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Daniel Sjöberg 
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1. Introduction 

To simulate or design a reasonably large system, fast and simple models are necessary. To 
verify the design versus the specifications, more detailed (and costly) calculations can be 
performed and final adjustments made. In wave propagation problems, circuit analogs 
provide a powerful, yet simple, means of computing the desired response of the system, 
such as reflection or transmission coefficients. The reason circuit analog models are good for 
wave propagation problems, is that they are exact for one-dimensional wave propagation, 
regardless of whether we consider acoustic or electromagnetic waves. 
Typically, wave propagation through homogeneous media is modeled as a transmission line 
with propagation constant β and characteristic impedance Z, whereas obstacles such as thin 
sheets are modeled as lumped elements. If the sheets are lossless, the circuit models contain 
only reactive elements such as capacitors and inductors. 
Modeling complex wave propagation problems with circuit analogs was to a large extent 
developed in conjunction with the development of radar technology during the Second 
World War. Many of the results from this very productive era are collected in the Radiation 
Laboratory Series and related literature, in particular (Collin, 1991; 1992; Marcuvitz, 1951; 
Schwinger & Saxon, 1968). Further development has been provided by research on 
frequency selective structures (Munk, 2000; 2003). In recent years, the circuit analogs have 
even been used in an inverse fashion: by observing that wave propagation through a 
material with negative refractive index could be modeled as a transmission line with 
distributed series capacitance and shunt inductance, i.e., the dual of the standard 
transmission line, the most successful realization of negative refractive index material is 
actually made by synthesizing this kind of transmission line using lumped elements (Caloz 
& Itoh, 2004; Eleftheriades et al., 2002). 
This chapter is organized as follows. In Section 2 we show that propagation of 
electromagnetic waves in any material, regardless how complicated, boils down to an 
eigenvalue problem which can be solved analytically for isotropic media, and numerically 
for arbitrary media. From this eigenvalue problem, the propagation constant and 
characteristic impedance can be derived, which generates a transmission line model. In 
Section 3, we show how sheets with or without periodic patterns can be modeled as lumped 
elements connected by transmission lines representing propagation in the surrounding 
medium. The lumped elements can be given a firm definition and physical interpretation in 
the low frequency limit, and in Section 4 we show how these low frequency properties 

Source: Wave Propagation in Materials for Modern Applications, Book edited by: Andrey Petrin,  
 ISBN 978-953-7619-65-7, pp. 526, January 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com



 Wave Propagation in Materials for Modern Applications 

 

490 

provide some useful physical limitations on scattering characteristics. The calculation of 
circuit analogs in the general case using an optimization approach is treated in Section 5, 
and examples of the use of circuit analogs in design problems are given in Section 6. Finally, 
conclusions are given in Section 7. 

2. Wave propagation in stratified structures 

In this section, we show that the description of plane waves propagating through any 
homogeneous material at any angle of incidence, reduces to a simple eigenvalue problem 
from which we can compute the propagation constant and transverse wave impedance. 

We consider a geometry where the material parameters are constants as functions of x and y, 

but may depend on z, which is considered as the main propagation direction. This 

corresponds to a laminated structure, z being the lamination direction. Our strategy is to 

eliminate the x and y dependence through a spatial Fourier transform, and then eliminate 

the field components along the z direction. This is motivated by the fact that the remaining 

field components, Et = Ex x̂  + Ey ŷ  and Ht = Hx x̂  + Hy ŷ , are continuous across interfaces, 

and are thus easily matched at boundaries. The resulting equation (24) (or (25) for isotropic 

media) can be formulated as an algebraic eigenvalue problem by looking for solutions 

where the only z dependence is through a propagation factor e−jβz. The wave number β 

corresponds to the eigenvalue, and the wave impedance is given by the eigenvectors. 

2.1 Notation 

We consider time harmonic waves using time convention ejωt. The material is described 

through the mapping from the fields [E,H] to the fields [D,B]: 

 
⋅ + ⋅⎧

⎨ ⋅ + ⋅⎩

=

=

D E H

B ζ E μ H

ε ξ
 (1) 

where the dyadics ε, ξ, ζ, and μ can be represented by 3 × 3 matrices. Other mappings for the 

material are possible, for instance from the fields [E,B] to [D,H]. In vacuum the relations are 

D = ε0E and B = Ǎ0H, where the permittivity and permeability of vacuum are denoted by ε0 = 

8.854 · 10−12
 F/m and Ǎ0 = 4π · 10−7H/m, respectively. Materials are often classified 

according to the various symmetries of the material dyadics as in Table 1. 
When choosing a particular direction z, it is natural to introduce a decomposition as (where 

the index t represents the x and y components) 

 + + + + εt tt t
ˆ ˆ ˆ ˆ ˆ= , =z z zzEE E z z z zzε ε ε ε  (2) 

so that the transverse components of the D and B fields are (vector equations) 
 

Type ε, μ, ξ, ζ  
Isotropic All ~1 Both 0 
An-isotropic Some not ~1 Both 0 
Bi-isotropic All ~1 Both ~1 
Bi-an-isotropic All other cases 

Table 1. Classification of electromagnetic materials (1 denotes the unit dyadic). 

