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Chapter

Epigenetics and Cartilage 
Regeneration
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Abstract

Regenerative cartilage therapy has great potential for the treatment of debilitat-
ing diseases such as osteoarthritis and rheumatoid arthritis. Recent advances in the 
field of epigenetics have enabled us to understand more clearly the role of micro 
RNAs, DNA methylations and histone modification in disease progression, as well 
as its potential role in disease prevention. However, a thorough understanding of 
the external dietary and environmental factors that could affect the epigenetic 
events could be the key to unravelling novel therapeutic strategies for these diseases. 
There is, therefore, a need for identifying certain dietary or environmental factors 
that could change this downward epigenetics signalling cascade, stop or retard 
cartilage degradation and promote cartilage regeneration.

Keywords: cartilage regeneration, DNA methylations, epigenetics, therapeutic 
dietary supplements, DNMT inhibitors

1. Introduction

Articular cartilage is an aneural, avascular, alymphatic specialized fibrous con-
nective tissue which covers the articulating surface of synovial joints. This is charac-
terized by a small number of morphologically distinct populations of chondrocytes, 
which are primarily responsible for production, organization and maintaining the 
extensive network of an extracellular matrix. The balance between the hydration 
of matrix proteoglycans (PGs) and the resistance offered by the extensive network 
of the fibrous structure of the collagen provides the hydrodynamic load-bearing 
properties of articular cartilage, which is critical for joint movements and smooth 
transmission of mechanical compression across the joint. As articular cartilage is 
originally derived from the hyaline cartilage template, it is also classified as perma-
nent hyaline cartilage. After the original phase of cartilage production, differentia-
tion and resorption and closure of growth plate cartilage at puberty, it remains as 
a part of bone throughout the adult life. It is divided into four distinct horizontal 
layers: the superficial, transitional, deep and calcified cartilage layers (Figure 1).

The thin superficial zone protects the deeper layers from shear stress and injury 
and makes up 10–20% of articular cartilage thickness. This layer is characterized by 
small flattened disc-shaped chondrocytes, comparatively low proteoglycan content 
and densely packed layers of uniformly formed collagen fibres, which gives the 
characteristic hyaline opacity to cartilage. This layer is in direct contact to synovial 
fluids and is responsible for most of the tensile strength of the cartilage as well as 
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takes the direct brunt of inflammatory cytokines. It is well documented that the 
chronic inflammation in joints in osteoarthritis (OA) patients is due to synovial 
macrophages and high inflammatory cytokines that initiate the aggregenase, MMPs 
and other destructive enzymes. Immediately below the superficial zone is the middle 
or transitional layer which provides the functional bridge between the superficial 
and deep layers. The middle layer comprises of 40–60% of the total cartilage volume. 
In this layer, the chondrocytes attain a more rounded or spherical shape, the contents 
of proteoglycans increase, and thicker collagen fibres provide an oblique transitional 
network intermediate between the tangential superficial and radial deep layers. The 
deep layer is characterized by relatively mature rounded chondrocytes arranged 
in longitudinal columns, high proteoglycan contents, the largest diameter collagen 
fibrils in a radial disposition and the lowest water concentration. This zone repre-
sents approximately 30% of the total cartilage volume. The calcified layer is charac-
terized by rounded hypertrophic chondrocytes surrounded by large clear lacunae. 
This is the area where the chondrocytes reach their terminal hypertrophic stage and 
the cartilage is ultimately being replaced by bone.

2. Molecular heterogeneity of articular cartilage

The extracellular phase of cartilage, and all connective tissues, consists of 
collagen fibres and a polysaccharide-rich ground substance. The polysaccharide 
constituents have been characterized as proteoglycans containing chains of chon-
droitin 4 sulphate, chondroitin 6 sulphate and keratin sulphate covalently linked to 
a central core protein [1].

2.1 Types of collagen present in cartilage

Articular cartilage consists of type II collagen as the major fibril-forming 
collagen, accompanied by lesser quantities of minor collagen which provide the 
tensile strength and help in maintaining the fine balance of the extracellular matrix. 
However, little is known about the processing of these minor collagens and their 

Figure 1. 
Stratification of articular cartilage.
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role in the progression of cartilage degeneration and regeneration. Minor collagens 
found in articular cartilage along with type II collagen are type VI, IX, X, XI, XII 
and XIV.

