solutions. It is that property of the Painlevé
approach for constructing various kinds of solutions by means of arbitrary func-
tions that makes it potential and powerfully underlying. The solutions are given by
Eq. (40) expressed in a truncated form. Many solutions are constructed in a
straightforward way due to the arbitrariness of these functions, provided to solve
analytically or numerically some nonlinear partial differential constraint equations.

Substituting the BT from Eq. (40) and using the Eq. (42) into Eq. (22), we
derive some bilinear equations which can be decoupled as

DZDTH � F ¼ v1HF, DYDTH � F ¼ �v2HF, D2
YH � F ¼ �v2HF,

DYDTF � F ¼ H2=2, D2
TF � F ¼ H2=2, D2

YF � F ¼ H2=2,
(43)

provided A ¼ DZ þ EY and C∝ BZ � BYð Þ so as to express

B ¼ H=F, D ¼ ν1Z � 2∂T ln Fð Þ, E ¼ ν2Y þ 2∂Y ln Fð Þ, (44)

with ν ¼ ν1 þ ν2. The symbols DY , DZ, and DT refer to the Hirota operators
[29–31] with respect to the variables Y, Z, and T, respectively. According to the
usual procedure, the dependent function is expanded into suitable power series of a
perturbation parameter and using them in Eq. (43), we can straightforwardly
construct the one-, two- and N-soliton solutions (N being an integer) to Eq. (22).
Nevertheless, the investigation of these solutions will be studied in detail in a
separate paper. Now, knowing the BT and the related Hirota bilinearization of
Eq. (22), we can conclude that the 2þ 1ð Þ-dimensional system above is completely
integrable.

After substitution Eqs. (25) and (33) into (40), we find

A ¼ νþ
D2

Y �DZDT

� �

g � g

g2
, B ¼ 2ιε∂T ln jgjð Þ, C ¼ �ιεA: (45)
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In the next section, because of the arbitrariness of some functions derived from
the Painlevé analysis, we aim at focusing our interest to solutions for which the
quantities A and B are expressed in the reduction form Eq. (45). In order to express
some exact solutions of our initial coupled evolution system, we consider the gen-
eral ansatz for the function g in the form

g ¼ a0 þ a1Pþ a2Q þ a3PQ , (46)

where the parameter ak k ¼ 0; 1; 2; 3ð Þ is an arbitrary constant and P ¼ P Z;Tð Þ
and Q ¼ Q Y;Tð Þ are arbitrary functions of Z;Tð Þ and Y;Tð Þ, respectively.

4. Discussion of some higher dimensional solutions

With this aim, we follow the method developed by Tang and Lou [32] for
generating some families of diverse pattern formations while using the arbitrary
functions g expressed previously.

Let us mention that for some convenience, we rewrite the variables X, Y, and T
into their lower cases. Paying particular attention to fractal pattern formations,
based upon the previous works carried out on the subject, we classify the above
waves according to the different expressions of the generic lower dimensional
function Θ of two generalized coordinates ξ; tð Þ as defined by [33].

1. Nonlocal fractal pattern: we have the following

Θ ξ; tð Þ ¼ ∑
2

j¼1
λjθj∣θj∣ αj sin ln θ2j

� �h i

þ βj cos ln θ2j

� �h in on o

, (47)

provided quantities θ0j, λj, αj, and βj being arbitrary parameters. Also,

θj � kjξ� vjtþ θ0j. Variables ξ, kj, and vj are spacelike-defined, wave number, and
velocity of the j-wave component, respectively.

2. Fractal dromiom pattern: the dromion-like (lump-like) structure is exponen-
tially (algebraically) localized on a large scale and possesses self-similar structure
near the center of the pattern. The function Θ can be expressed as

Θ ξ; tð Þ ¼ exp � θj jN rþ s sin ln θ2
� �� �

þ w cos ln θ2
� �� �	 
	 


, (48)

with θj � kξ� vtþ θ0j, θ0 being an arbitrary parameter, and constants N, r, w,
and s are arbitrary parameters. But also we can find