www.intechopen.com



Circuit Analogs for Wave Propagation in Stratified Structures  

 

491 

 ⋅ + + ⋅ +t tt t t tt t t= z zE HD E Hε ε ξ ξ  (3) 

 ⋅ + + ⋅ +t tt t t tt t t= z zE HB ζ E ζ Hμ μ  (4) 

and the z components are (scalar equations) 

 ξ⋅ + + ⋅ +εt t=z z zz z z zz zD E HE Hξε  (5) 

 μ⋅ + + ⋅ +t t=z z zz z z zz zB Ǉ E Hζ E Hμ  (6) 

Since the material parameters are assumed independent of x and y, it makes sense to 
represent the fields through a Fourier transform in the transverse variables x and y as 

 
π

∞
− +

−∞
∫ ∫

j( )

t2

1
( ) = ( , )e

(2 )

k x k yx y
x yz dk dkE r E k  (7) 

 
∞

+

−∞
∫ ∫

j( )

t( , ) = ( )e
k x k yx yz dxdyE k E r  (8) 

where the transverse wave vector is kt = kx x̂  + ky ŷ . The action of the curl operator on the 

Fourier amplitude is shown by 

                                
π

∞
− +

−∞

∇ × ∇ ×∫ ∫
j( )

t2

1
( ) = [ ( , )e ]

(2 )

k x k yx y

x yz dk dkE r E k  

            
π

∞
− +

−∞

∂⎛ ⎞− + ×⎜ ⎟∂⎝ ⎠∫ ∫
j( )

t t2

1
ˆ= e j ( , )

(2 )

k x k yx y

x yz dk dk
z

k z E k  (9) 

We then obtain the decomposition 

      
∂ ∂⎛ ⎞− + × − × + ×⎜ ⎟∂ ∂⎝ ⎠

t t t t t
ˆ ˆj ( , ) = j ( , ) ( , )z z z

z z
k z E k k E k z E k  

         
∂

− × − × + ×
∂'****(****) '****(****)
'****(****)

t t t t t t t

ˆ ˆparallel to orthogonal to 
ˆorthogonal to 

ˆ ˆ= j ( , ) j ( , ) ( , )zz E z z
z

z z
z

k E k k z k z E k  (10) 

The result for the curl of the magnetic field is exactly the same. 

2.2 Application to Maxwell’s equations 

We now apply the above decompositions with respect to z to Maxwell’s equations. These are 

 ω∇ × ( ) = j ( )H r D r  (11) 

 ω∇ × −( ) = j ( )E r B r  (12) 

When considering the Fourier amplitudes of the electromagnetic fields and using the 
constitutive relations this turns into (in the following we suppress the arguments z and kt of 
the fields for brevity) 
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 ( )ω∂⎛ ⎞− + × ⋅ + ⋅⎜ ⎟∂⎝ ⎠
t

ˆj = j
z

z Eε ξk H H  (13) 

 ( )ω∂⎛ ⎞− + × − ⋅ + ⋅⎜ ⎟∂⎝ ⎠
t

ˆj = j
z

z E ζ E μk H  (14) 

Another way to write this is by using dyadics (identifying (13) as the first row and (14) as 
the second row, and writing 1 for the unit dyadic) 

 ω
− × − ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂

⋅ ⋅ − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟× ×∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
t

t

ˆ j
= j

ˆ jz

0 1 0 1

1 0 1 0

z E k E E

z H k H ζ μ H

ε ξ
 (15) 

The left hand side is orthogonal to ẑ , and the equations for the z components are then 
(using that the cross product kt × Et is necessarily in the z direction since both vectors are in 
the xy-plane, with the scalar value ẑ  · (kt × Et) = ( ẑ  × kt) · Et) 

 
ξ

ω ω
− ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

⋅ − ⋅ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟×⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

εt t t

t t t

ˆ0 j
= j j

ˆ0 j
z z zz zz z

z z zz zz z

E

Ǉ Ǎ H

0

0

z k E E

z k H ζ μ H

ξε
 (16) 

from which we solve for the z components of the fields: 

 
ξ ω

ω

− −

−

⎡ ⎤⎛ ⎞− ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− ⋅⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟×⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

ε 1 1
tt

1
tt

ˆ
=

ˆ
z zz zz z z

z zz zz z z

E

H Ǉ Ǎ
0

0

Ez k

ζ μ Hz k

ξε
  (17) 

The transverse part of (15) is 

− × − ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞∂
⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟× ×∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

t t

t t

ˆ ˆj
=

ˆ ˆj
z

z

E

Hz

0 1 0

1 0 0

z E k z

z H k z
 

ω ω
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

− ⋅ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

tt tt t t t

tt tt t t t

j j z

z

E

H

E

ζ μ H ζ μ
ξ ξε ε

 

 
ω

ω ω
ω

−

−

⎡ ⎤⎛ ⎞− ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− ⋅ + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟×⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

1
tt tt t t tt

1
tt tt t t t tt

ˆ
= j j

ˆ
z

z

E

H

0

0

E k z

ζ μ H ζ μk z

ξ ξε ε
 (18) 