Type VI collagen constitutes only 1–2% of the total collagen in adult articular 
cartilage and it is mainly rich in the pere-cellular matrix and involved in the inte-
gration and attachment of chondrocytes [2]. In articular cartilage, chondrocytes 
in the middle and deep layers are embedded in pere-cellular matrix enriched with 
a high content of proteoglycans and hyaluronic acid. Increased levels of type VI 
collagen are found in the experimental model of osteoarthritis (OA) and human 
OA [3]. Higher levels of type VI collagen found in OA emphasizes its role as a bridge 
between the extracellular matrix and the chondrocyte surface, thus influencing the 
signalling pathways from the extracellular matrix into the cells [4].

Type IX collagen makes up 1–5% of the total collagen in adult articular cartilage 
and 10% in foetal cartilage [5]. It is usually present in close association with type 
II collagen found in growth plate cartilage and adult articular cartilage [6]. Type 
IX collagen is extensively crosslinked to type II collagen through oxidation of lysyl 
residue bonds forming a unique hetero-fibrillar structure [7]. Type IX collagen is 
crucial for the maintenance of cartilage matrix and formation of a collagen fibril 
meshwork. Decreased expression of type IX collagen in the cartilage was thought 
to render the matrix more prone to mechanical forces and degradation, resulting in 
the pathogenesis of OA [8].

Type X constitutes about 1% of the total collagen found in articular cartilage 
[9]. It was revealed that 45% of the total collagen produced by the hypertrophic 
chondrocytes is type X collagen [10]. Type X collagen, as produced exclusively 
by hypertrophic chondrocytes, indicated its unique role in mineralization. The 
hypertrophic chondrocytes synthesized a variety of proteins and enzymes which 
help in the transition of extracellular matrix from cartilage to bone. Apart from 
type X collagen, hypertrophic chondrocytes also synthesize a variety of matrix 
metalloproteinases as well as alkaline phosphatase enzymes, which are not usually 
secreted by the normal proliferating chondrocytes. As type X collagen has a direct 
role in mineralization, it has been found to be expressed in human OA especially in 
the vicinity of lesions, but not in the healthy human articular cartilage [11].

Type XI collagen constitutes 3–10 % the total adult articular and foetal cartilage, 
respectively [2]. Type XI collagen is normally crosslinked to each other in cartilage, 
this crosslinking results in the formation of mature type XI collagen with the help of 
type II and type IX collagen. It has been shown that a mutation in type XI collagen 
caused an increase in degradation of type II collagen in articular cartilage [12]. Lu 
et al. observed that immunization of rats with homologous type XI collagen led 
to chronic and relapsing arthritis with different genetics and joint pathology than 
arthritis induced with homologous type II collagen [12]. The role of type XI collagen 
in cartilage collagen fibril formation and assembly is not clear; type XI collagen may 
regulate cartilage formation and it was the first collagen deposited by mesenchymal 
stem cells undergoing chondrogenic differentiation [13]. Type XII shares structural 
homologies with type IX and type XIV collagen [14]. Type XII collagen is implicated 
in fibril formation, cell adhesion, fibrosis and osteogenesis, and in areas of high 
mechanical stress, it may serve as a protector of tissue integrity [15]. Type XII 
collagen is associated with articular cartilage and growth plate cartilage during rat 
forelimb development and may be important for microenvironment that supports 
the hyaline cartilage formation [16].

Type XIV collagen is a large nonfibrillar extracellular matrix protein structurally 
similar to type XII collagen. In cartilage, a population of type XIV exists as chon-
droitin sulphate proteoglycans (PGs) as it is sensitive to chondroitinase ABC and 
AC treatments [17]. Its association with other cartilage collagens such as type I, II, 
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V and VI are reported, but it also interacts with heparin CD44 and cartilage oligo-
meric matrix protein [18]. It is found in areas of high mechanical stress similar to 
type XII collagen, suggesting its role in fibrillogenesis and maintaining the integrity 
and mechanical property of the tissue.

