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Chapter

Electrochemical Sensors for Food 
Safety
Lingwen Zeng, Lei Peng, Dazhi Wu and Baoguo Yang

Abstract

Food safety poses an increasing threat to human health worldwide. The develop-
ment of analytical methods and techniques to ensure food safety is therefore of 
great importance. Electrochemical sensors provide unique opportunity to realize 
sensitive, accurate, rapid, and portable detection for food safety. They have the 
potential to overcome the restrictions and limitations of traditional methods. In this 
chapter, we review the progress of electrochemical sensors for the detection of food 
contaminants including heavy metals, illegal additives, pesticide residues, veteri-
nary drug residues, biological toxins, and foodborne pathogen. Future perspectives 
and challenges are also discussed.

Keywords: electrochemical sensors, cyclic voltammetry, linear sweep voltammetry, 
differential pulse voltammetry, square wave voltammetry, food safety, detection

1. Introduction

Food safety has become a global public health concern affecting both mostly 
developing countries and developed countries. In addition, foodborne diseases 
negatively impact the economy, trade, and industries of affected countries. For 
example, melamine has been detected in infant formula (milk powder) in China, 
leading to more than 290,000 infants suffering from severe health problems such 
as urinary tract stones [1]. Early and accurate detection of food safety is therefore 
very important for preventing, controlling, and mitigating the impact of potential 
outbreaks. Many analytic methods, including chromatography methods such as gas 
chromatography (GC) [2], high performance liquid chromatography (HPLC) [3], gas 
chromatography-mass spectrometer (GC-MS) [4], and liquid chromatography-mass 
spectrometer (LC-MS) [5], and immunological detection, such as enzyme linked 
immunosorbent assay (ELISA) [6] and lateral flow immunoassay [7], have been 
employed for food safety detection. Although those traditional methods are relatively 
sensitive and specific, they are expensive, laborious, and time-consuming and require 
well-trained personnel [8, 9], which make them incompatible for developing coun-
tries and areas are lacking equipped facilities and specialists. It is therefore urgent to 
develop rapid, accurate, sensitive, and online technologies for food safety detection.

Modern electrochemistry provides powerful analytical techniques for sensors, 
with the advantages of instrumental simplicity, low cost, and miniaturization, work 
on-site, and the ability to measure pollutants in complex matrices with minimal 
sample preparation [10]. Electrochemical sensors and methods are developed as 
suitable tools for different applications, including bioprocess control, agriculture, and 
military, and, in particular, for food quality control. Voltammetric techniques, such 
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as cyclic voltammetry (CV) [10], linear sweep voltammetry (LSV) [11], differential 
pulse voltammetry (DPV) [12], and square wave voltammetry (SWV) [13], have been 
widely used in food analysis. Among these voltammetric techniques, DPV and SWV 
are commonly used, as low detection limits and multiplex analysis can be achieved 
with the two methods. These two techniques involve potential waveforms and their 
respective current response are shown in Figure 1A. The waveform of DPV consists 
of pulses of constant amplitude superimposed on a staircase waveform. This method 
has the highest sensitivity in electrochemistry because the charging current can be 
ignored against faradaic current, and their ratio is obtained as large. Moreover, SWV 
consists of symmetrical square-wave pulses superimposed on a staircase waveform. 
During each square wave cycle, the current is sampled twice, just before the end of 
each forward and each backward pulse followed by subtraction of the currents. The 
peak current heights (values) obtained by the two methods are directly proportional to 
the concentrations of the analyte. Amperometry is another important electrochemical 
analysis method in which the potential of the working electrode is constant and the 
resulting current from faradic processes occurring at the electrode is monitored with 
a function of time. In this method, the current is integrated over relatively longer time 
intervals, so it gives an improved signal to noise ratio [14].

Electrochemical sensors can be used as food safety monitoring tools in the assess-
ment of biological/ecological quality or for the chemical monitoring of both inorganic 
and organic pollutants. In this chapter we provide an overview of electrochemical 
sensor systems for food safety applications, and in the following sections, we describe 
the various electrochemical sensors that have been developed for food safety detection.

