
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

Polyaniline-Based Nanocomposites 
for Environmental Remediation
Thabiso C. Maponya, Mpitloane J. Hato, Thabang R. Somo, 

Kabelo E. Ramohlola, Mogwasha D. Makhafola,  

Gobeng R. Monama, Arjun Maity, Kwena D. Modibane 

 and Lebogang M. Katata-Seru

Abstract

With growth in civilisation and industrialisation, there is an increase in the 
release of toxic heavy metal ions and dyes into water system, which is of public 
concern. As a result, appropriate treatment methods have to be implemented in 
order to mitigate and prevent water pollution. The discovery of nanotechnology has 
led to the development and utilisation of various nanoadsorbent for the removal 
of pollutants from water. PANI nanostructures and nanocomposites are noble 
adsorbents that have gained popularity in addressing water pollution issues and 
have been reported in literature. In this chapter, the main focus is on the synthesis 
of PANI nanocomposites and nanostructures and their application as efficient 
adsorbents for water treatment. Detailed discussions on different synthetic routes 
and characterisation have been dedicated to applications of these materials and are 
compared for the adsorptive removal of heavy metal ions and dyes from water.

Keywords: conducting polymers, polyaniline, composites, water remediation

1. Introduction

The existence of various toxic pollutants in natural water systems originating 
from different activities such as textile industry, mining operation and steel manu-
facturing is still a global challenge [1]. Hence, it is vital to develop efficient technolo-
gies to remove these pollutants from wastewater prior release into the environment. 
Among several water treatment processes (coagulation, membrane filtration, chemi-
cal reduction and precipitation, reverse osmosis), adsorption technology is deemed 
an efficient technology to treat wastewater due to exceptional advantages such as low 
cost, high removal efficiency and regeneration [1]. For many years, there has been an 
ongoing research on the development of high affinity materials towards water pol-
lutants, which can effectively adsorb and remove them from industrial wastewater 
[2]. Conducting polymers (CPs) including polypyrrole (PPy), polythiophene (PTh), 
polyacetylene (PA) and polyaniline (PANI) have attained great attention for water 
treatment, owing to their intriguing properties such as ease synthesis, tunable struc-
ture and the presence of ideal functional groups [3]. Hence, CPs have been widely 
applied in materials such as rechargeable batteries, chemical sensors, electrochromic 
devices, surface coating for corrosion protection and water treatment [4]. Among 
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these conducting polymers, PANI has been widely studied due to its low cost, ease 
of synthesis, good environmental stability, unique doping/de-doping property and 
relatively high conductivity [5]. The discovery of PANI dates back to about 180 years 
ago to the experiments made by Runge [6]. From his work reported in 1834, he 
discovered that a dark green PANI changed to black when the mixture of copper(II) 
chloride and aniline nitrate is heated on a porcelain plate to 100°C [6, 7]. Anciently, 
PANI was known as ‘aniline black’, after forming an undesirable black powder 
deposit on the anode during oxidation of aniline [8, 9] and is the most stable CP that 
can be easily protonated (with an acid) to increase conductivity or deprotonated 
(with a base) to reduce its conductivity [10]. In 1862, Letheby prepared it through 
oxidation of aniline under mild conditions [9, 11]. Attempt to control the synthesis 
conditions of polyaniline grew until in the 1910s when Green and Woodhead man-
aged successfully to control the conditions, which led to the discovery of its four 
oxidation states [8]. This was followed by Jozefowic’s group in the 1960s and 1970s 
for better understanding of the material [6, 8]. After this, the study of polyaniline 
with other (intrinsic conducting polymers) ICPs increased tremendously worldwide 
and were studied for different applications.

