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Abstract

In conventional atomic layer deposition (ALD), precursors are exposed sequentially to 
a substrate through short pulses while kept physically separated by intermediate purge 
steps. Spatial ALD (SALD) is a variation of ALD in which precursors are continuously 
supplied in different locations and kept apart by an inert gas region or zone. Film growth 
is achieved by exposing the substrate to the locations containing the different precursors. 
Because the purge step is eliminated, the process becomes faster, being indeed compat-
ible with fast-throughput techniques such as roll-to-roll (R2R), and much more versatile 
and easier and cheap to scale up. In addition, one of the main assets of SALD is that it 
can be performed at ambient pressure and even in the open air (i.e., without using any 
deposition chamber at all), while not compromising the deposition rate. In the present 
chapter, the fundamentals of SALD and its historical development are presented. Then, a 
succinct description of the different engineering approaches to SALD developed to date 
is provided. This is followed by the description of the particular fluid dynamics aspects 
and the engineering challenges associated with SALD. Finally, some of the applications 
in which the unique assets of SALD can be exploited are described.

Keywords: chemical vapor deposition, spatial atomic layer deposition (SALD), 
atmospheric pressure, in-line processing, thin films, transparent conductive materials, 
fluid dynamics

1. Introduction

The ALD technique was patented in 1977 by Suntola and Antson [1]. It is based on the self-

terminating, surface-limited reactions of volatile precursor molecules with a substrate. As 

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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a result, ALD offers unique assets, namely, precise film thickness control to the nanometer, 
high-quality materials even at low temperature (thanks to the specific highly reactive nature 
of ALD precursors), and crack-free, compact and conformal film deposition even over high-
aspect-ratio features. In this first patent, both the temporal and the spatial approaches were 
already proposed. In the former, precursors are injected in consecutive pulses separated by 

purge steps (and thus separated in time) [2–5]. In the later, precursors are supplied in differ-

ent locations and it is the substrate that moves from one location to another (thus separated 

in space, see Figure 1) [6–9].

In all the enclosures proposed in Suntola’s first patent, the reaction takes place inside deposi-
tion chambers that operate under vacuum. Curiously enough, although the three first reactors 
proposed by Suntola were spatial, followed by two temporal reactors (Figure 2), ALD has 

traditionally been developed only based on temporal approaches, both industrially and at 

the laboratory level, until recently. Some years afterward, in a new patent from 1983, Suntola 

introduced the idea of using an inert gas flow to separate the different precursors, as an alter-

native to purging under vacuum [10]. He again applied this principle to both temporal and 

spatial reactors (Figure 3). This was supported by an analytical study of precursor diffusion 
across the inert gas flow as a function of reactor design and gas flow rate and pulse time. The 
analysis showed that it was possible to conceive SALD reactors that could operate at ambient 

pressure without the need of unrealistic inert gas barrier flows, making atmospheric pressure 
SALD (AP-SALD) possible.

Thus, from the chemical point of view, spatial ALD is equivalent to temporal ALD, and there-

fore, self-terminating, surface-limited reactions occur. As a consequence, SALD also offers a 
highly precise growth per cycle, the ability to conformally coat high-aspect-ratio features, and 

the possibility to deposit high-quality films at lower temperatures than with chemical vapor 
deposition (CVD). But in addition to retaining the unique assets of ALD, SALD can be up to two 

orders of magnitude faster. Finally, the possibility to perform SALD at atmospheric pressure 
(AP-SALD), and even in the open air (without using any deposition chamber at all), makes it 

cheaper and easier to scale up since complex and expensive vacuum processing is not required.

Although the first patent involving atmospheric-pressure SALD dates from 1983, the first 
report applying the SALD approach was published only in 2004 [11]. After this initial report, 

Figure 1. Schema of conventional ALD (left) and of SALD (right).
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the SALD field has experienced a significant growth, as shown by the increase in the number 
of publications dealing with SALD. In addition, many patents have been published since 1983 

due to the appropriateness of the AP-SALD approach for application in industry and mass 

production. The first one by D. Levy (from Kodak) [12] describes a close-proximity, open-air 

reactor (see Section 2). Rather quickly, SALD has indeed reached industrial commercializa-

tion, and several companies are currently developing, fabricating, and/or selling SALD equip-

ment, both for industrial production and for academic research [13].