2.2 Types of PGs in different layers

Proteoglycans have the highest concentrations in the intermediate zone and 
lowest in the superficial and deep zones. Small PGs comprise of less than 10% of 
the total PG content in the cartilage matrix. Most are aggrecans (large PGs) with 
approximately 150 GAG chains (chondroitin sulphate and keratin sulphate and both 
O-linked and N-linked oligosaccharides attached).The GAGs are heterogeneously 
distributed along the protein core, with CS-rich and KS-rich regions, respectively. 
The protein core itself is heterogeneous with three globular regions. Aggrecan varies 
significantly in length, molecular weight and composition with the amount of 
KS-rich molecules and ratios of chondroitin 6-sulphate and chondroitin 4-sulphate 
increasing throughout development and ageing. Most aggrecans in cartilage are 
attached to a hyaluronic (HA) molecule via a globular (HABR) region; this binding 
was stabilized by a link protein. Several hundred aggrecans are attached to a single 
HA core molecule, the latter being a non-sulphated disaccharide chain up to 4 μm in 
length. PGs are closely associated with collagen fibrils and are thought to be involved 
in their structural organization and maintaining their compressive stiffness.

There is now conclusive evidence of the fact that OA is not simply due to wear 
and tear and a result of ageing; but in numerous studies, it has been reported that 
early onset of OA is due to activation of inflammatory response. These inflamma-
tory responses could be due to increased oxidative stress to the tissues, resulting 
in initiation of catabolic enzymes and factor that actively breakdown the major 
extracellular matrix components of cartilage, namely type II collagen, and the 
proteoglycans and aggrecan.

3. Control of chondrogenesis

The commitment of mesenchymal cells to the chondrogenic lineage is the key 
event in bone formation. Work over the past few decades, using both in vivo and 
in vitro systems, has identified a number of signalling and transcription factors as 
well as cell shape that regulates the progressive change in chondrocyte phenotype, 
from their initial induction to their terminal fate. The disruption of these finely 
tuned pathways for chondrocyte maturation can result in skeletal pathology. A 
thorough knowledge of these signalling pathways would help us to identify the fac-
tors that maintain chondrocyte proliferation and differentiation. Some of the major 
signalling pathways are described below.

3.1 Bone morphogenic protein signalling

Bone morphogenic proteins (BMPs) are identified as positive regulators of 
chondrogenesis and endochondral ossification. BMPs are a member of the trans-
forming growth factor beta (TGβ) superfamily that has wide-ranging biological 
activity, ranging from cellular regulation of proliferation, apoptosis, differentiation 
and migration [19, 20]. BMP signalling is mediated by their receptors BMPR1a, 
BMPR1b and BMPR2, leading to the SMAD signalling pathway [19]. In cartilage, it 
initiates cartilage synthesis and decreases the activity of catabolic cytokines such 
as IL-1, IL-6, IL-8, MM1 and MM13 [21, 22]. Though there are several members of 
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Bone morphogenic protein (BMP) growth factors, most promising among them in 
the treatment of OA is BMP-7, which promotes the cartilage-specific extracellular 
matrix proteins such as collagen II and VI, decorin, fibronectin and hyaluronate 
(HA) by upregulation of hyaluronan synthase [23, 24]. In experiments when it was 
applied to other types of cells in knee, BMP-7 has shown to increase Extracellular 
matrix (ECM) in synovial and bone marrow-derived Mesenchymal Stem cell 
(MSC), both alone and in combination with TGFβ [25]. This profound anabolic 
effect of BMP-7 is due to its regulatory properties of modulating other growth fac-
tors such as insulin-like growth factor 1(ILGF1 and fibroblast growth factor (FGF)) 
[26]. Despite having anabolic activity, BMP-7 has not shown to induce chondrocyte 
hypertrophy or other changes in the chondrocyte phenotype, nor did BMP-7-
treated animal knee display any proliferation of fibroblast or osteocyte [25]. These 
properties make it a promising therapy for OA.

3.2 Transforming growth factor (TGF) signalling pathway

TGFβ is a cytokine secreted by many cells; it plays an important role in cell 
proliferation, differentiation, development, apoptosis, tissue homeostasis and the 
immune system. Signalling occurs through SMAD pathways. TGβ1 is shown to be 
involved in chondrocyte proliferation and remarkable reduction of catabolic activ-
ity of IL1 and TNF [27]. Studies have shown a significant enhancement of cartilage 
repair with the application of TGF-β1 in scaffold applied to defect, and in human 
MSC transfected with TGF-β1 gene via an adenovirus [28, 29]. Numerous human 
trials are underway for the treatment of different stages of OA with the injections of 
TGF-β1 in the knee, which showed TGF-β1 as a promising therapy.