Inserting the expressions for the z components of the fields implies 

 ω ω
− ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂

⋅ − ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟×∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
t tt tt t t

t tt tt t t

ˆ
= j j

ˆz

0 1
A

1 0

z E E E

z H ζ μ H H

ξε
 (19) 

where A is the dyadic product1 

                                                 
1 A dyadic product between two vectors ab is defined by its action on an arbitrary vector c 
as (ab) · c = a(b · c), i.e., a vector parallel to a with amplitude |a||b · c|. Thus, dyadic 
multiplication does not commute unless a is parallel to b. 
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11 1
t tt t

1 1
t tt t

ˆ ˆ
=

ˆ ˆ
zz zz z z

zz zz z zǇ Ǎ
ξω ω

ω ω

−− −

− −

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− × − ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟× ×⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

0 0
A

0 0

εk z z k

ζ μ ζ μk z z k

ε εξ ξ
 (20) 

For an isotropic material, where ε = ε1, μ = Ǎ1, ξ = ζ = 0, this is (writing a = −1
0k  kt × ẑ  = 

− −1
0k ẑ  × kt where k0 = ω/c0 is the wave number in vacuum) 

 
μ

μ

− − − −

− − − −

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞−
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

ε
ε

1 1 1 1
0 0

21 1 1 1
00 0

c 0 c 1
= =

cc 0 c

0 0 0
A

0 0 0

a a aa

a a aa
 (21) 

Since − ẑ  × ( ẑ  × Et) = Et for all transverse fields Et, we can write (19) as 

 ω ω
⎡ ⎤− ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂

⋅ − + ⋅ ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− × × − ×∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

t tt tt t

t tt tt t

ˆ
= j j

ˆ ˆ ˆz

0 1 1 0
A

1 0 0 1

E z E

z H ζ μ z z H

ξε
 (22) 

By keeping the vector product with ẑ  in the magnetic field, the vectors Et and − ẑ  × Ht will 

be parallel to each other in isotropic media. Identifying the transverse electric and magnetic 
fields as vector voltage and vector current, i.e., 

 − ×t t
ˆ= and =E V z H I  (23) 

we find 

 ω ω
⎡ ⎤− ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂

⋅ − + ⋅ ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟×∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

tt tt

tt tt

ˆ
= j j

ˆz

0 1 1 0
A

1 0 0 1

V z V

I ζ μ z I

ξε
 (24) 

In particular, for an isotropic material this simplifies to 

 
ω

ω
−

−

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂
− + ⋅⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

ε
ε

1

2 1
0

0j
= j

c 0

Ǎ
z Ǎ

0 1

1 0

V Vbb

I Iaa
 (25) 

where the unitless vector a = −1
0k kt × ẑ  defines the direction of the TE polarized transverse 

electric field (electric field transverse to the plane of incidence), and the unitless vector b = 

ẑ × a = −1
0k kt defines the direction of the TM polarized transverse electric field (electric field 

in the plane of incidence). The amplitude of both vectors is |a| = |b| = |kt|/k0 = sinǉ, 
where ǉ is the angle of incidence in vacuum. 
Equation (24) is recognized as a linear dynamical system for the transverse field 
components. If the material parameters are constant with respect to z, the solution of (24) 
can be written using the exponential matrix as (where V1 = V(z1) and V2 = V(z2) etc) 

ω ω
⎧ ⎫⎡ ⎤− ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪− ⋅ − + ⋅ ⋅ ⋅⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

1 tt tt 2 2

1 2 1 2

1 tt tt 2 2

ˆ
= exp ( ) j j = ( , )

ˆ
z z z z

0 1 1 0
A P

1 0 0 1

V z V V

I ζ μ z I I

ξε
 (26) 

This formal solution reveals an important structure, which generalizes to inhomogeneous 
media where the material parameters may depend on z: the transverse fields at z = z1 can be 
written as a dyadic P operating on the fields at z = z2, where z1 and z2 are arbitrary (although 
the dyadic of course depends on z1 and z2). This dyadic is called a propagator, and its 
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existence is guaranteed by the linearity of the problem. We write the explicit form of this 
dyadic for isotropic media in (34), but first we must define a few properties. 

2.3 Eigenvalue problem in infinite media 

If the wave is propagating in a medium which is infinite in the z direction, it is natural to 
search for solutions on the form 

 β−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

0 j

0

( )
= e

( )
z

z

zI I

V V
 (27) 

This implies ββ −∂
−

∂
j

0 0[ ( ), ( )] = j [ , ]e zz z
z

V I V I  which makes (24) turn into an algebraic 

eigenvalue problem (after dividing by −jω and the exponential factor e−jβz) 

 
β
ω

⎡ ⎤− ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⋅ − ⋅ ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

0 tt tt 0

0 tt tt 0

ˆ
=

ˆ

0 1 1 0
A

1 0 0 1

z

I ζ μ z I

ξεV V
 (28) 

Thus, the propagation constant β can be found from the eigenvalue problem (28), which can 

easily be solved numerically once the material model is specified along with the transverse 

wave vector kt (which occurs only in A). 