2. Heavy metals

Heavy metals (HMs) are currently defined as metals with a specific gravity 
greater than 5 g cm−3, which are considered as a serious source for polluting the 

Figure 1. 
Potential waveforms and their respective current response for (A) differential pulse voltammetry (DPV) and 
(B) square wave voltammetry (SWV).
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biosphere throughout the world and causing many healthy and physiological dis-
eases due to their prolonged half-life, non-biodegradability, and potential of accu-
mulation in different parts of the human body [15, 16]. Heavy metals like cadmium, 
lead, arsenic, chromium, and mercury are considered as hazardous elements even 
at low concentrations [17–19]. Therefore, sensitive and selective determination of 
toxic heavy metals with cost-effective and convenient procedures is of paramount 
importance.

Due to the speed of detection, low cost, high sensitivity, and easy adaptability 
for in situ measurement [20], electrochemical sensors have attracted great interest 
in the detection of heavy metal ions for food safety.

For many years, anodic stripping voltammetry (ASV) at the mercury and its 
modified electrode was extensively applied to the determination of trace metal ions 
for the extensive cathodic potential range [21, 22]. However, the disposal of the 
mercury-containing device and the incorrect handling can lead to the formation of 
mercury vapors that are toxic and represent a significant health and environmental 
hazard [23]. Therefore, various mercury-free electrodes have been developed in the 
past few decades. For example, a nanostructured bismuth film electrode (nsBiFE) 
has been prepared for ASV detection of multiple heavy metals, in which the detec-
tion limits of 0.4 and 0.1 μg L−1 are obtained for Cd2+ and Pb2, respectively [24]. 
Similar to bismuth, antimony nanoparticles have also been proven to be highly 
sensitive and reliable for tracing analysis of heavy metals [25]. To take into real 
application, more and more electrochemical sensors based on screen-printed car-
bon electrode (SPCE) have been fabricated for trace heavy metal detection in food 
safety as it is inexpensive, portable, and easy for mass production [26, 27].

3. Illegal additives

Addition of inedible substances and abuse of food additives are the prominent 
problems affecting food safety [28]. Typical illegal additives include melamine, 
clenbuterol, and Sudan I. These illegal actions may pose great threat to human 
health. For the detection of these chemicals, various nanomaterial-based bio-
sensors have been developed. Various approaches aiming at analyzing specific 
chemical contaminants and illegal additives have been developed [29–31]. Li 
et al. developed a gold nanoparticles (AuNPs)-decorated reduced graphene oxide 
(RGO) modified electrode for detection of Sudan I in food samples including chili 
powder and ketchup sauce, demonstrating satisfactory sensitivity, selectivity, and 
recovery [11]. A sensitive and selective electrochemical sensor based on MIL-53@
XC-72 nanohybrid modified glassy carbon electrode (GCE) was also fabricated to 
determine melamine with a linear range from 0.04 to 10 μM and detection limit of 
0.005 μM (S/N = 3) [32]. In addition, the sensor displayed excellent reproducibility, 
high stability, selectivity, and good recoveries for the determination of melamine 
in liquid milk. The synergistic effect of nitrogen-doped graphene (NGR) and 
nitrogen-doped carbon nanotubes (NCNTs) has also been investigated and applied 
to prepare an electrochemical sensor for simultaneous and sensitive determination 
of caffeine and vanillin [33]. Electrochemical sensors have also been developed for 
many other food additives, such as sunset yellow [34, 35].

4. Pesticide residues

Pesticides, including fungicides, herbicides, and insecticides, are widely used in 
most food production to control pests that would otherwise destroy or reduce food 
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production [36]. In the area of agriculture, the usage of insecticides, herbicides, 
molluscicides, and fungicides has an increasing importance. However, many pes-
ticides are toxic and can cause many health problems when consumed by animals 
and humans, such as bone marrow disorders, carcinogenicity, infertility, cytogenic 
effects, neurological diseases, and immunological and respiratory problems. Hence, 
pesticide residue detection is very important for food safety [37].