3.3 Fibroblast growth factor signalling pathway

Fibroblast growth factor (FGF) family plays an important role in human embry-
onic development, cell growth, morphogenesis, tissue repair, tumour growth and 
invasion. FGFs are heparin-binding proteins and interact with heparan sulphate 
proteoglycans on the cell surface for signal transduction. Vincent et al. proposed 
that in articular cartilage, the chondrocytes are surrounded by a pool of FGF-2. This 
mediated the chondrocyte activation on cartilage loading and release of FGF-2 in 
response to injury. They proposed that FGF-2 antagonizes the PG degradation by 
IL-1 or other catabolic stimuli, thus it has an anti-catabolic chondroprotective role 
[30]. However, the role of FGF-2 in the production of ECM is controversial and its 
role as pro-catabolic or anti-catabolic is debatable. Furthermore, FGF-2 has been 
shown to suppress type II collagen and PG synthesis and promote the expression 
of aggregenase and TNF-α receptors [31, 32]. FGF-18 signalling through FGFR3 
promotes chondrocyte proliferation at embryonic stages. When development is 
complete, the same receptor signalling suppresses chondrocyte proliferation and 
prevents chondrocyte differentiation hypertrophy [33, 34]. FGF-18 has also shown 
to exhibit the ability to stimulate type II collagen and PG synthesis, which makes it a 
promising therapy for OA.

3.4 Connective tissue growth factor

Connective tissue growth factor (CTGF) is an ECM-associated heparin-binding 
protein, which plays an important role in cellular proliferation, migration, adhe-
sion, survival and synthesis of ECM proteins. CTGF has shown to play an impor-
tant role in skeletal tissue and initial chondrocyte proliferation and differentiation 
in growth plate cartilage [35]. Nishida and colleagues demonstrated that local 



Cartilage Tissue Engineering and Regeneration Techniques

6

administration of recombinant CTGF gelatin hydrogel stimulated cartilage repair in 
rat model [36]. Other studies showed that the bone marrow-derived mesenchymal 
stem cells when transfected with CTGF provided hyaline-like cartilage regeneration 
similar to normal cartilage in a rabbit model of focal articular cartilage defects [37]. 
However, further studies are needed to elucidate the critical role of CTGF for the 
protection and regeneration of cartilage.

3.5 Insulin-like growth factor (IGF)

IGF-I and IGF-II both were reported to control the cartilage destruction [38]. 
IGF-I is a known anabolic factor for chondrocytes and thought to regulate the 
skeletal development in the embryo [39]. Although IGF-I has been reported as 
being involved in chondrocyte proliferation and maturation, its exact role in OA 
has not been clearly known as it was found that the expression of IGF-I was upregu-
lated rather than downregulated in synovial fluids and in articular cartilage [40]. 
However, the role of IGF-II in combating inflammatory response in OA was found to 
be more promising and ideal for cartilage regeneration. It has been reported that in 
the presence of IL-1β, IGF-II significantly inhibited MMP expression and promoted 
cartilage production in normal human chondrocytes. IGF-II has also shown to have a 
similar effect on OA chondrocyte, which expresses high levels of IL-1β mRNA [41]. 
The role of IGF-II was reported to be more chondroprotective and maintaining the 
extracellular matrix and preventing its destruction in adverse conditions.

4. Cell signalling in chondrogenesis

Gene expression changes during different stages of endochondral ossification. 
The immature chondrocytes in the resting zone express the transcription factors 
Sox 5, Sox6, Sox9 and the structural protein type II collagen and aggrecan. The 
pre-hypertrophic zone is characterized by the presence of parathyroid receptor 
1(PTH-1R) and Indian hedgehog expression (Ihh). The next stage goes into the 
early hypertrophic zone, which is characterized by type X collagen and alkaline 
phosphatase enzyme expression, and, subsequently, the reduced amount of type 
II collagen and reduced expression of Sox5, Sox6 and Sox9 transcription factors. 
Finally, the chondrocytes proceed to their final phase of a late hypertrophic stage, 
which is characterized by the expression of vascular endothelial growth factor A 
(VEGFA), matrix metalloproteinase 13(MM13) and osteopontin. These changes in 
gene expression herald the cartilage ECM being replaced by bone.