2. Synthesis of polyanilines

Polyaniline have different chemical structures which is attributed to the oxida-
tion state of the polymer backbone, hence it exists in different states [12, 13]. The 
general representation of the polyaniline structure can be described by the follow-
ing structural formula (Figure 1):

were y = 1, 0.5 and 0 correspond to fully reduced polyaniline (leucoemeral-
dine), the half oxidised polyaniline (emeraldine) and fully oxidised polyaniline 
(pernigraniline), respectively [13]. Upon doping, PANI can be interconverted from 
one oxidation state to another [13]. The interconversions can be clearly deduced as 
presented in Figure 2.

There are two general methods which are employed to synthesise conducting 
polymers through electrochemical oxidation of the monomers or chemical oxida-
tion of the monomers, namely: electrochemical polymerisation and chemical 
polymerisation.

2.1 Electrochemical polymerisation

Electrochemical polymerisation or method can be carried out by employing 
one of the three techniques: (i) applying a constant current (galvanostatic), or 
(ii) applying a constant potential (potentiostatic), and lastly (iii) by applying a 
potential scanning/cycling to the aqueous solution of aniline [14]. Polymerisation 
process is performed in strongly acidic aqueous electrolyte using a radical 
polymerisation mechanism which allows a formation of anilinium radical cation 

Figure 1. 
The general structure of polyaniline.
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by aniline oxidation on the electrode[15, 16]. Electrochemical polymerisation 
strongly depends on the following factors:

a. low pH which is needed for preparation of conductive polymeric materials,

b. the dopant anion incorporated into polymer to determine the morphology, 
conductivity, rate of polymerisation growth and influences degradation 
process and

c. inert electrode such as Pt, Au and graphite [17].

The electrochemical process is more advantageous since film properties such 
as thickness and conductivity can be controlled by the synthesis parameters, 
including the current density, substrate, pH, nature and concentration of 
 electrolyte [18].

2.2 Chemical polymerisation

Like electrochemical polymerisation, chemical polymerisation is also carried out 
in an acidic medium such as hydrochloric acid (HCl) and formic acid which helps 
in yielding primary polymer [19]. For this process to occur, a dopant or oxidant is 
required. The dopant reagents used during this process are the oxidising agents such 
as ammonium persulfate (APS), ferric chloride (FeCl3), hydrogen peroxide (H2O2) 
and ceric nitrate (Ce(NO3)3). The principal function of the oxidant is to withdraw 
a proton from an aniline molecule, without forming a strong coordination bond 
either with the substrate intermediate or with the final product [20].

The general mechanism involved during polymerisation of aniline proceeds 
dominantly via radical mechanisms. Radical mechanisms can be subdivided into 
initiation, chain propagation and termination steps, which results in stable inter-
mediate resonance structures. The three different stages of polymerisation are 
illustrated from Figures 2–4.

2.2.1 Step 1: initiation step (oxidation of aniline monomer)

The initial step of aniline oxidative polymerisation is the generation of the aniline 
cation radical in the oxidation of aniline with an oxidant as shown in Figure 2 [21, 22]. 
The aniline cation radical undergoes resonance to attain the most stable and reactive 
radical cation which is free from steric hindrances [23]. This step is the slowest step in the 
reaction, hence it’s deemed as the rate determining step in aniline polymerisation [24].

2.2.2 Step 2: radical coupling and re-aromatisation

Head to tail coupling of the N- and para- radical cations takes place (Figure 3), 
yielding a dicationic dimer species. This dimer further undergoes the process of  
re-aromatisation which causes it to revert to its neutral state, yielding an 

Figure 2. 
Oxidation of aniline monomer during polymerisation of aniline [21, 22].
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intermediate referred to as p-aminodiphenylamine (PADPA) [25, 26]. These 
processes are also accompanied by the elimination of two protons.

2.2.3 Step 3: chain propagation

The dimers are immediately oxidised and then react with a stable aniline cation 
radical via an electrophilic aromatic substitution, followed by deprotonation and 
rearrangements to afford the trimer as seen in Figure 4 [27]. The trimer further 
undergoes oxidation and reacts with aniline cation radical to form a tetramer and 
so on.