To date, many methods have been applied to determine pesticide residues in 
food samples. Electrochemical methods provide the elucidation of processes and 
mechanisms of redox reaction of pesticides and their residues [38]. They are sensi-
tive, reliable, and fast. They can be easily miniaturized and integrated with other 
analytical methods [39, 40]. A magneto-actuated enzyme-free electrochemical 
sensor based on magnetic molecularly imprinted polymer was developed, and it 
showed outstanding analytical performance for the detection of methyl parathion 
in fish, with a limit of detection of as low as 1.22 × 10−6 mg L−1 and recovery values 
ranging from 89.4 to 94.7% [41]. Da Silva and coworkers [42] developed an acetyl-
cholinesterase (AChE) biosensor for rapid detection of carbaryl in tomato samples 
by using electrode modified with reduced graphene oxide (rGO). The electrochemi-
cal response increased as the concentration of acetylthiocholine chloride increased, 
while the response decreased in the presence of AChE inhibitor OPs with a linear 
response to the inhibition of the thiocholine oxidation process for carbaryl con-
centrations from 10 to 50 nmol L−1 and 0.2 to 1.0 mol L−1. Compared with AChE, 
organophosphorus hydrolase (OPH) enzymes catalyze the hydrolysis of organo-
phosphorus pesticides (OPs) with a high turnover rate, can potentially be reused, 
and are, therefore, suitable for continuous monitoring of OPs [43, 44].

5. Veterinary drugs

Veterinary drugs mainly include antimicrobial drugs, antiparasitic drugs, and 
growth promoters, which are extensively used for treatment and prevention of 
diseases in animals, promotion of animal growth, and feed efficiency [45]. But 
the possible presence of veterinary drugs in animal-derived foods is one of the key 
issues for food safety, which arouses great public concern. So it is very important to 
develop quick and accurate methods to detect veterinary drug residues in animal-
derived food, and their quantity must be less than the maximum residue limits 
(MRL) defined in many countries on the basis of food safety [46].

Electrochemical sensors have drawn considerable attention in many fields such 
as food safety, disease diagnosis, and environmental monitoring [47, 48]. Lin et al. 
[49] developed a hybrid CNT-modified electrode for simultaneous determination 
of toxic ractopamine and salbutamol in pork samples. Conzuelo et al. developed 
a novel strategy to construct disposable amperometric affinity biosensors by 
recombinant bacterial penicillin-binding protein (PBP) tagged by an N-terminal 
hexahistidine tail that was immobilized onto Co2+-tetradentate nitrilotriacetic 
acid (NTA)-modified screen-printed carbon electrodes (SPCEs) for the specific 
detection and quantification of β-lactam antibiotic residues in milk, which was 
accomplished by means of a direct competitive assay using a tracer with horserad-
ish peroxidase (HRP) for the enzymatic labeling [50]. The sensor showed limits of 
detection with the low part-per-billion level for the antibiotics tested in untreated 
milk samples and a good selectivity against other antibiotic residues frequently 
detected in milk and dairy products. In addition, Wang et al. proposed a simple, 
rapid, and highly sensitive homogeneous electrochemical strategy for the detection 
of ampicillin based on target-initiated T7 exonuclease-assisted signal amplification. 
This biosensor showed a low detection limit of 4.0 pM toward ampicillin with an 
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excellent selectivity, which has been successfully applied to assay antibiotic in milk. 
Importantly, the sensor system could avoid the tedious and time-consuming steps 
of electrode modification, making the experimental processes much simpler and 
more convenient, which has great potential for the simple, easy, and convenient 
detection of antibiotic residues in food safety field [51].

6. Biological toxins

Mycotoxins are fungal secondary metabolites that have toxic effects on humans 
and animals. Generally, mycotoxins can be easily found in agriculture crops, dairy 
products, including milk and cheese, and alcohols [52]. Mycotoxins enter human 
or animal bodies through consumption of contaminated animals or industrial food 
products. Crops and food products that are highly susceptible to mycotoxin con-
tamination include alcoholic beverages, wheat, corn, barley, sugarcane, cottonseed, 
peanuts, rice, sugar beets, sorghum, and hard cheese [53].

