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1. Introduction

v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) is an oncogene. 
The KRAS gene is located on the twelfth chromosome and belongs to the Ras 
family of oncogenes. These proteins play important roles in cell division, cell dif-
ferentiation, and apoptotic cell death. Induction of KRAS with different environ-
mental chemicals leads to high expression of K-Ras protein, which in turn causes 
high cellular proliferation. These cascade of events finally initiate certain types 
of cancers, particularly colorectal (CRC), pancreatic, and lung cancers. High 
calorie intake, diets rich in meat and fat, smoking, and alcohol consumption are 
the major risk factors of CRCs, and it was estimated that in CRC, mutated KRAS 
has an incidence of ∼50%. Exposure to certain environmental chemicals [organo-
chlorine insecticides such as DDT and its metabolite dichlorodiphenyltrichloro-
ethylene (DDE); herbicides such as EPTC and pendimethalin; N-nitrosamines; 
polychlorinated biphenyls (PCBs); benzene] and drugs (anti-diabetics drugs) 
can also contribute to the increased incidence of PC throughout the world. It was 
stated that in adenocarcinomas of the pancreas, mutated KRAS has an incidence 
of ∼70–90%. Lung cancer is the leading cause of deaths worldwide. KRAS gene 
mutations are much more common in long-term tobacco smokers with lung cancer 
when compared to nonsmokers. KRAS gene mutations are observed in 15–25% 
of all lung cancer cases, being more frequent in whites vs. Asian populations. 
Lung cancers with KRAS gene mutations typically indicate a poor prognosis and 
are associated with resistance to several cancer treatments. This chapter mainly 
focuses on KRAS, interactions between environmental chemicals, and KRAS 
oncogene in different cancers, particularly in colorectal, pancreatic, and lung 
cancers.

Most oncogenes are expressed as proto-oncogenes, involved in cell growth and 
proliferation or inhibition of apoptosis. If there are chemical, physical, or biologi-
cal factors that cause mutations in such genes promoting cellular growth, these 
genes are mostly upregulated and cellular proliferation increases [1]. The cascade 
of events leading to proliferation usually predisposes the cell to cancer. In this case, 
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they are termed as “oncogenes” [1, 2]. These genes are mutated and/or overex-
pressed at high levels in tumor cells. Normally, cells repair themselves or undergo 
apoptosis if there is an interruption on the cell cycle. However, the high expression 
of multiple oncogenes, along with mutated apoptotic and/or tumor suppressor 
genes and exposure to environmental chemicals that trigger such mutations can all 
act in concert and finally cause tumorigenesis [1–3]. In the past 50 years, several 
oncogenes have been identified in different types of human cancers. There are many 
cancer drugs that target the proteins encoded by oncogenes [1–3].

Genetic and environmental interactions usually determine the profiles of 
cancers. v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) is a very 
important oncogene for the initiation of cancer [1]. It is usually found to be mutated 
in different types of cancer, particularly in colorectal cancers (CRCs), pancreatic 
cancer (PC), and lung cancer [4–6]. Concerning KRAS, different chemicals such as 
polychlorinated biphenyls (PCBs), certain antidiabetic drugs, and pesticides may 
be leading causes of KRAS mutations, and such mutations increase the expression 
of K-Ras protein in different tissues, leading to high cellular proliferation and finally 
carcinogenesis [7–9]. This chapter mainly focuses on CRCs, PC, and lung cancer 
and KRAS. Moreover, the interactions between KRAS mutations and environmental 
factors in these particular cancers will also be mentioned.

2. KRAS gene

The most important oncogene for several types of cancer is KRAS. Cytogenetic 
location of this gene is 12p12.1 [the short (p) arm of chromosome 12 at position 
12.1] [10]. The KRAS gene belongs to the Ras family of oncogenes. RAS family 
oncogenes also include two other genes: H-RAS and N-RAS. These proteins play 
important roles in cell division, cell differentiation, and apoptotic cell death. KRAS 
causes the initiation of cancer through deregulation of the G1 cell cycle [10].