In addition, the field amplitudes [V0, I0] are the eigenvectors of the same dyadic and can be 

determined up to a multiplicative constant. Independent of the normalization, the 

eigenvectors always provide a mapping between the transverse components of the electric 

and magnetic fields, i.e., 

 V0 = Z · I0 (29) 

where the dyadic Z is the transverse wave impedance of the wave. For isotropic media 
corresponding to (25), we have 

 
μβ

ω μ

− −

− −

⎛ ⎞−⎛ ⎞ ⎛ ⎞
⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

ε
ε

2 1
0 00

2 1
0 00

0 c
=

c 0

bb

I Iaa

V V
 (30) 

This implies 

( )β μ μ μ θ
ω μ μ μ

− − −
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ − ⋅ − ⋅ − + ⋅ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
ε ε ε

ε ε ε

2 2 2 2
2 20 0 0

0 0 0 0 0

c c c
= = ( ) = c sin1 1 1V aa bb V aa bb V V  (31) 

where we used a · b = 0 and |a| = |b| = sinǉ. The final result for the wave number is then 

 β ω εμ θ−− 2 2
0= c sin  (32) 

and the wave impedance, defined by the relation V0 = Z · I0, is 

 
ω ωμ βμ
β εμ β ωε

−⎛ ⎞
− +⎜ ⎟

⎝ ⎠

2
0

2 2

c
= =

| | | |
Z 1

aa bb
bb

a b
 (33) 
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In vacuum, we have ωǍ/β = ǈ0/cos ǉ and β/(ωε) = ǈ0 cos ǉ, where η μ ε0 0 0= /  is the 

intrinsic wave impedance of vacuum. Finally, the propagator dyadic for a slab of length ℓ of 

isotropic media is 

 
β β

β β−

⎛ ⎞
⎜ ⎟
⎝ ⎠

` `
` `1

cos( ) jsin( )
=

jsin( ) cos( )

1 Z
P

Z 1
 (34) 

In microwave theory, this is recognized as the ABCD-matrix of a transmission line with 
propagation constant β and characteristic impedance Z (Pozar, 2005, p. 185). Note however 
that we have generalized it to include both TE and TM polarization, through the dyadic 
character of Z. The important thing about the propagator dyadic is that since tangential 
electric and magnetic fields are continuous, we can find the total propagator dyadic for a 
layered structure by cascading: 

 
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

A 1 2

tot 1 2 tot

1 2

= = , where =N

A B
P P P P P

C D

V V

I I
 (35) 

The dyadic Ptot maps the total fields from one side of the layered structure to the other. 
Outside the structure, the total fields can be expressed in terms of the incident field 
amplitude Vinc using reflection and transmission dyadics r and t as (where we assume the 
same medium on both sides, with the characteristic impedance Z0, and use the fact that 
waves propagating along the positive z direction satisfy V+ = Z0 · I+, whereas waves 
propagating in the negative z direction satisfy V− = −Z0 · I−) 

 − −

+ ⋅ ⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅ − ⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 inc 2 inc

1 1
1 0 inc 2 0 inc

( )
= and =

( )

1 r t

Z 1 r Z t

V V V V

I V I V
 (36) 

Solving for the reflection and transmission dyadics imply 

 − − − − −+ ⋅ − ⋅ − ⋅ ⋅ ⋅ + ⋅ + ⋅ + ⋅ ⋅1 1 1 1 1
0 0 0 0 0 0 0 0= ( ) ( )r A B Z Z C Z D Z A B Z Z C Z D Z  (37) 

 − − −+ ⋅ + ⋅ + ⋅ ⋅1 1 1
0 0 0 0= 2( )t A B Z Z C Z D Z  (38) 

Thus, the concept of propagator dyadics enables a straight-forward analysis of layered 
structures, although the final results in terms of reflection and transmission coefficients may 
be complicated. In addition, thin sheets which are inhomogeneous in the xy-plane can also 
be modeled with corresponding propagator dyadics. This is explored in the next sections. 

3. Lumped element models of scatterers 

In real applications, relatively thick homogeneous slabs are often interlaced with thinner 
sheets, which may also be inhomogeneous in the transverse plane. Such scatterers can be 
modeled as lumped elements, the simplest of which corresponds to homogeneous, thin 
sheets. We are thus led to study the limit of the ABCD-matrix for a slab when its thickness ℓ 
becomes small. Denote the thickness of the sheet by t. Considering the factors in the 
propagator dyadic (34) and keeping factors to first order in βt, we find 

 β β β→ →cos( ) 1 and sin( )t t t  (39) 

www.intechopen.com



 Wave Propagation in Materials for Modern Applications 

 

496 

Thus, to first order in βt the ABCD-matrix is (using 
ωμ β
β ω

+
ε2 2

=
| | | |

Z
aa bb

a b
) 
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 (40) 

In order to treat the sheet as a lumped element, the reference planes T and T ′ in Figure 1 
should coincide. This corresponds to back propagating the fields at T ′ by multiplying the 
dyadic above by the inverse of the corresponding dyadic for the background medium 
(denoted by index 0), or to first order in βt, subtracting the corresponding phase change in 
the off-diagonal elements. For instance, the upper right element should be replaced by 

(using β2 = εǍ − −2
0c sin2 ǉ and −2

0c = ε0Ǎ0) 

ωμ θ ωμ θ
μ μ
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 (41) 

In the final step we used that a and b are orthogonal and span the xy-plane, i.e.,  

+
2 2| | | |

aa bb

a b
 = 1. To first order, the result is then (using sin2 ǉ = 2| |a  = 2| |b ) 

 

Fig. 1. Transmission line model of an isotropic slab. 