3. Synthesis and characterisation of polyaniline nanocomposites

Different nanocomposites based on polyaniline have been reported for waste-
water remediation in order to enhance the removal efficiency of polyaniline. 
Depending on the method of synthesis, a variety of PANI based nanostructures and 
nanocomposites can be developed. For example, Ren et al. [28] reported PANI/PAN 
(polyacrylonitrile) nanocomposite synthesised via in–situ polymerisation of ANI 
monomer using DBSA and APS to obtain a nanofibrous structures as depicted in 
Figure 5a. Rachna and co-workers [29] reported zinc ferrite-PANI nanocomposite 
prepared following similar preparation method and monomer using toluene as a 
solvent and CuSO4. The SEM image (Figure 5b) showed that the nanocomposite 

Figure 3. 
Formation of a dimer [25, 27].

Figure 4. 
Formation of a trimer and polymer formation [27].
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had a smooth surface. Tanzifi et al. [30] prepared PANI/carboxymethyl cellulose/
titanium dioxide PANI/CMC/TiO2 nanocomposite in acidic medium using the same 
polymerisation route and APS as an oxidising agent. The nanocomposite structure 
formed uniform spherical particles as indicated in Figure 5c. PANI@Ni(OH)2 nano-
composite was prepared by Bhaumik et al. [2] via in–situ polymerisation using APS 
and hydrazine hydrate. The SEM image showed a tubular structure as represented 
in Figure 5d.

Hallajiqomi et al. [31] synthesised PANI/PVP nanocomposite via in–situ poly-
merisation using KIO3 and PVP as oxidising agent and surfactant, respectively. 
The nanocomposite showed irregular structural morphology. PANI/reduced 
graphene oxide (RGO) nanocomposite was synthesised by Li et al. [32] following 
the same polymerisation route using APS as an oxidising agent. The nanocom-
posite exhibited a lamellar structure. In another study, Harijan and Chandra [33] 
reported a PANI-GO nanocomposite synthesised by similar preparation method 
and the nanocomposite was composed of sheet-like morphology. Wang et al. [34] 
synthesised PANI/α-ZrP with plate–like structures via in–situ polymerisation 
using the same oxidising agent. In another study, Abdolahi et al. [35] synthesised 
uniform PANI nanofibers through interfacial polymerisation with different sizes 
ranging from micro- to nanometers. Gold-polyaniline (AuPANI) nanocomposite 
was prepared by simple interfacial polymerisation, performed in an immiscible 
water/toluene biphasic system using tetrachloroaurate, as an oxidant [36]. The TEM 
images of AuPANI nanocomposite showed rod-like Au nanoparticles embedded in 
a PANI matrix (see Figure 6a–d). Dhachanamoorthi et al. [37] prepared PANI-iron 
oxide (Fe3O4) ternary nanocomposites with improved crystallinity upon addition of 
Fe3O4 by mechanical mixing approach. Similar method was used for the synthesis 
of PANI-zinc oxide (ZnO) nanocomposites with enhanced electrical conductivity 
and homogeneous distribution on ZnO nanoparticles in the polymer matrix [38]. 
Basavaiah et al. [39] prepared polyaniline nanorods and magnetite nanoparticles via 
self-assembly route.

Table 1 shows some of the PANI based nanocomposites reported for the 
removal of pollutants from wastewater. The most commonly used method is 
the in–situ chemical polymerisation, which can result in various morphological 
structures. The structure of the nanocomposite is strongly affected by the type 
of oxidant, surfactant or stabiliser, the precursor and the ratio of the precursor to 
that of ANI.