Figure 2. Two of the enclosures proposed by Suntola in his patent from 1977. Left: spatial approach and right: temporal 

approach.

Figure 3. Two of the enclosures proposed by Suntola in his patent from 1983. Top: temporal approach and bottom: 
spatial approach.
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2. Engineering approaches to SALD

The spatial approach has proven to be a very versatile one from the engineering point of view 

since many reactors have been reported to date. Nonobe et al. reported a spatial horizontal 
quartz hot-wall type reactor for the growth of HfO

2
 films on 10 × 10 mm silicon substrates 

[11]. HfCl
4
 (evaporated at 433 K) and O

2
 are introduced in opposite sides of the reaction zone 

using a purified N
2
 gas flow. A purified N

2
 gas curtain is used to prevent precursors’ mix-

ing. Finally, the substrate is oscillated between the different zones by a computer-controlled 
system. Despite the spatial distribution of the precursors, the precursors are supplied in a 

temporal fashion, since pulses are delivered to the substrate once it is in place.

Since in most systems, the precursors are continuously fed into the reactor, SALD has also been 

referred to as continuous ALD. This is the case of the R2R reactor designed by Lotus Applied 

Technology [14]. In it, a web substrate is moved between reactor zones containing the different 
precursors, which are separated by a purge zone (Figure 4). Differential pressure and pump-

ing are used to prevent precursor migration into the purge zone. Process pressure is generally 
about 2 mbar. Web speed can reach tens of meters per minute. The reactor has also been config-

ured for plasma-based ALD mode since at high web speeds, it is found that water desorption is 

not fast enough, thus producing an anomalous growth (see Section 3 for more details).

The ASTRal group from the Lappeenranta University of technology developed a circular reac-

tor for flexible substrates [15]. The design consists of a cylindrical drum to which the flexible 
substrate is attached. It then rotates inside a reaction chamber containing different precursors 
and purge zones. The process is equivalent to conventional ALD since the obtained growth 
per cycle saturates as the precursor flow rate is increased, reaching approximately 1 Å/cycle 
for the trimethylaluminum (TMA)/water process for the deposition of Al

2
O

3
 at 100 °C. Prof. 

Steven M. George’s group from the University of Colorado has also developed a modular 

rotating cylindrical reactor [16]. The design is based on two concentric cylinders. The outer 

cylinder is fixed and contains several slits that can accept a wide range of modules that attach 
from the outside (Figure 5). The modules can easily move between the various slot positions 

to perform precursor dosing, purging, or pumping. The inner cylinder rotates with the flexible 

Figure 4. Low-pressure SALD reactor proposed by Lotus Applied Technology. Reproduced from Dickey, E. et al. J. Vac. 

Sci. Technol. A 30, 021502 (2012), with the permission of the American Vacuum Society.
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substrate passing underneath the various spatially separated slits in the outer cylinder. With 

this reactor, Al
2
O

3
 films can be grown at a rate of 2 Å/s, for rotation speeds of 175 RPM. Higher 

deposition rates can even be achieved by adding more modules.

Levy et al. from Kodak designed a very neat approach to AP-SALD in 2008 by [17]. In their 

approach, an injector manifold head is used to supply the different precursors along paral-
lel channels. The precursors are kept separated by adjacent channels supplying an inert gas 

flows. Effective precursor separation is attained with practical gas flows (up to thousands of 
sccm (standard cubic centimeters per minute)) by placing the substrate close to the deposition 

head (around 50 microns). A relative motion between the head and the substrate replicates 

the ALD cycles yielding film growth (Figure 6). As a result, the system works at atmospheric 

pressure and even operates in the open air, that is, without using a deposition chamber. In 

the first model, the injector head was placed on top of the substrate. Later, a different design 
by Kodak was made in which the head lays at the bottom (the outlets facing upward), with 
the substrate oscillating on top. Later, other groups, such as the Laboratoire des Matériaux et 

du Génie Physique (LMGP) in Grenoble (Figure 6), have designed similar “close-proximity” 

SALD setups [18, 19]. In situ monitoring of film thickness has been performed by Yersak et al. 
taking advantage of the open-air environment offered by such AP-SALD approach. In their 
work, a reflectometer is placed in series with the injection module in order to monitor film 
thickness while depositing on a web.to (Figure 7) [20].