 

 

Fig. 2. Definition of ABCD matrix parameters for a general twoport network. 
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 (42) 

Thus, a thin sheet of homogeneous material with permittivity ε and permeability Ǎ can be 

modelled to first order as a series impedance Z and shunt admittance Y with the values 

 
ω μ μ
ω μ μ ωμ θ
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⎨

− + −⎪⎩ ε ε
0

2
0 0 0

j ( ) TEpolarization
=
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t
Z
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 (43) 
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⎨ −⎪⎩

ε ε ε
ε ε

2
0 0 0

0

j ( ) j (1 / ) TEpolarizationsin
=

j ( ) TMpolarization

t t
Y

t
 (44) 

where t is the thickness of the sheet. An important special case is the resistive sheet, where  

ε = ε ′ − jσ/ω and Ǎ = Ǎ0. In the limit ω →0, we then have 

 σ→ →and 0Y t Z  (45) 

regardless of polarization. The quantity 1/(σt) = Rs is called the sheet resistance. 

To see how sheets with a periodic pattern can be handled, we introduce the electric and 

magnetic polarizability per unit area γe/A and γm/A, such that ε0γe · E0 is the static 

polarization induced in the sheet when subjected to a homogeneous field E0. The physical 

unit of γe/A and γm/A is length. The polarizability is in general a dyadic that can be 

represented as a 3×3 matrix, with the decomposition 

 γ+ + +e ett ez et e
ˆ ˆ ˆ ˆ= zzz z zzγ γ γ γ  (46) 

with the corresponding decomposition for the magnetic polarizability. As shown in 

(Sjöberg, 2009a), the polarizability dyadics can be calculated from the solutions of the 

following static problems, where E0 and H0 are given constant vectors, 

 ϕ∇ ⋅ ⋅ − ∇0 e[ ( )] = 0Eε  (47) 

 ϕ∇ ⋅ ⋅ − ∇0 m[ ( )] = 0μ H  (48) 

with periodic boundary conditions in the xy-plane and ∇φe,m →0 as z→±∞. In these 

equations, ε and Ǎ are the static permittivity and permeability dyadics, which may be 

anisotropic but are always symmetric and real-valued. The polarizability dyadics are then 

defined by (where U denotes the unit cell in the xy plane) 

 ϕ
∞

−∞
− ⋅ − ∇ ⋅∫ ∫ ε0 0 e e 0( / ) ( ) =

U
dSdz1 E Eγε  (49) 

 ϕ
∞

−∞
− ⋅ − ∇ ⋅∫ ∫ 0 0 m m 0( / ) ( ) =

U
Ǎ dSdz1μ H Hγ  (50) 
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Generalizations of these equations to encompass the possibility of metal inclusions are given 
in (Sjöberg, 2009a). Using these quantities, the low frequency scattering against a low-pass 
sheet with periodic structure is (Sjöberg, 2009a) 

1 10 ett m mtt e
0 0 0 0

j
ˆ ˆ=

2
zz zzk

A A A A

γ γη η− −⎧ ⎡ ⎤ ⎡ ⎤− ⋅ + + − × ⋅ × + ⋅⎨ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩
t 1 Z Zaa z z bb

γ γ
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 (51) 
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 (52) 

The cross product with the z direction, ẑ  ×, can be represented as a skew-symmetric matrix 

which is its own negative inverse. Thus, the expression − ẑ  × mtt

A

γ
 · ẑ × = ( ẑ ×)−1 · mtt

A

γ
· ẑ × 

is a similarity transform of γmtt/A. 
In order to identify the circuit analog of these expressions, we compare with the simple 
networks in Figure 3 and compute their reflection and transmission coefficients. Assuming 
Z1 = jωL and Y2 = jωC, all networks in Figure 3 have the same ABCD-matrix to first order in ω, 
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 (53) 

where Z0 is the characteristic impedance of the surrounding medium. Comparison between 
the two expressions implies 

 1 1mtt e e t mt
1 0 0 0 0

ˆ ˆ ˆ= j zz z zk
A A A A
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Z Z Zz z bb z a a
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 (54) 
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Using Z1 = jωL and Y2 = jωC, this implies the sheet series inductance dyadic L and sheet 
shunt capacitance dyadic C is (which generalizes (43) and (44) to anisotropic materials) 
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Fig. 3. ABCD-matrices for symmetric T, Π, and trellis net. 

These dyadics are represented by diagonal matrices if there is no coupling between TE and 

TM modes. For normal incidence on an isotropic slab with thickness t, the parameters take 

on the simple scalar values 

 μ μ− −ε ε0 0= ( ) and = ( )L t C t  (58) 

Note that the circuit parameters defined in this section correspond to a low frequency 

expansion, where the sheet is considered thin in terms of wavelength. For higher 

frequencies, the method presented in Section 5 can be used. 