Figure 5. 
SEM images of different structures of PANI nanocomposites (a) fibres [28], (b) smooth surface [29],  
(c) spherical [30] and (d) tubular [2].
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4. Polyaniline and its composites for wastewater treatment

The application of PANI for wastewater treatment has been widely studied owing 
to its exceptional structure that comprises abundant amine and imine functional 
groups [50, 51]. The nitrogen atoms on these functional groups have lone pairs of 
electrons to facilitate chelation and adsorption of pollutants [28, 52]. However, PANI 
has disadvantages such as poor mechanical properties and processability as well 

Figure 6. 
TEM images of AuPANI nanocomposite with different magnifications (a, b, c) showing rod-like Au 
nanoparticles embedded in a PANI synthesised by interfacial polymerisation and (d) corresponding selected 
area electron diffraction (SAED) [36].

Adsorbent Synthesis method, oxidant 

and/or other reagents

Morphology Refs.

PANI-PPy a, FeCl3 Fibres [40]

PANI nanoadsorbent a, APS, stabiliser Spherical particles [41]

PANI/tin(II)

molybdophosphate

In-situ method Spherical particles [42]

PANI/Fe0 a, FeCl3 Fibrous structure [43]

PANI/ZrO2 Direct mixing, APS Irregular rougher surface [44]

PANI–ZnO a, APS Flaky structure [45]

PANI/SiO2 a, APS, NaCMCNa Uniform spherical particles [46]

Fe3O4/G/PANI a, APS Mixture of sheets and 

spherical particles

[47]

PANI/zeolite a, APS Mixture of sheets and 

tubular particles

[48]

PANI/MnO2/TiO2 a, KMnO2 Aggregated spherical 

particles

[49]

PPy-PANI/Fe3O4 a, FeCl3 roughly spherical particles [3]

a = in-situ polymerisation, NaCMCNa = sodium carboxymethyl cellulose sodium.

Table 1. 
Some of PANI nanocomposites and their reported structures.
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as low solubility. These limitations emanate from its high conjugation and strong 
electrostatic interaction between chains, which decreases its performance and 
limit its commercial application [51, 53]. Composites formation offers potential in 
addressing the above shortfalls. Polyaniline composites can be regarded as a material 
consisting of PANI matrix and one or more components such as semiconductors, 
metal nanoparticles, organic compounds, inorganic compounds as well as biological 
and natural products in order to improve polymer backbone properties or extend 
its functionalities [51, 54]. In order to prepare the composite materials successfully, 
several methods like physical mixing, sol–gel technique, in–situ chemical polymeri-
sation, emulsion technology, sonochemical process and irradiation technique are 
employed [55]. Since then, various PANI composites have been reported for the 
removal of pollutants from wastewater using membrane technology [56, 57],  
chemical reduction [50], photocatalytic degradation [58, 59] and adsorption 
technology [60, 61]. Among these methods, adsorption has been identified as a 
prestigious technology, due to its flexibility and simplicity of design, initial cost, 
ease operation and insensitivity to toxic pollutants [62]. Different polyaniline-based 
composites for adsorption of pollutants have been widely studied. Samani et al. [60] 
reported PANI/PEG (polyethylene glycol) composite for the removal of hexavalent 
chromium ions (Cr(VI)), which had the maximum adsorption capacity (qmax) of 
68.97 mg/g. Debnath et al. [63] reported a PANI/lignocellulose composite with qmax 
of 1672.5 mg/g for Congo red (CR) removal. PANI/chitosan was studied by Janaki 
et al. [64] for the removal of dyes (CR, Coomassie Brilliant Blue (CBB), and Remazol 
Brilliant Blue R (RBBR)). They obtained the maximum capacities to be 322.58, 357.14 
and 303.03 for CR, CBB and RBBR, respectively. PANI/silica (SiO2) gel was reported 
by Karthik et al. [52] with qmax = 63.41 mg/g for the removal of Cr(VI). However, 
most of these PANI composites have lower removal efficiency and adsorption 
capacity, owing to their irregular structure resulting from agglomeration, poor water 
dispersion and reduced surface area [35]. Numerous researches have been focussed 
on the development of nanostructured PANI composites with improved surface area 
and maximum adsorption capacity [35, 53, 65, 66].