Wnt signalling is important for many developmental processes. It has been 
shown that activation of Wnt signalling promotes osteoblast differentiation but 
inhibits chondrocyte differentiation of MSC [42, 43]. Wnt signalling acts through 
β-catenin to promote chondrocyte hypertrophy and reports suggested that genetic 
inactivation of β-catenin increased Sox9 expression both in the intramembranous 
bone formation and endochondral ossification [44, 45]. It was also reported that 
osteoblast precursor lacking β-catenin expression can develop into chondrocytes 
[42]. Wnt signalling is also important for proper orientation of chondrocyte column 
in growth plate cartilage.

Ihh signalling is a key regulator of pre-hypertrophic and early hypertrophic chon-
drocytes. Ihh signalling directly affects chondrocyte proliferation, premature chon-
drocyte hypertrophy and failure of osteoblast development and endochondral bone.

Runx2 and Runx3 are members of the Runx transcriptional factors family 
important for chondrocyte hypertrophy. Several studies demonstrated that ectopic 
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expression of Runx2 in immature chondrocytes leads to the expression of hypertro-
phic markers such as COLX α1, MM13 and VEGF [46–48].

As cartilage is an avascular tissue and its nutritional needs are met by surround-
ing synovial fluids, chondrocytes are adapted to survive in low oxygen levels and 
they secrete hypoxia-inducible factor 1 (HIF-1) which insures its survival and 
maintenance in low oxygen tension. Synthesis of type II collagen and aggrecan is 
upregulated in low oxygen levels, and also, it is associated with the rounded chon-
drocytic morphology. In the presence of high oxygen tension, chondrocytes become 
more spindle shaped. HF-1 also showed inhibition of type I collagen synthesis by 
inhibiting its promoter activity [49].

5. Epigenetic control of chondrogenesis

In the growth of long bone formation, the chondrocyte passes through discrete 
stages of proliferation, maturation, hypertrophy, calcification and apoptosis, so it 
offers a very good model of cellular differentiation and ageing. The detailed under-
lying molecular mechanisms that drive these changes are still not fully known, but 
epigenetic modifications are thought to play a pivotal role in the differentiation of 
chondrocytes. Epigenetic changes include DNA methylation, histone modification 
and microRNAs (miRNAs).

5.1 DNA methylation

DNA methylation involves the addition of a methyl group to a DNA at CpG 
dinucleotide, to convert cytosine to 5-methylcytosine. CpG islands are usually 
clustered near the promoter in about 30% of the gene. Methylation of these sequences 
results in silencing of these genes, and vice versa, hypo-methylation results in expres-
sion of the respective genes. DNA methylation factors are established and modified 
according to the environmental factors by three DNA methyltransferases (DNMT1, 
DNMT3a and DNMT3b). Earlier studies using chick embryos indicate the possible 
role of methylation in gene expression of type I and type II collagen in chondrocyte 
differentiation and dedifferentiation [50]. In our studies on chick chondrocytes in 
culture, we noticed a strong correlation of chondrocyte morphology to DNA methyla-
tion status as shown in Figure 2. The chondrocytes when treated with DNMT inhibi-
tor 5-aza-2’deoxycytidine exhibit fibroblastic morphology and express type I and type 
X collagen with an upregulation of alkaline phosphatase enzyme [51]. Two CpG sites 
within the type X collagen promoter appear to be demethylated during MSC differ-
entiation into chondrocyte morphology [52]. Recently, it was demonstrated that Wnt 
signalling caused both repressive chromatin mark (H3K27me3) and DNA methylation 
over the SOX9 promoter and that Wnt-induced irreversible silencing of Sox9 gene 
requires DNA methylation of this locus that is specifically countered by FGF signal-
ling [53]. FGF blocks the recruitment of DNMT3a to the SOX-9 promoter by inducing 
the interaction and phosphorylation of DNMT3a by extracellular kinases ERK 1and 
ERK 2. Similarly, a number of studies indicated the control of Runx2 promoter activa-
tion by methylation. The number of MMP promoters show decreased methylation at 
single CpG island in OA cartilage as compared to normal.

5.2 Histone modifications

Gene regulation is also controlled through the close packaging of eukary-
otic DNA into nucleosomes. Nucleosomes are thought to be repressive for 
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transcription; but through the post-translational modification of histones such as 
acetylation, phosphorylation, methylation and ubiquitination, this inhibition can 
be regulated.