4. Physical limitations 

Circuit analogs appear in a very natural way when considering physical limitations of 

scattering against stratified structures. The methodology dates back to classical work on 

optimum matching (Fano, 1950), using clever integration paths in the complex plane for 

functions representing linear, causal, passive systems. In physics, the corresponding 

relations are known as sum rules, connecting an integral over all frequencies of some 

quantity to the static value of another (Nussenzveig, 1972). Often, the sum rules are derived 

from relations similar to the Kramers-Kronig’s relations (de L. Kronig, 1926; Kramers, 1927). 

In this section, we only give the final results of other authors’ work, and refer to the original 

papers for more in depth discussions. 

The first paper to discuss physical limitations on scattering from planar structures was by 

(Rozanov, 2000). He derived the following limitation on the reflection coefficient R from any 

metal-backed planar structure (where ǌ = c0/ f is the wavelength in vacuum): 

 λ π μ π
λ μ

∞ ⎛ ⎞
≤⎜ ⎟

⎝ ⎠
∑∫ 2 2

s,0
0

1
ln 2 = 2

| ( )|
i i

i

L
d d

r
 (59) 
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Here, we identify the inductance as L = Ǎd instead of (Ǎ − Ǎ0)d, since the reference plane of 
the reflection is at the top of the structure and not at the ground plane. The expression (59) 
demonstrates that the bandwidth over which the amplitude of the reflection coefficient is 
less than unity, is bounded above by the static permeability of the structure, which can be 
interpreted as the low frequency series inductance. The interesting part of this physical 
limitation is that it is valid for any realization of the structure, and provides a useful upper 
bound for absorbers. This is seen from the fact that the integral is bounded below by (ǌ2 − ǌ1) 
ln(1/r0), where r0 is the largest reflection level in the band [ǌ1,ǌ2]. Using the relative 
bandwidth B = (ǌ2 − ǌ1)/ǌ0, where the center wavelength is ǌ0 = (ǌ1 + ǌ2)/2, we find 

 
μ

π π
λ λ μ

⎛ ⎞
≤⎜ ⎟

⎝ ⎠

∑ s ,2 2

0 0 0 0

1
ln 2 = 2i id L

B
r

 (60) 

 

Thus, the product of bandwidth and reflection level in logarithmic scale is bounded above 
by a factor proportional to the low frequency series inductance of the structure. 
A similar bound was found by (Brewitt-Taylor, 2007) for the realization of artificial magnetic 
conductors, by studying the factor P = (r − 1)/2. Magnetic conductors are attractive in 
antenna design problems, and are characterized by a reflection coefficient r ≈ +1, meaning P 
becomes small in the band of interest. The bound is 

 λ π μ π
λ μ
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1
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i i
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P
 (61) 

with similar interpretation as Rozanov’s result and corresponding bandwidth bound. Our 
final example is of the transmission through a periodic low-pass screen (Gustafsson et al., 
2009), where the following bound for a non-magnetic structure was derived (where t is the 
transmission coefficient) 

 
πλ π
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20
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d

t A
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 (62) 

 

The factor γett/A is the capacitance dyadic in (57) for normal incidence, and similar physical 
bounds can be derived for antennas, materials and general scatterers (Sohl et al., 2007a; 
Gustafsson et al., 2007; Sohl et al., 2007a;b; 2008; Sohl & Gustafsson, 2008). When considering 
the physical limitations, it is noteworthy that the circuit parameters (or rather, the 
polarizability dyadics) can be bounded using variational principles as discussed in (Sjöberg, 
2009b). These typically state that the polarizability of a given structure cannot decrease if we 
add more material; in particular, the electric polarizability of any body is always less than 
(or at most equal to) the polarizability of a circumscribed metallic body. If the metallic body 
has a simple shape (such as a sphere), its polarizability can be computed analytically, and 
hence a useful approximation of the polarizability of the original body is provided. 

5. Computation of circuit analogs in the general case 

So far, we have only demonstrated how to compute circuit analogs in the low frequency 
limit. Indeed, this is the primary region where we can give firm definitions and physical 
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Fig. 4. Geometry and equivalent circuit for capacitive strips (TM polarization). 

 

 

Fig. 5. Geometry and equivalent circuit for inductive strips (TE polarization). 

interpretations of the circuit analogs, but analogs are still valuable as a modeling tool even 

for higher frequencies, in particular for structures of subwavelength size. The general 

procedure is the same as previously employed: the circuit analogs are computed to provide 

the same scattering characteristics as the full structure. 

Many analytical expressions have been derived throughout the years in the microwave 

literature, in particular associated with the development of radar technology during the 

Second World War. Many of these results are collected in references such as (Collin, 1991; 

Marcuvitz, 1951; Schwinger & Saxon, 1968). The most explored geometry is that of metallic 

strips, see Figures 4 and 5. Depending on the polarization of the incident wave, the strips 

behave dominantly capacitive or inductive. Provided that the width of the strips and the 

distance between them can be considered small in terms of wavelengths, the circuit 

parameters in Figures 4 and 5 can be estimated as follows (Marcuvitz, 1951, pp. 280 and 284) 

 
μ

π π π π
≈ ≈
ε0 04 2 2

ln and ln
2

a a a a
C L

d w
 (63) 

Note that the inductance L is now a shunt inductance, in contrast to the series inductance 

obtained by transmission through a thin slab. We can immediately interpret these results in 

order to gain some design intuition: 

• To make the capacitance C large, the ratio d/a should be small, i.e., the gap between the 
strips should be small. 