The close proximity approach, and the effective precursor separation that it provides, has 
been used in other reactors. TNO (Netherlands Organisation for Applied Scientific Research) 
has developed a cylindrical reactor consisting of separate zones exposing the precursors one 
by one to a circular substrate that moves underneath the precursor injector [21]. Between and 

around the reaction zones, shields of inert gas separate the precursor flows. Under the right 
operating conditions, these gas shields act as gas bearings, facilitating virtually frictionless 

movement between reactor and substrate. The group in TNO has also used this type of reac-

tor to do plasma-activated SALD [22, 23]. The same group has also developed an R2R type 

of reactor based on the close proximity approach similar to the one developed by George’s 

Figure 5. SALD reactor developed at the University of Colorado. Reproduced from Sharma, K. et al., J. Vac. Sci. Technol. 

A 33, 01A132 (2015), with the permission of the American Vacuum Society.
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Figure 7. Implementation of in situ film thickness monitoring to an in-line AP-SALD reactor. Reproduced from Yersak, 
A. S. eta l., J. Vac. Sci. Technol. A 32, 01A130 (2014), with the permission of the American Vacuum Society.

group in Colorado (described above), but in this case, the gas-bearing principle is used (the 

web floated onto the gas flows coming out of the inner cylinder). There are indeed several 
patents concerning substrate floatation [24], and this approach has been used for the Solaytec 

and Levitech commercial systems (see below).

Finally, Ruud van Ommen et al. from the Delft University of Technology have developed a tubu-

lar SALD reactor capable of coating nanoparticles thanks to pneumatic transport (Figure 8) [25].  

Figure 6. Close-proximity SALD approaches. Left: Schemes of the initial SALD systems reported by Kodak. Right: 

system developed at the LMGP.
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They have developed a 27-m long, 4-mm internal diameter tube reactor, and the substrate nanopar-

ticles (TiO
2
 in this case) are fed at about 1 g min−1 into the tube from a vessel in which they are 

suspended in an upward N
2
 flow (typically called a fluidized bed). The particles are carried inside 

the tube at velocities of 5 ms−1. Different sections of the reactor tube contain the different precursor 
and inert gas purge zones.

The high throughput and scalability of AP-SALD has already been harnessed, and indus-

trial and laboratory equipment is already commercialized. Solaytec (www.solaytec.com), a 

spin-off from TNO, developed a linear modular close-proximity reactor specially designed to 
deposit Al

2
O

3
 passivation layers on silicon solar cells. Levitech (www.levitech.nl) proposes a 

similar approach. Beneq has as a well-developed, large area R2R industrial coating SALD sys-

tem (WCS 600), along with the laboratory-scale SALD systems (TFS 200R, R11). A large-scale, 
large area SALD reactor has recently been presented for the coating of large flat substrates. 
Applied Materials and Jusung Engineering also propose SALD reactors. SALD is also being 

used to functionalize commercial products (e.g., plastics) using home-built equipment.

3. SALD fluid dynamics and modeling

From the chemical point of view, SALD is equivalent to ALD and in order to have layer-by-
layer surface limited growth, the surface to be coated must be saturated, and any excess precur-

sor that stays physisorbed or laying above the surface should be removed in the purge zone. 
Since in SALD, the precursors are supplied continuously, efficient separation is a key issue and 
the reactors must be designed so that the inert flow barriers are effective. As we have seen in 
the previous section, this has been achieved using various engineering approaches. In order to 

evaluate the effectiveness of a particular reactor and the effect of the different conditions on the 
process, modeling is frequently used, as shown below.