Acetylation is mediated through acetyltransferase (HAT) and occurs on spe-
cific lysine residues on the N-terminal tails of histones, loosening the histones: 
DNA interactions, thus employing the access of transcriptional factors to the 
DNA. Deacetylation is of two types, one that requires Zn-catalysed deacetylation 
(HDAC) and the sirtuin deacetylase that requires NAD+, and removes these acetyl 
groups resulting in hypo-acetylation. Numerous transcriptional activators or 
repressors recruit HDAC and HAT activity.

Histone methylation is important for the formation of active and inactive 
genomic regions and is associated with transcription activation and silencing. 
Methylation of histone tails of lysine and arginine residues is catalysed by histone 
methyltransferase (HMT) and protein arginine methyltransferase (PRMT) which 
can add one or more methyl groups to regulate transcription [54]. Although his-
tone methylation is more dynamic than DNA methylation, some specific histone 
methylation is tightly regulated and maintained through DNA replication. HDAC 
can block cytokine-induced PG release and cartilage resorption in cartilage explant 
model indicating that HDAC activity is important for the catabolic activity of 
chondrocytes [55, 56].

5.3 Micro RNA

MiRNA is a small 20–23 base pair-long cytoplasmic RNA that regulates 
post-transcriptional gene expression through binding to target mRNA. This 

Figure 2. 
The effect of culture conditions on the morphology of chondrocytes: When chick chondrocytes from caudal 
region sternum were grown in the presence of demethylation drug 5aza-2’deoxyctydine (5azadC), (A) the 
chondrocytes assume more flattened fibroblastic morphology and show no staining with alcian blue (stain 
specific for sulphate PG). However, the control chondrocyte without any treatment showed extensive ECM 
staining (B).



9

Epigenetics and Cartilage Regeneration
DOI: http://dx.doi.org/10.5772/intechopen.82362

interaction of miRNA with the target mRNA results in degradation of mRNA, 
thus suppression of translation. The first studied miRNA in cartilage was miR-
140, which was first identified as cartilage restricted in developing zebrafish 
[57]. In humans, the expression of miR-140 increases during chondrogenesis 
and is more abundant in articular cartilage, but its expression is reduced in OA 
[58]. It has also been reported that the expression of miR-140 is regulated by the 
cartilage-specific master transcriptional factor Sox-9 in zebrafish and mamma-
lian cells [59].

6. Epigenetics as a future therapy for cartilage regeneration

Articular cartilage has a relatively high incidence of damage due to several 
factors such as injury, trauma and inflammation. The inflammatory markers could 
induce a number of MMPs, which could degrade the ECM, as the cartilage has a 
limited ability to repair and regenerate, resulting in a total loss of cartilage tissue. 
The destruction and loss of articular cartilage is also central to the development of 
OA. The research work over the past few decades confirms that epigenetics plays a 
pivotal role in the phenotypic modulation that articular chondrocytes undergo dur-
ing OA. Epigenetics changes the normal chondrocytes to ‘altered’ chondrocytes that 
overexpress the cartilage-degrading proteins or enzymes such as collagenases and 
aggregenase and inflammatory mediators. This disruption in homeostatic balance 
between the matrix production and ECM destruction results in the progression of 
OA. There is a direct pathological loop that involves inflammation and epigenetic 
modifications, which accelerates disease progression. Until now, no detailed global 
methylation analysis has been performed in the pathogenesis of OA. Low pen-
etrance polymorphism in the population partly due to epigenetic modification is the 
reason for limited data generation to aid in the identification of genes responsible 
for the genetic susceptibility to OA. A number of inflammatory genes have been 
identified which are controlled through epigenetics and are directly involved in the 
pathogenesis of OA (Table 1).

6.1 Future prospects in cartilage regeneration

MCS is becoming a more popular source of cells for cartilage regeneration due 
to in vitro expansion without running the risk of losing their phenotype. However, 
MSC tends to develop hypertrophic phenotype and further differentiation into the 
endochondral bone formation. It is becoming more crucial to carefully examine the 
detailed molecular and epigenetic events that lead the transformation of a chon-
drocyte to its terminally differentiated pathway. There is a growing need to develop 
strategies to control chondrocyte hypertrophy and be able to arrest the chondrocyte 
at one desirable phenotypic stage that helps to maintain the cartilage-specific ECM 
as described in Figure 3. With the current epigenetic knowledge, it is possible to 
identify a number of epigenetic factors as listed in Table 1 that can make cartilage 
regeneration possible.