Many review articles have focused on mycotoxin detection using different trans-
duction methods [54, 55]. However, only a few review articles have reported on the 
use of nanomaterials for the electrochemical (EC) sensing of mycotoxins [56]. The 
present review summarizes the recent developments of nanomaterial-based EC bio-
sensors for mycotoxin detection. It describes the importance of mycotoxin detection 
and the current progress and necessity of POC analysis of food toxins [56]. Finally, 
it illustrates the role in mycotoxin detection of EC sensors based on carbon and 
graphene metal nanoparticles (NPs) combined with different recognition elements, 
such as aptamers, antibodies, and molecularly imprinted polymers (MIPs) [57, 58]. 
These sensors exhibited additional analytical merits such as a shortened analysis 
time with simplified analytical procedures and portability. As such, EC sensors 
are now acknowledged as promising options for the trace-level identification of 
mycotoxins in food processing and manufacturing industries.

7. Microbial pathogens

Microbial pathogens include bacteria, viruses, and protozoa, and failure to 
detect them can have severe impacts on public health and safety. In the food or water 
services industries, legislation developed by the appropriate associated regulatory 
bodies to monitor and control the presence of these microorganisms is vital. Rapid 
and cost-efficient detection methods, with high-throughput capacity, are essential to 
implement effective monitoring systems to protect human health [59]. In 2012, the 
Environmental Protection Agency (EPA) released new Recreational Water Quality 
Criteria recommendations for protecting human health in waters designated for 
primary contact recreation [60]. Guner et al. developed an electrochemical sensor for 
the detection of E. coli using a pencil graphite electrode that was modified with multi-
walled CNT (MWCNT), chitosan, polypyrrole (PPy), and AuNPs. Anti-E. coli mono-
clonal antibody was immobilized on the hybrid bionanocomposite, and the detection 
range was from 3 × 101 to 3 × 107 CFU/mL of E. coli [61]. Gao et al. describe a novel 
electrochemical biosensor based on mouse monoclonal antibody immobilized on 
self-assembled monolayers (SAM)-modified gold (Au) electrodes for the detection of 
Listeria monocytogenes (LM) and the detection range is from 102 to 106 CFU/mL. More 
importantly, this biosensor could apply to detect LM in milk without sample pretreat-
ment, which is a straightforward and reliable method for analysis of LM with a simple 
operation and sensitivity at a low cost [62]. SPCEs were modified with iron/gold core/
shell nanoparticles (Fe@Au) conjugated with anti-salmonella antibodies to develop 



Nutrition in Health and Disease - Our Challenges Now and Forthcoming Time

6

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

an electrochemical biosensor for Salmonella detection. The biosensor was performed 
by square-wave anodic stripping voltammetry through the use of CdS nanocrystals 
and its calibration curve was established between 1 × 101 and 1 × 106 cells/mL with 
the detection limit of 13 cells/mL. The developed method showed that it is possible to 
determine the bacteria in milk at low concentrations and is suitable for the rapid (less 
than 1 h) and sensitive detection of S. typhimurium in real samples. Therefore, the 
developed methodology could contribute to the improvement of the quality control 
of food samples [63].

8. Summary

Food safety is undoubtedly one of the major global concerns. In this chapter, we 
summarize some representative electrochemical sensors toward food contaminants 
such as heavy metals, illegal additives, pesticide residues, veterinary drug residues, 
biological toxins, and foodborne pathogen. These electrochemical sensors for food 
safety detection continue to show many advantages including rapid response, 
field applicability, high sensitivity, high selectivity, and online analysis. Moreover, 
electrochemical sensors are much cheaper and easier to be miniaturized, which may 
play a key role on quality control in food processing, improving product quality and 
safety. However, the stability of the electrochemical sensors is still a challenging 
problem. Recently, we have developed an electrochemical instrument and a number 
of electrochemical sensors for the detection of heavy metal ions with excellent 
sensitivity and reproducibility. The instrument and sensors are being commercial-
ized with satisfactory user feedback.
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