The KRAS gene expresses a protein called “K-Ras,” which is part of a signal-
ing pathway known as “the RAS/microtubule-associated protein (MAP) kinase 
signaling (MAPK) pathway.” The protein carries the mitogenic signals from the 
“epidermal growth factor receptor (EGFR)” on the cell surface to the cell nucleus. 
These signals provide instructions for growth, proliferation, maturation, or dif-
ferentiation to the cell. The K-Ras protein converts a molecule called guanosine-
5′-triphosphate (GTP) into another molecule called guanosine-5′-diphosphate 
(GDP), and therefore, it is a “GTPase.” By such conversion, K-Ras protein almost 
acts like a “switch,” which is turned on and off by the GTP and GDP molecules. In 
order to transmit signals, K-Ras must bind to GTP, and this turns on the protein 
[10]. However, K-Ras protein is inactivated when it converts the GTP to GDP. This 
means that when this particular protein is bound to GDP, it does not send signals 
to the nucleus. In several pathological conditions [cardiofaciocutaneous syndrome, 
Noonan syndrome, Costello syndrome, autoimmune lymphoproliferative syndrome 
(ALPS), and epidermal nevus] and different cancers [colorectal (CRC), pancreatic 
(PC), and lung cancer; cholangiocarcinoma; and core binding factor acute myeloid 
leukemia (CBF-AML)], KRAS mutations are observed in patients [10].

3. Cancers associated with KRAS

3.1 Colorectal cancers

Colorectal cancers (adenomas or carcinomas) occur as a combination of unbal-
anced diet, environmental exposures, accumulation of genetic and epigenetic 
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instability, and oncogenic gene activations [11, 12]. It is certainly clear that unbal-
anced diet is a major risk factor for the development of CRCs. A constant, high, 
or prolonged exposure of colon to carcinogens is the primary cause for malignant 
transformation of colonocytes [11, 12]. If hereditary disposition (in terms of muta-
tions in key genes controlling cell cycle and replication) is already present, genome 
instability will accelerate tumorigenesis process [13]. It was estimated that in CRC, 
mutated K-Ras has an incidence of ∼50% [14].

The major genetic pathways of colorectal cancers (CRCs) are usually divided 
into two pathways [15, 16]:

1. “The Chromosome Instability Pathway” representing the pathway of sporadic 
CRC through the KRAS, adenomatous polyposis coli (APC), and tumor sup-
pressor protein 53 (P53) mutations.

2. The “Microsatellite Instability Pathway” representing the pathway of heredi-
tary non-2 primary KRAS mutation generally leads to a self-limiting hyper-
plastic or borderline lesion and may be implicated in the serrated pathway 
through which serrated adenomas and carcinomas may also develop.

The KRAS mutation alone is not sufficient or necessary to drive the malignant 
transformation. Therefore, additional “drivers” should be present in the develop-
ment of CRC. These additional factors include but are not limited to high calorie 
intake, diets rich in meat and fat, smoking, and alcohol consumption [17]. KRAS 
mutations are frequently found in <95% of early dysplasia, including aberrant crypt 
foci (ACF), and also in hyperplastic polyps [18–20]. The sequence in which the 
KRAS mutation occurs in relation to the APC mutation is important. The dysplastic 
lesion often progresses to carcinogenesis if a mutation in KRAS gene occurs right 
after an APC mutation [21, 22]. Because of the key role in EGFR signaling, the 
presence of a KRAS mutation predicts a very poor response to specific antibody 
(monoclonal antibodies) treatment with EGFR inhibitors such as panitumumab 
and cetuximab [23, 24].

3.2 Pancreatic cancer

Pancreatic cancer is a multifactorial and extremely aggressive type of cancer. 
Pancreatic tumors are usually highly chemoresistant, and many types of PC have 
very bad prognoses. Little information regarding the possible association of dif-
ferent risk factors with the known genetic alterations (such as activation of KRAS 
oncogene and inactivation of the p53 gene) is present in the literature [8, 25]. 
However, it was stated that in adenocarcinomas of the pancreas, mutated KRAS has 
an incidence of ∼70–90% [14].

Increasing data on the molecular pathogenesis of PC have shown that genetic 
alterations, such as mutations of KRAS and particularly epigenetic dysregulation 
(DNA methylation, histone acetylation, or microRNA expressions) of tumor-
associated genes [i.e., silencing of the tumor suppressor p16 (ink4a)], are suggested 
to be hallmarks of PC. Serine/threonine-protein kinase (Raf), phosphatidylinositol-
4,5-bisphosphate 3-kinase (PI3K), and Ral guanine nucleotide dissociation stimula-
tor (RaLGDS) are the major effectors of KRAS in adenomas of pancreas [26, 27].