• To make the inductance L large, the ratio w/a should be small, i.e., the width of the 
strips should be small. 
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Fig. 6. Finite dipole. Observe that the incidence plane changes depending on whether we 
study TE or TM polarization, since the dipoles would be practically invisible for other cases. 

 

Fig. 7. A pattern of square patches. Compared to the finite dipoles in Figure 6, this structure 
is relatively independent of polarization, due to its higher symmetry. 

When the strips are not infinite, a more sophisticated modeling must be made. For an array 

of finite strips as in Figure 6, we need to incorporate more elements in order to reflect the 

possibility of resonance, when the dipoles become approximately half a wavelength. If the 

metal strips are lossy, we also need to include a resistance in the circuit analog. It is not 

trivial to compute the exact circuit parameters in this case, and in practice a numerical 

approach is necessary. Also, the thin finite dipoles are polarization sensitive, being 

essentially invisible to electric fields orthogonal to their longest extension. By using square 

patches as in Figure 7, a higher symmetry is achieved and thereby less polarization 

sensitivity. On the other hand, since the patch is wide, its inductance tends to be smaller 

than the corresponding dipole. 

Many practical structures can be considered to be thin and non-magnetic. In this case, the 

simple model in Figure 8 can be used, where the sheet is considered as a single shunt 

lumped element, possibly with a complicated frequency dependence. To compute the 

relevant circuit analog for an arbitrary such sheet, we can make a full wave simulation to 

compute scattering parameters such as the reflection coefficient r(ω). From this given data 

we can turn to the circuit model in Figure 8 to find the reflection coefficient 

 
− + − + + −

⇒
+ + + + +

0 0 0 0 0

0 0 0 0

( ) 1 ( ) / 1
= = =

( ) 1 ( ) / 1

Y Y Y Y Y Y Y Y r
r
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Fig. 8. Equivalent circuit model for reflection against a nonmagnetic sheet backed by free 
space. The shunt admittance Y is usually a function of frequency and angle of incidence, as 
well as polarization. 

Thus, we can compute a numerical value for the normalized surface admittance (Y + Y0)/Y0 

for each frequency ω. The next step is to match this data with a rational approximant  

(Y + Y0)/Y0 = p(s)/q(s), where p and q are polynomials in s = jω. In order for the identified 

model p(s)/q(s) to correspond to a realizable circuit, it is necessary that all zeros of q(s) have 

negative real part. This can be achieved by using matlab’s routine invfreqs. 

To compute the numerical reflection coefficients r(ω), it is necessary to reduce the problem 

to a unit cell with periodic boundary conditions in the xy-plane, and plane wave ports in the 

z direction. These requisites are commonly available in most advanced simulation programs 

today. 

6. Applications 

The usefulness of circuit analogs resides in the fact that they are a compact representation of 

the scattering properties of a given structure. In particular, in design problems where many 

potential designs need to be evaluated, circuit analogs provide a convenient means of 

producing concept designs, which must later be refined and verified using full-wave 

simulations. 

One design methodology, is to choose a general geometry for the sheets such as the finite 

dipoles in Figure 6, and then build a database of corresponding circuit parameters for 

different geometry parameters. The desired electromagnetic function, for instance 

absorption over a certain bandwidth, is then first treated as a circuit design problem. Once a 

circuit design is found, typically consisting of segments of transmission lines loaded by 

lumped elements, the realization is found by lookup in the previously calculated tables. This 

methodology works well when the individual sheets are about a quarter wavelength from 

each other. 

The method breaks down when the sheets become closely spaced, say within a tenth of a 

wavelength. There is then substantial coupling between the sheets through the otherwise 

evanescent fields, so that the previous circuit models do not apply anymore. However, new 

circuit models can be applied to clusters of sheets, although the number of geometry 

parameters may become so large that it becomes difficult to build a reasonable database. 
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Fig. 9. Typical situation for a Circuit Analog Absorber (CAA) sheet. A CAA sheet is situated 
at height h above a metallic ground plane, and is modeled as a lumped shunt element in a 
corresponding transmission line. The shorted transmission line can be transformed to a 
lumped load Yh(ω), shunting the sheet admittance Y(ω). 