Other option in cartilage regeneration is the application of hydrogel through 
injection or through arthroscopy. These hydrogels are capable of controlled release 
of chondroinductive and chondroprotective drugs [60–62]. These cell-laden 
hydrogels can be combined with other types of solid scaffolds such as collagen 
sponge, decellularized cartilage as well as synthetic scaffolds of polyglycolic acid for 
cartilage repair and clinical applications.
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Chondrocyte 

stage

Marker Function gene Epigenetic 

regulation

References

Superficial 

zone

Col2a1 Cartilage specific miRNA, Histone 

modification

[1]

Col6a1 Pere-cellular chondrocyte DNA methylation [2]

Col9a1 Cartilage specific DNA methylation [3]

ACAN Cartilage specific miRNA, Histone 

modification

[4, 5]

HIF1α, HIF2α Chondrocyte viability miRNA [6]

Transitional IGFII Chondrocyte proliferation 

and integrity

[7]

SOX-9 Chondrocyte 

differentiation

DNA methylation, 

miRNA, histone 

methylation

T3 +PTH Cartilage tissue 

regeneration

Histone modification [8, 9]

NFAT Cartilage matrix Histone methylation [10]

FGFR3 Chondrogenesis DNA methylation [10]

TGFβ1-β3 Chondrocyte proliferation DNA methylation [11, 12]

BMP-7 Cartilage specific ECM Histone 

modification, DNA 

methylation

[11, 13]

Deep/

Calcifying

Col10a1 Chondrocyte hypertrophy DNA methylation [14]

Col1α1 Bone formation DNA methylation [15]

Osteocalcin In calcification DNA methylation [16]

Osteopontin Bone formation DNA methylation [16]

ALPL Chondrocyte hypertrophy DNA methylation [17]

RUNX 2 Chondrocyte hypertrophy DNA methylation, 

miRNA

[18, 19]

ADAM Cartilage remodelling DNA methylation, 

miRNA

[10]

IHH Cartilage hypertrophy DNA methylation [10]

TGFβ2 Hypertrophy DNA methylation [20, 21]

MMP13 Cartilage remodelling DNA methylation, 

histone modification, 

miRNA

[1]

OA cartilage HDAC Up regulated in OA Histone modification [22]

IL-1β Inflammation DNA methylation, 

miRNA

[23]

TNFα Inflammatory mediator DNA methylation, 

miRNA, histone 

modification

[11]

MMP3 Up regulated in OA DNA methylation [24]

MMP9 Up regulated in OA DNA methylation [24]

ADAMS4 Expressed in OA DNA methylation [24]

Table 1. 
Major Epigenetic events remodelling the regeneration of Cartilage.



11

Epigenetics and Cartilage Regeneration
DOI: http://dx.doi.org/10.5772/intechopen.82362

7. Conclusion

In summary, although there has been progress made in identifying factors outlining 
OA disease progression, a more detailed analysis of the factors surrounding the epi-
genetics should be conducted in order to reveal any potential therapies. The control of 
chondrogenesis via bone morphogenic protein signalling, transforming growth signal-
ling, fibroblast growth factor signalling, connective tissue growth factor and insulin-
like growth factor all play important roles in chondrocyte formation and destruction. 
This in addition to the fact that cellular mechanisms controlled by gene expression and 
epigenetic changes including DNA methylation, histone modification, and microRNAs 
can all help us gain an understanding of regenerative cartilage therapies.
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Figure 3. 
The role of epigenetics in cartilage degradation and regeneration. (a) Healthy articular cartilage with distinct 
stratifications. (b) As a result of high inflammatory markers such as IL-1β and TNFα, cartilage degradation 
takes place, with upregulation of a number of cartilage-degrading enzymes (e.g., HDAC, MMP3, MMP9, and 
ADAMTS4). (c) The onset of OA, which can be reversed with the help of MSC therapy and their initiations as 
shown in (d). The maintenance of healthy articular cartilage is achieved through a cascade of genes and their 
products, such as IGFII, SOX5, SOX6, SOX9, NFAT, FGFR3 and TGFβ1-β2. They are all controlled through 
epigenetics (Table 1). Future cartilage regeneration technique should involve the promotion of invasion and 
migration of MCSs to the lesion area and through various epigenetic signalling undergoing chondrogenesis and 
maintaining the cartilage.
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