The first main advantage of SALD with respect to ALD is that processing can be much faster. 
The maximum deposition rate that is achievable depends of course on the type of reactor 

Figure 8. Tubular SALD reactor for coating nanoparticles. Reproduced from van Ommen, J. R. et al., J. Vac. Sci. Technol. 
A 33, 021513 (2015), with the permission of the American Vacuum Society.
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used, but ultimately, it always depends on the properties of the different precursors and the 
reaction rate (i.e., reaction kinetics). The time that the substrate is in contact with the precursor 

flow must be long enough for achieving a complete reaction (i.e., surface saturation). If we 
take the reaction between TMA and water as an example, the time scale for the TMA half-

reaction can be estimated by

   t  
HR

   =   
Aχ  d  

mono
    ρ  

 Al  
2
   O  

3
  
  
  _________________  

 c  
gs

   ( M  
 Al  

2
   O  

3
  
   /  M  

TMA
  )   ∅  

TMA
  
    (1)

with A being the area available for deposition, χd
mono

 being the self-limiting film thickness, 
ρAl2O3 the density of the deposited layer, c

gs
 the stoichiometric coefficient, MAl2O3 and M

TMA
 are 

the molar masses of Al
2
O

3
 and TMA, and ∅

TMA
 the precursor mass flow rate. Poodt et al. used 

this approach to estimate a time scale of a few milliseconds for their reactor [21].

Substrate speed thus needs to be adjusted in order to ensure surface saturation. At the same 

time, speed may also be limited by the desorption kinetics of precursor molecules physi-

sorbed on the substrate. Water, for example, is known to desorb increasingly slower as tem-

perature diminishes (meaning than in conventional ALD, purging steps become much longer, 

i.e., 30 s and even minutes), and plasma oxidation is a better choice for low temperatures [14]. 

The rate of desorption is proportional to the surface concentration, Cs, and on the probabil-

ity that water molecules desorb. Taking the binding energy of absorbed molecules from the 

Boltzmann equation, the desorption rate per molecule can be expressed as:

   R  
d
   = Lexp (−   

qE
 ___ 

kT
  )   (2)

where L is a constant including the molecular vibrational frequency, E is the molecule bind-

ing energy (eV), q is the electronic charge, k is the Boltzmann’s constant (JK−1), and T is the 

temperature (K). The rate of molecules accumulation is then given as:

 dCs/dt = Is – CsRd (3)

where I is the impingement rate of water molecules and s is the sticking coefficient. I can be 
expressed as

  I =   
P  N  

A
  
 ______ 

 √ 
_______

 2𝜋MkT  
    (4)

where N
A
 is the Avogadro’s number, M is the molar mass (kg), and P is the partial pressure of 

the water vapor. Eq. (3) can thus be solved as

   C  
s
   = Is𝜏 (1 − exp  (−   t __ τ  ) )   (5)

where

  τ =   1 ___ 
 R  

d
  
   =   1 __ 

L
   exp  (  

qE
 ___ 

kT
  )   (6)
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is a time constant. So, the excess of water molecules absorbed on the substrate as a function of 

time spent in the precursor zone can be approximated as

   Q  
0
   = Is𝜏 (1 − exp  (− 1 / τ) )  for t >  t  

m
    (7)

where t
m

 is the time required for having a monolayer (thus Q
0
 = 0 for t < t

m
). From the above 

discussion, the amount of excess growth (i.e., anomalous CVD growth due to remaining physi-

sorbed water in the substrate) is obtained by combining the water accumulation on the surface 

while the substrate is in the precursor zone and the desorption taking place in the purging zone:

   ∆ G = bIs𝜏 (1 − exp  (   − t / τ)  )   exp  (− t / τ)    (8)

where b is a constant. Thus, temperature, precursor concentration, and speed need to be care-

fully adjusted in order to ensure minimal excess of absorbed molecules and effective purg-

ing. Maydannik et al. used this analytical approach to fit anomalous Al
2
O

3
 growth obtained 

experimentally between 100 and 150 °C [26].

The second advantage of SALD is that it can be easily performed at atmospheric pressure and in the 

open air. For that, the precursors need to be isolated from the atmosphere by the inert gas flow. In its 
patent from 1983 [10], Suntola developed the equations allowing to estimate the flows that would be 
required in order to ensure precursor separation and isolation from the ambient. The equations can 

be applied to temporal ALD reactors and spatial ones, after proper modification taking into account 
the particular design of each reactor. The equations developed allowed him to predict the viability 

of atmospheric pressure SALD without the need for unrealistically high inert gas flows.