Θ ξ; tð Þ ¼ ∣θ∣ α sin ln θ2
� �� �

þ β cos ln θ2
� �� �	 


~N= 1þ θ4
� �

, (49)

for fractal lump solution. Constants α, β, and ~N are arbitrary parameters.
3. Stochastic fractal pattern: Such typical excitation is expressed through the

differentiable Weierstrass function ℘ defined as

℘ ξ; tð Þ ¼ ∑
N

j¼0
α�j=2 sin βjθ

� �

, N ! ∞, (50)

with constants α and β being arbitrary parameters. A stochastic fractal excitation
can be expressed as

Θ ξ; tð Þ ¼ Σ
i, j
Ri θið ÞRj θj

� �

, (51)
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Figure 1.
Depiction of Nonlocal fractal patterns at t ¼ 0. The parameters are chosen as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and
a3 ¼ 1 such that: For p x; tð Þ ¼ Θ x; tð Þ, λ1 ¼ 1=4, λ2 ¼ 0, θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ,
λ1 ¼ 1=4, λ2 ¼ 0, θ02 ¼ 0, k2 ¼ 1, and v2 ¼ 1. Note that α1 ¼ 1 and β1 ¼ 0. Panels (a) and (c) represent the
pattern formations depicted in 3D-perspective, and the two others (b) and (d) are their corresponding densities

represented within the square regions �3:6 � 10�2; 3:6 � 10�2
� �2

and �2:32 � 10�10; 2:32 � 10�10
� �2

, respectively.

Figure 2.
Fractal dromiom excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by Eq. (40).
In this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 1 such that: For p x; tð Þ ¼ Θ x; tð Þ,
r ¼ 3=2, s ¼ 1, w ¼ 0, N ¼ 1, θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ, θ02 ¼ 0, k2 ¼ 1, and
v2 ¼ 1. Panels (a) and (c) represent the pattern formations depicted in 3D-perspective, and the two others (b)

and (d) are their corresponding densities represented within the square regions �7 � 10�3; 7 � 10�3
� �2

and

�2:8 � 10�8; 2:8 � 10�8
� �2

, respectively.
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Figure 3.
Fractal lump excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by Eq. (40). In
this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 2 such that: For p x; tð Þ ¼ Θ x; tð Þ,
θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ, θ02 ¼ 0, k2 ¼ 1, and v2 ¼ 1. Note that α ¼ 1, and β ¼ 0.
Panels (a) and (c) represent the pattern formations depicted in 3D-perspective, and the two others (b) and (d)

are their corresponding densities represented within the square regions �3:6 � 10�2; 3:6 � 10�2
� �2

and

�2:32 � 10�10; 2:32 � 10�10
� �2

, respectively.

Figure 4.
Fractal stochastic nonlocal excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by
Eq. (40). In this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 1 such that: For
p x; tð Þ ¼ Θ x; tð Þ, λ1 ¼ 1=4, λ2 ¼ 0, θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ, λ1 ¼ 1=4, λ2 ¼ 0,
θ02 ¼ 0, k2 ¼ 1, and v2 ¼ 1. Note that α ¼ 3=2, β ¼ 3=2, and N ¼ 100. Panels (a) and (c) represent the
pattern formations depicted in 3D-perspective, and the two others (b) and (d) are their corresponding densities

represented within the square regions �3:6 � 10�2; 3:6 � 10�2
� �2

and �2:32 � 10�10; 2:32 � 10�10
� �2

, respectively.
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where Ri ¼ ℘ θið Þ þ θ2i þ μi, with μi standing for arbitrary parameter.
Stochastic fractal dromion/solitoff excitations: such structures are obtained by

including the Weierstrass function into the dromiom solution. Especially for solitoff
excitations, we can try the following:

Θ ξ; tð Þ ¼ kþ Σ
j¼0

ηj℘ θj
� �

tanhμj θj
� �

, (52)

provided quantities k, ηj, and μj being arbitrary parameters.

Stochastic fractal lump pattern: Eq. (51) is reduced as

Θ ξ; tð Þ ¼ Σ
i, j
ρjRj θj

� �

, (53)

where quantities ηj and ρj being arbitrary parameter.

Now, let us analyze different figures with respect to the previous classifications.
Thus, in Figure 1, we depict the variations of the ∣B∣-observable with space at t ¼ 0.