Repeated acute pancreatic injury and inflammation are important contributing 
factors in the development of PC. Alcohol consumption, cigarette smoking, diet 
(high coffee consumption), environmental chemicals [organochlorine insecti-
cides such as DDT and its metabolite dichlorodiphenyltrichloroethylene (DDE); 
herbicides such as s-ethyl dipropylthiocarbamate (EPTC) and pendimethalin; 
N-nitrosamines; polychlorinated biphenyls (PCBs); benzene], and drugs [diabetes 
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drugs like glucagon-like peptide-1 (GLP-1) agonists, such as exenatide; dipeptidyl-
peptidase-4 inhibitors (DPP-4), such as sitagliptin; calcium channel blockers such 
as nifedipine, nicardipine, and diltiazem] can also contribute to the highly increas-
ing incidence of PC throughout the world. On the other hand, gall stones, diabetes, 
and obesity are the major pathological factors associated with PC [27–29]. In a study 
by Slebos et al., mutations in KRAS codon 12 were found in 75% of the PC patients. 
However, there were no differences in blood PCB levels between the KRAS wild-
type and mutant groups [8].

3.3 Lung cancer

Lung cancer is the primary cause of cancer-related deaths worldwide. Active 
and passive smoking are the two of primary causes of lung cancer. Lung cancers are 
classified as small cell (non-epithelial) or non-small cell carcinomas (epithelial-
derived). Small cell carcinomas are highly malignant; has the ability to metastasize 
easily and chemotherapy is the choice of treatment. However, treatment of non-
small cell cancer primarily involves surgical excision, supplemented by radiation or 
chemotherapy. Although this treatment method may provide partial or full recov-
ery, it also increases the risk for concurrent diseases. Using anti-cancer drugs with 
“high efficacy and low-toxicity” is the priority goal in this field [30, 31].

KRAS gene mutations are observed in 15–25% of all lung cancer cases. These 
mutations are more frequent in white populations than in Asian populations. About 
25–50% of whites with lung cancer have KRAS gene mutations, whereas 5–15% of 
Asians with lung cancer have KRAS gene mutations [14].

In lung adenocarcinomas, both KRAS-activating mutations and in and EGFR 
mutations can be observed. KRAS appear to be mutually exclusive. Three different 
mutations in the KRAS gene have been associated with lung cancer [32]. Nearly all 
of the KRAS gene mutations associated with lung cancer change the amino acid 
glycine at position 12 or 13 (Gly12 or Gly13) or change the amino acid glutamine 
at position 61 (Gln61) in the K-Ras protein. These mutations cause a constantly 
activated KRAS, which directs the cells to proliferate in an uncontrolled way, and 
the high cellular proliferation leads to tumor formation [33].

Even though KRAS mutations were identified in non-small cell lung tumors 
more than 20 years ago, the clinical value of determining KRAS tumor status is 
recently gaining importance. Recent studies indicate that patients with mutant 
KRAS tumors fail to benefit from adjuvant chemotherapy and do not respond 
to EGFR inhibitors. There is a clear need for therapies specifically developed for 
patients with KRAS-mutant non-small cell lung cancers [34, 35]. KRAS gene 
mutations are much more common in long-term tobacco smokers with lung cancer 
when compared to nonsmokers. Lung cancers with KRAS gene mutations typi-
cally indicate a poor prognosis and are associated with resistance to several cancer 
treatments [33–35].

4. Conclusion

KRAS is a very important oncogene. K-Ras protein is upregulated in different 
cancers and can cause bad prognosis of the disease. However, KRAS mutations are 
not sometimes enough to initiate cancer. Therefore, along with KRAS mutations, 
several environmental chemicals and drugs may contribute to the cascade of events 
leading to cancer.

It can be stated that in CRCs, PC, and lung cancer, KRAS mutations should be 
evaluated in clinics. On the other hand, the exposures of different environmental 
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chemicals and drugs (pesticides, PCBs, tobacco smoke, alcohol, N-nitrosamines, 
benzene, antidiabetics, calcium channel blockers, etc.) should be evaluated along 
with KRAS mutations, and the patients with preneoplastic lesions should be warned 
about such exposures. As KRAS gene mutations generally indicate a poor prognosis 
and are associated with resistance to several cancer treatments, new drugs targeting 
different molecules in KRAS triggering pathways should be developed in order to 
overcome this resistance, particularly in CRCs, PC, and lung cancer.
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