An important parameter affecting the SALD process is reaction temperature, since it can affect 
effective precursor separation and the kinetics of the different reactions and processes (such 
as desorption) taking place. As a consequence, the effective precursor separation and the 
maximum achievable speed for a particular reactor and reaction can vary for different deposi-
tion temperatures. For example, Pan et al. have performed the simulations of a reactor based 
on the manifold head injector approach [27]. They have used the following set of equations 

for their simulations:

    
d𝜌

 ___ 
dt

   + ∇  ∙  (ρ V 
→
  )  = 0  (9)

    d __ 
dt

   d (ρ V 
→
  )  + ∇  ∙  (ρ V 

→
   V 
→
  )  = − ∇ P + ∇  ∙   τ ~   + ρ g →   +  F 

→
    (10)

    d __ 
dt

   d (ρ  c  
i
  )  + ∇  ∙  (ρ  c  

i
   V 
→
  )  = − ∇  ∙   J 

→
    
m,i

   +  R  
i
    (11)

    d __ 
dt

   d (𝜌E)  + ∇ [ V 
→
   (𝜌E + P) ]  = ∇  ∙  [k ∇ T −  ∑ 

i
      h  

i
     J 
→
    
h,i

   +  (  τ ~   ∙  V 
→
  ) ]   (12)

where ρ is the density,   V 
→
    is the velocity vector, P is the static pressure,  ρ g →    and   F 

→
    are the gravi-

tational body force and external body forces, respectively,    τ 
~

    is the stress tensor, ci is the local 
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molar fraction of species i, R
i
 is the net rate of production of species i by chemical reaction,    J 

→

    
m,i

    

is the mass diffusive flux of mixture species i, k is the material thermal conductivity, hi is the 

enthalpy of mixture species i, and    J 
→

    
h,i

    is the energy diffusive flux of mixture species i.

The results of the modeling show that temperatures higher than 250 °C accelerate the diffusive 
mass transport, thus inducing precursor intermixing. On the other hand, high temperature also 
increases the film deposition rate and results in a higher saturated growth per cycle (GPC) level. 
The simulation also showed that the chemical deposition process is highly affected by the flow and 
concentration of precursors. Surface reaction kinetics of the in-line spatial ALD are thus a function 

of deposition temperature, flow conditions, reactive surface sites, and precursor distributions.

In another example, Deng et al. have presented a numerical model for atmospheric SALD pro-

cess, based again on an in-line (i.e., manifold injector head) reactor [28]. The effect of inert gas 
flow rate, carrier gas flow rate, and precursor concentration (i.e., partial pressure or mass frac-

tion) is addressed. The inert gas flow rate obtained from the model agrees well with the experi-
mental values. Simulation results show that the precursor concentration is the determinant factor 

governing minimal residual time; the optimum precursor usage is inversely proportional to the 

carrier gas flow rate. Thus, for a constant carrier gas flow, the optimal precursor usage and the 
precursor mass fraction form a monotonic decreasing relationship. The gap between the gas head 

and the substrate, regardless of its specific structures in any SALD system, leads to a low Péclet 
number, thus implying that precursor diffusion plays a more important role than convection.

Finally, due to the relative movement between the substrate and the different gas zones, the 
possibility of carrying some precursor molecules from one precursor zone to the second pre-

cursor zone across the inert gas barrier is not negligible. This precursor entrainment is very 
much related to the sample speed and to the inert gas flow rate. The movement between a 
surface and a gas gives rise to a boundary layer at the surface having a thickness inversely 

proportional to the square root of the relative velocity [15, 26]. The relationship between layer 

thickness,  δ , and substrate speed (Vs) can be expressed as:

  δ ~  √ 

___

   1 __ 
 V  

s
  
      (13)

The dependence of the concentration of precursor in the boundary layer is proportional to  δ , 

which in turn is proportional to the square root of the substrate residence time (residence time 

being inversely proportional to substrate velocity). Since precursor concentration falls from 

maximum to 0 once the substrate enters a purge zone, the total quantity of precursor in the 
boundary layer can be expressed as G = (1/2)C

s
δ, where C

s
 is the concentration at the substrate 

surface. G diminishes as the substrate progresses in the purge zone. The flux of precursor out 
of the boundary layer will depend on the concentration gradient:

  F (t)  = − D   dC ___ 
dx

   ≈ − D   
 C  

s
  
 __ 

 V  
s
  
   ≈ − D   2G ___ 

  V  
s
     2 
    (14)

where D is the diffusion coefficient of the precursor. A similar approach to the one used 
above to evaluate the excess growth due to excess precursor physisorption can be used here 

to evaluate anomalous growth rate due to precursor entrainment.
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For close-proximity systems, the gap between injector and sample is very important in order 
to ensure no mixing of the precursors in the gas phase. Nevertheless, for systems for which 

the gap can be adjusted mechanically, there is also the possibility to perform the deposi-

tion in a pseudo-CVD (or spatial CVD, SCVD) mode, that is, allowing a partial mixing of 

precursors immediately above the substrate. For samples not having complicated or high-
aspect-ratio features, not having CVD is not an issue and the obtained films are still dense, 
uniform, and the thickness obtained is proportional to the number of cycles [29]. In order to 

control the deposition mode, computational fluid dynamic approaches (CFD) can be used 
to simulate the process (Figure 9). It is also important to consider that the properties and 

the morphologies of the films obtained using the two different modes (SALD vs. SCVD) are 
usually different [9].

The possibility of having precursor molecules being entrained from the region where they 

are being injected to the region where the other precursor is being injected has also to be 

considered. This is due to the relative movement of the substrate and the injector or precursor 

zones, and the existence of a boundary layer [15, 19, 20, 30–32]. Again, CFD approaches can be 
used to predict whether precursor entrainment is to be expected for a set of conditions with 

a specific SALD system. For example, while many close-proximity systems operate with gap 

Figure 9. Comparison between SCVD and SALD modes. Scheme of a close-proximity head having two precursor 

channels and different gaps between head and sample: (a) 150 μm gap, no mixing in the gas phase, (b) 700 μm gap, 

resulting in precursor mixing above the sample surface, and (c) and (d) show a CFD stationary simulation of the two 
different modes. A whole representation of the head was used to simulate the behavior of the gases, but only two 
precursor channels are shown. A cross section of the head with precursor, inert and evacuation channels is shown in 

which the normalized concentration of the different precursors is given. Below, normalized precursor concentration 
profiles calculated along the substrate line are shown.

Spatial Atomic Layer Deposition 11



Figure 10. Spatial distribution of (a) precursor velocity and (b) precursor concentration above the substrate for the 

deposition of ZnO from diethyl zinc (DEZ). Here, only the cross-section views including a DEZ inlet and two exhaust 
inlets are shown. The blue color corresponds to low velocity/precursor concentration, while red or yellow color 

corresponds to high velocity/precursor concentration.

sizes in the order of 100 μm, Pan et al. have shown that injector-substrate gaps of as a much as 

1.5 mm can be used without having precursor cross-talk [27]. Figure 10 shows a simulation 

of the effect of substrate speed in the gas velocity and precursor concentration for the close-
proximity SALD system at LMGP [9, 33]. As it can be seen, with the conditions used for the 

simulation, no precursor entrainment takes place between different precursor regions. The 
evaluation of precursor entrainment has also been monitored experimentally [30]. Finally, it 
has recently been demonstrated that atmospheric pressure SALD can be used to coat porous 

substrates with high throughput as long as high precursor partial pressures and molar flows 
can be reached [34].

4. Taking advantage of SALD

To date, several materials including intrinsic, doped and mixed oxides, metals and recently organic 

coatings, have been produced using SALD reactors, as detailed in Table 1. The applications range 

from active and passive components for thin film transistors (TFTs), barriers passivation layers to 
active components for new-generation solar cells. Some examples are briefly described next.