In a 3D�representation, the features presented in panel 1 að Þ within the space

region �3:6 � 10�2; 3:6 � 10�2
� �2

� ∣B∣ and those depicted in cð Þ within region

�2:32 � 10�10; 2:32 � 10�10
� �2

� ∣B∣ are self-similar nonlocal. Such a similarity in the
profiles is clearly shown in panels bð Þ and dð Þ standing for their density plots,
respectively.

Following the above figure, in Figure 2, we generate the fractal dromiom
depicting self-similar structure with density plots represented in panels bð Þ and dð Þ,
respectively. In comparison to the previous nonlocal fractal patterns, it appears that
the fractal dromions have relatively high amplitudes.

Figure 5.
Fractal stochastic dromion excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by
Eq. (40). In this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 1 such that: For
p x; tð Þ ¼ Θ x; tð Þ, r ¼ 3=2, s ¼ 1, w ¼ 0, N ¼ 1, θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ, θ02 ¼ 0,
k2 ¼ 1, and v2 ¼ 1. Note that α ¼ 3=2, β ¼ 3=2, and N ¼ 100. Panels (a) and (c) represent the pattern
formations depicted in 3D-perspective, and the two others (b) and (d) are their corresponding densities

represented within the square regions �1 � 10�2; 1 � 10�2
� �2

and �2:6 � 10�8; 2:6 � 10�8
� �2

, respectively.
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Next, in Figure 3, we obtain the fractal lump which shows self-similar structures
in panels cð Þ and dð Þ.

In addition to the above self-similar regular fractal dromion and lump excitations,
by using the lower dimensional stochastic fractal functions, we construct some other
higher dimensional stochastic fractal patterns. Thus, in Figure 4, we generate a
typical stochastic fractal nonlocal pattern with self-similarity in structure.

Besides, in Figure 5, with the selecting parameters and suitable choices of lower
dimensional arbitrary stochastic fractal dromion function as presented in the cap-
tions of these figures, we obtain higher dimensional stochastic dromion excitations.
The self-similarity in structure of the observable I � ∣B∣ shows how the peaks are

distributed stochastically within the regions �1 � 10�2; 1 � 10�2
� �2

and

�2:6 � 10�8; 2:6 � 10�8
� �2

for stochastic fractal dromion.
In Figure 6, we construct the fractal solitoff excitations. By reducing the region

�1:2 � 10�2; 1:2 � 10�2
� �

� �5; 10½ � of panel 6 að Þ to �1:5 � 10�8; 1:5 � 10�8
� �

� �5; 10½ �

of panel 6 cð Þ, we obtain a totally similar structure with density plots represented
in panels (b) and (d), respectively.

In Figure 7 with the selecting parameters and suitable choices of lower dimen-
sional arbitrary stochastic fractal lump function as presented in the captions of the
figure, we obtain higher dimensional stochastic lump excitations. Through the
panels (7(a) and 7(b)) depicting the variations of ∣B∣�observable, at t ¼ 0, the self-
similarity in structure of this observable shows how the peaks are distributed

stochastically within the regions �7 � 10�3; 7 � 10�3
� �2

and

�2:1 � 10�10; 2:1 � 10�10
� �2

. In the above configurations, the stochastic fractal solitoff

Figure 6.
Fractal stochastic solitoff excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by
Eq. (40). In this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 1 such that: For
p x; tð Þ ¼ Θ x; tð Þ, κ ¼ 2, M ¼ 1, η0 ¼ 0, η1 ¼ 1=2, ηm ¼ 0 m≥ 2ð Þ, μ1 ¼ 1, θ01 ¼ �20, k1 ¼ 4, and v1 ¼ 1.
For q y; tð Þ ¼ Θ y; tð Þ, κ ¼ 0, M ¼ 2, η0 ¼ 0, η1 ¼ 1=5, η2 ¼ 1=4, ηm ¼ 0 m≥ 3ð Þ, μ1 ¼ μ1 ¼ 1, θ02 ¼ �15,
k2 ¼ 2, and v2 ¼ 2. Note that α ¼ 3=2, β ¼ 3=2, and N ¼ 100. Panels (a) and (c) represent the pattern
formations depicted in 3D-perspective, and the two others (b) and (d) are their corresponding densities
represented within the square regions �1:2 � 10�2; 1:2 � 10�2

� �

� �5; 10½ � and

�1:5 � 10�8; 1:5 � 10�8
� �

� �5; 10½ �, respectively.
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and stochastic fractal lump excitations appear to be the waves with greater ampli-
tudes in comparison to the previous ones.