In (Sjöberg, 2008), this design methodology is demonstrated for electromagnetic absorbers 

as in Figure 9. A typical absorber structure is the Salisbury screen, where a resistive sheet of 

sheet resistance Rs = 1/(σt) = Z0 = μ ε0 0/  = 377Ω is placed at height h above a ground 

plane. The short circuit of the transmission line provided by the ground plane is 

transformed to the location of the sheet as (Pozar, 2005, p. 60) 

 ω θ− 0 0( ) = j cot( cos )hY Y k h  (65) 

where k0 = ω/c0 is the free space wave number, ǉ is the angle of incidence, and Y0 is the 
characteristic admittance of the transmission line (the inverse of Z in (33)). For normal 
incidence, it is seen that Yh(ω0) = 0 for k0h = π/2, implying the load impedance as seen by the 
incident wave is ZL = 1/(1/Rs + Yh) = Rs = Z0 at this frequency, providing zero reflection 
since the transmission line is then matched. The condition k0h = π/2 can be interpreted as h 
being equal to a quarter wavelength at the design frequency ω0. The relative bandwidth is 
about 25% for −20dB reflectivity level (Knott et al., 2004, p. 316) corresponding to the 
bandwidth of the requirement cot(k0h) = 0. However, the bound (60) given by (Rozanov, 
2000) suggests that the upper bound on the bandwidth at −20dB well exceeds 100%, 
suggesting the design can be improved. 
One improvement is to include a pattern in the resistive sheet, using the additional reactive 
elements to increase the bandwidth. Results of this method are depicted in Figures 10 and 
11. It is seen that the design in Figure 10, based only on the pure circuit design and circuit 
analog representation of the sheet (details can be found in (Sjöberg, 2008)), produces a 
structure whose full wave characteristics are not optimal. A slight tuning of the geometry 
results in Figure 11, which has a better full wave result. The full wave simulations were 
made with the program PB-FDTD, which uses finite differences in the time-domain with 
periodic boundary conditions (Holter & Steyskal, 1999). We note that neither of these 
designs is close to the optimal limit by Rozanov. More advanced designs based on 
capacitive squares close to the ground plane can come close to the optimal limit (Kazem 
Zadeh & Karlsson, 2009). A design procedure taking oblique incidence into account can be 
found in (Munk et al., 2007). 
Another design case which is made easier using circuit analogs is the construction of a 
linear-to-circular polarizer using meander lines, see (Young et al., 1973; Terret et al., 1984) 
and (Munk, 2003, pp. 306–326). In order to create circular polarization from linear 
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Fig. 10. Comparison between a Salisbury screen and a circuit analog absorber (total height is 
7.5mm, normal incidence). The “ideal” circuit parameters computed from a circuit design 

are R = 308Ω, C = 80.4fF, and L = 3.15nH. These parameters are approximately achieved by 
the geometry depicted on the right, where the optimization procedure described after 

equation (64) predicts R = 311Ω, C = 80.4fF, and L = 3.16nH. These parameters are used in a 
circuit model, and the full wave results are also displayed. The physical limit (60) is 
represented by the square box, demonstrating that there is room for improvement on this 
design. 
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Fig. 11. A version of the CAA pattern in Figure 10 with more slender center part, and lower 
resistance per square. This provides higher inductance and therefore lower resonance 

frequency than the structure in Figure 10. The circuit parameters are R = 319Ω, C = 79.1fF, 
and L = 4.35nH. 

polarization, it is common to use a structure which delays the x-component 90°relative the 
y-component; by sending in the linear polarization with equal strength in x and y, the result 
is a circularly polarized wave. One idea to create this delay is to use the behavior of the 
metal strips in Figures 4 and 5, which are dominantly inductive for electric fields polarized 
along them, and dominantly capacitive for electric fields polarized orthogonally to them. In 
order to increase the reactive properties the lines are meandered, and several sheets are 
layered in order to achieve the total phase shift necessary. As is explained in detail in 
(Munk, 2003, pp. 306–326), it is necessary to adjust the outmost layers in order to reduce the 
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reflection from the structure, leading to the final design geometry in Figure 12. It is seen in 
Figure 13 that the results are quite broad band. In the real application, further dielectric 
sheets need to be added to the design for mechanical rigidity. 
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Fig. 12. Geometry of the layered meander structure, making up a linear-to-circular polarizer. 
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Fig. 13. Results for the layered meander structure (the x-axes in all subfigures are frequency 
in GHz). Upper left: the ratio between the vertical and horizontal polarization of the 
transmitted field. Upper right: the phase difference between the polarizations. Lower left: 
co-polarization reflection. Lower right: cross-polarization discrimination. 
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7. Conclusions 

We have shown how relatively complex wave propagation problems can be efficiently 
modeled and designed using circuit analogs. Propagation of plane waves in any 
bianisotropic material can be modeled as propagation of voltage and current in two 
transmission lines, one for each polarization. The wave number and characteristic 
impedance for these transmission lines are determined from the algebraic eigenvalue 
problem (28). For isotropic media, there is no coupling between the TE and TM polarization, 
but in general we must allow for this coupling by using a dyadic transverse impedance. 
Scatterers such as thin sheets, with or without a periodic pattern, may be modeled as 
lumped elements. If the sheets are non-magnetic, they can be reduced to a single shunt 
element. The circuit parameters can be determined in the static limit using the electric and 
magnetic polarizability per unit area. For higher frequencies, more advanced calculations 
taking the finite wavelength into account must be applied, for instance numerically. 
The strength of the simple circuit analogs lies in their use in concept design, where a large 
number of possible realizations of a specified function must be evaluated. Using the simple 
models, reliable concept designs can be provided which are subsequently subjected to a 
more detailed (and costly) analysis and refined, to provide the final design. 
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