The first application of SALD, from Kodak, involved the deposition of ZnO and Al
2
O

3
 layers as 

components in TFTs [17]. The same group has published different studies on this line, includ-

ing the use of growth inhibitors for the deposition of patterned films, and thus showing that 
selected area deposition is also possible with spatial ALD [36, 39, 82, 83]. The group from TNO 
used their rotary reactor to deposit Al

2
O

3
 passivation layers for silicon solar cells, and the good 
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results prompted the creation of the spinoff company Solaytec (see above) [21]. The same group 

has dedicated efforts to deposit transparent conductive oxides (TCO) layers and more complex 
oxides for application in photovoltaic devices [51, 56, 84, 85]. Prof. Driscoll’s group was the first 
one to apply the SALD technique for the deposition of active layers for new-generation solar 

cells [52, 71–74]. For example, Muñoz-Rojas et al. showed that a 15-nm thick amorphous TiO
2
 

layer can act as an efficient hole blocking layer in bulk heterojunction solar cells [72]. Thanks to 

the high quality offered by the SALD technique, an extremely thin (yet crack and pinhole free) 
layer can be used. And as a result, low deposition temperatures can be used, since the lower con-

ductivity of amorphous TiO
2
 is compensated by having a very thin layer. In addition, deposition 

rates are two orders of magnitude faster than for other low-temperature, atmospheric deposi-

tion methods (Figure 11). Such high throughput characteristic of SALD is of high relevance for 

organic-based PV technology. Recently, it has also been shown that SnO
x
 and ZnO films depos-

ited by SALD can have a beneficial impact on the stability of hybrid perovskite solar cells [62, 69].

Material References

Intrinsic metal oxides HfO
2

[11]

Al
2
O

3
[14–16, 19–21, 26, 31, 35–50]

ZnO [18, 36, 39, 45, 46, 51–67]

SnO
x

[68, 69]

TiO
2

[14, 18, 70–72]

Cu
2
O [46, 73, 74]

Nb
2
O

5
[71]

NiO
x

[91]

ZrO
2

[92, 93]

MoO
x

[94]

Doped oxides ZnO:N [46, 55, 63, 67]

Al:ZnO [36, 56, 75]

Zn
1
–

x
Mg

x
O [46, 64, 76]

In:ZnO [51, 77]

ZnO:S [58]

TiO
2–x

Cl
2x

[78]

Mixed oxides IGZO [79]

CIGS [80]

Metals Ag [23]

Pt [25]

Organic materials Polyamide [81]

Table 1. Materials deposited by SALD to date.
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SALD has also been used for LEDs, in some cases to deposit active ZnO layers for polymer and 
hybrid perovskite-based diodes [54, 76], and in another case using Al

2
O

3
 as permeation barrier 

for flexible organic LEDs [49]. Other authors have also demonstrated the suitability of SALD for 
depositing barrier and encapsulation layers both on plastic and paper substrates [14, 31, 40, 48].

K. Sharma et al. used their cylindrical reactor (the University of Colorado, see Section 2) to 

study the deposition of ZnO on 25 μm thick flexible anodized aluminum oxide (AAO) tem-

plates [86]. They used DEZ and ozone as precursors, and the reaction temperature was set 
at 50 °C. The results show that pores with 100 nm of diameter can be conformally coated for 

substrate speeds ≤10 RPM. This corresponds to an aspect ratio of 250, and the correspond-

ing residence time is 48 ms. For faster substrate speeds or smaller pores, the films were not 

Figure 11. Top: TEM images of TiO
2
 amorphous films deposited at 100 °C. Bottom: cell efficiency compared with 

equivalent cells from the literature in terms of blocking layer fabrication time [72].
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uniform along the pores. Coating of the AAO was used to evaluate the conditions for coating 
porous substrates. They then used optimized conditions to coat porous Li battery electrodes. 
The Al

2
O

3
 SALD coating used was observed to enhance the capacity stability of the electrodes. 

Other recent studies show the benefits of SALD for the field of energy storage [45, 78].

Chen et al. have developed a system in which two injector heads are combined for the deposi-

tion of ZnO/TiO
2
 nanolaminates [18]. They show that nanolaminates with the same thick-

ness and overall composition could be turned from crystalline to amorphous by increasing 

the number of bilayers (i.e., by reducing the thickness of each individual bilayer). Optical 
transmittance of the laminates increases in the visible range with the number of bilayers. The 
refractive index of laminates increases with decreasing bilayer thickness, thus demonstrating 

the possibility for tuning. The conductivity of nanolaminates is higher than for ZnO films 
due to an increase in carrier density. On the other hand, mobility decreases with respect to 
intrinsic ZnO layers.