From a physical viewpoint, the observable B which has the meaning of the
dimensionless electric field shows that its intensity ∣B∣ can be nonlocal or rather self-
confined. Actually, the intensity of the electromagnetic wave propagating along the
carbon nanotube arrays is compact within the arrays. The previous study has
revealed that the light bullet intensity describes a fractal-like excitation which pro-
vides more insights into the structural dynamics of the system under investigation.

5. Summary

Throughout the present work, we investigated the formation of fractal ultra-
short spatiotemporal optical waveforms in arrays of carbon nanotubes. We followed
the short-wave approximation to derive a generic (2+1)-dimensional coupled sys-
tem. Such a coupled system was constructed via the use of the reductive perturba-
tion analysis for the Maxwell equations and for the corresponding Boltzmann
kinetic equation of the distribution function of electrons in the carbon nanotubes.
Prior to the construction of different solutions to the previous coupled equations,
we first studied the integrability of the governing system within the viewpoint of
WTC formalism [15]. Thus, we investigated the singularity structure of the system.
In this analysis, we expanded the different observables in the form of the Laurent
series. Therefore, we found the leading order terms useful to solve the recurrent
system. Solving this last system, we unearthed the different resonances of the
governing equations. At the end, we found that the number of resonances balances
seemingly the number of arbitrary functions in such a way that the governing
system has sufficient and enough arbitrary functions. Hence, we derived that the

Figure 7.
Fractal stochastic lump excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by
Eq. (40). In this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 2 such that: For
p x; tð Þ ¼ Θ x; tð Þ, θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ, θ02 ¼ 0, k2 ¼ 1, and v2 ¼ 1. Note that

α ¼ 1, β ¼ 0, ~N ¼ 2 associated to α ¼ 3=2, β ¼ 3=2, and N ¼ 100. Panels (a) and (c) represent the pattern
formations depicted in 3D-perspective, and the two others (b) and (d) are their corresponding densities

represented within the square regions �7 � 10�3; 7 � 10�3
� �2

and �2:1 � 10�10; 2:1 � 10�10
� �2

, respectively.
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system is Painlevé integrable [15]. We derived another important properties,
namely the Bäcklund transformation and the Hirota bilinearization [27–30] while
establishing the complete integrability of the system.

In the wake of the result obtained from the WTC approach of integrability, we
took advantage of the existence of some arbitrary functions to construct some
interesting solutions such as fractals. Actually, following the investigation of fractals
in many physical systems [31–33], we constructed some localized nonlinear excita-
tions with some fractal support. As a result, we found the following typical features:
the fractal dromion, the fractal lump, the stochastic and nonlocal fractal excitations.

One of the advantages of the WTC method discussed in this work is the gener-
ation of arbitrary functions useful in constructing many kinds and different solu-
tions to the governing system. From such property endowing the method with the
powerfulness, it would be rather interesting again to construct other types of
nonlinear excitations such as the bubbles, the solitoffs, the dromions, the peakons,
the fractals, among others [34–37]. These typical excitations would be useful in the
understanding, more deeply, of the interaction between light incident excitations
and carbon nanotubes for some practical issues in nanomechanical, nanoelectronic,
and nanophotonic devices, alongside some emerging applications exploiting the
good thermal and electronic conductivities of carbon nanotubes in some flat panel
displays and field-effect transistors, among others.

Also, we intend using the WTC method in order to discover more other inter-
esting properties still unknown in the carbon nanotube arrays. Previously, we
discovered the properties of compactons in CNT [38]. The different properties will
allow us in the future to improve the different uses of carbon nanotube in different
areas of life. Moreover, because of these electrical and mechanical properties (very
resistant, flexible, and lightweight), they are very suitable for the design of pressure
sensors. These could be used by engineers to prevent structural collapses in civil
engineering. They will have to measure either the pressure or the shear. Similarly,
these sensors can be used in medicine while incorporating the system in textiles for
better follow-up of patients or in a shoe sole. In another view, the sensors will have
to be able to perform a good measure of the desired size. So to refine the design of
these sensors, it will be essential to get even more information about this material.
By discovering more properties of the material, we will know more how to exploit it
in a safe way in all the various disciplines combining research and innovation.
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