Recent reports from Muñoz-Rojas and coworkers have shown that SALD is an ideal technique 
to enhance the stability of transparent electrodes based on metallic nanowires (MNWs). In 

these electrodes, metallic nanowires are deposited by different low-cost, scalable methods, 
such as spray coating, to obtain a random network. Above a certain areal mass density of the 

electrode (i.e., amount of nanowires), percolation of the nanowires occurs and the electrode 

becomes conductive. Yet, since most of the space is empty, the electrode remains transpar-

ent. The best electrodes based on AgNWs are comparable and even better than the state-
of-the-art indium tin oxide (ITO, the most commonly used transparent conductive oxide) 
electrodes [87–89]. In addition, electrodes based on MNWs are flexible, which in combination 
with the soft deposition methods used to fabricate the networks, and make this technology 

Figure 12. Left: SEM and TEM images of bare and ZnO-coated AgNWs. Right: failure voltage of AgNWs networks 
versus ZnO coating thickness. The insets correspond to SEM images of a network in which the wires have started 
spheroidizing due to thermal and electrical instabilities (top), and to a coated network in which the nanowires are intact 
after being subjected to electrical stress (bottom). The discontinuous line is obtained using a simple model that shows 
that the enhanced stability of the coated networks is due to hindered Ag atomic diffusion (see reference for details) [61].
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compatible with plastic and other soft substrates. Finally, electrodes based on MNWs are 
more transparent to the infrared part of the spectrum than the transparent conductive oxides 

(TCO). Despite these advantages, electrodes made of MNWs suffer from thermal, electrical, 
and chemical instabilities. A solution to increase the stability of the nanowires is to coat 

them with a thin oxide film, which prevents the diffusion of metal atoms in the wires and 
the reaction of the same with the atmosphere. ALD is a perfect technique for that since the 

coatings obtained are dense and crack free. But conventional ALD is usually performed in 

vacuum, and growth rate is too low. SALD on the other hand can be processed in the open air 

and offers a high deposition throughput. The close-proximity system at the LMGP has thus 
been used to coat MNW electrodes. In a first example, ZnO coatings of different thicknesses 
were deposited on an AgNWs electrode. The oxide coating resulted in a better electrical and 
thermal stability of the electrodes, and the improvement observed was directly proportional 

to the thickness of the oxide layer (Figure 12) [61]. In another example, Al
2
O

3
 coatings were 

used to protect CuNWs electrode. The encapsulation of the wires with the Al
2
O

3
 layer pre-

vented the oxidation of the wires upon heating in the atmosphere, which allowed the fabrica-

tion of stable transparent heaters [44].

5. Conclusions

Although already patented in 1977 at the same time than temporal ALD, spatial ALD has only 

been developed with the beginning of the twenty-first century. The possibility to perform 
ALD in much faster deposition rate, at atmospheric pressure and even in the open air has 

converted SALD in to a technique that is gaining much attention and momentum. SALD has 
also made the transition from laboratory to industrial scale, and different commercial systems 
are already available both for laboratory and production scale, while home-made systems are 

also used. SALD is a very flexible deposition technology that allows a high degree of design 
freedom, as shown by the increasing number of reactors being developed. Because in SALD, 

precursors are continuously being injected, efficient separation by the inert gas flow/zone 
needs to be ensured. The analytical study of fluid dynamics and modeling are thus commonly 
used during the design of reactors and to evaluate optimum deposition conditions.

Many materials have been already deposited using SALD. Initial works focused on Al
2
O

3
 and 

ZnO. Later on, other binary oxides such as Cu
2
O, TiO

2
, or Nb

2
O

5
 have been developed, together 

with the deposition of more complex oxides (including doping and mixes oxides), metals, and 

even organic films, in which is the first example of spatial molecular layer deposition (SMLD) 
[90]. The main applications of SALD to date have been for the deposition of components for 

TFTs, solar cells, and LEDs and for the deposition of barrier and encapsulation layers. SALD 
has been demonstrated on flexible substrates such as paper or plastic and even on features 
with high aspect ratios.

The combination of the unique assets of ALD with faster deposition rates and air processing, 

design flexibility, and easy scalability are expected to make SALD one of the main thin-film 
deposition techniques in the coming years.
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