5.  Application of polyaniline nanocomposites as adsorbents for water 
treatment

In recent years, polyaniline nanocomposites have been used as adsorbents for 
the removal of various pollutants from wastewater [30]. More studies have been 
focussed on the adsorption of organic dyes and heavy metals ions due to their 
good interaction with PANI nanocomposites functional groups [52]. In the study 
of interaction between PANI nanocomposites and pollutants, various adsorption 
parameters such as pH, contact time, adsorbent dose, temperature, nature of the 
adsorbent and concentration of the pollutants are investigated [38]. From these 
parameters, the efficiency and adsorption capacity of nanocomposites can be 
determined to confirm the potential of the PANI nanocomposites as adsorbents for 
water purification.

5.1 Adsorption of heavy metals

The general sources of heavy metals are weathering of rocks due to their abun-
dance in nature and mining industries as a result of mineral process of metal ores 
[61]. Various heavy metals known to pollute water include nickel, cadmium, lead, 
mercury, chromium, arsenic and copper. The water pollution by these toxic metals 
is a global concern owing to their acute toxicity and enduring accumulation [67].  
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Heavy metals are problematic since they are mutagenic, carcinogenic, are not 
biodegradable and can form various species [68].

5.1.1 PANI nanocomposites for adsorption of heavy metals ions

A PANI/RGO nanocomposite was reported by Li et al. [32] for the removal 
of Hg(II) ions from aqueous solution. It was shown that the PANI/RGO had high 
equilibrium adsorption capacity in comparison to PANI (Figure 7a). The obtained 
monolayer maximum adsorption capacity was 1000 mg/g at pH 4, 33°C and 
400 mg/L for 200 mg adsorbent dose. Bhaumik et al. [38] reported a PANI/Fe0 
nanocomposite for the removal of arsenic (As), which had Langmuir maximum 
adsorption capacity of 232.5 and 227.7 mg/g for both As(III) and As(V) at pH 7, 
25°C and 1 mg/L for 10 mg of PANI/Fe0 nanocomposite. The obtained pH effects 
results (Figure 7b) showed higher removal efficiency by the nanocomposite in 
comparison to the neat PANI. Harijan and Chandra [33] reported a PANI/GO for 
the removal Cr(VI) from aqueous solution. It was demonstrated that the nano-
composite had high Langmuir maximum capacity of 192 mg/g at pH 6.5, 30°C 
and 100 mg/L for 25 mg of PANI/GO in comparison to the neat PANI (Figure 7c). 
Table 2 shows some of the PANI nanocomposites reported for removal of various 
heavy metal ions under different experimental conditions.

5.2 Adsorption of organic dyes

Organic pollutants are generally materials that comprise of aromatic rings in 
their structure. Numerous organic pollutants including dyes, chlorinated, aliphatic 
and phenolic compounds are carcinogenic and mutagenic [70]. Dyes are of major 
concern due to their wide application in textile, paper, pigment and plastic indus-
tries. Their presence in water systems results in water decolouration, which can 

Figure 7. 
Comparison of PANI and PANI nanocomposites for the removal of various pollutants (a) kinetics [32], (b) pH 
effect [43], (c) isotherms [33] and (d) equilibrium adsorption capacity [34].
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negatively affect aquatic life by influencing the photosynthetic process [71]. Some 
of PANI based nanocomposites for dye removal are given in Table 3.

5.2.1 PANI nanocomposites for adsorption of dyes

Wang et al. [34] reported PANI/α-ZrP for the removal of methyl orange (MO) 
cationic dye. It was demonstrated by Figure 7d that the nanocomposite (5 mg) had 
high removal efficiency capacity at pH 4 and 25°C for 100 mg/L MO solution. The 
monolayer maximum adsorption capacity was obtained to be 377 mg/g. Tanzifi et al. 
[46] reported PANI/SiO2 nanocomposite for the removal of amido black 10B. The 
obtained Langmuir maximum adsorption capacity was 42.24 mg/g at pH 2, 25°C and 
30 mg/L for a 100 mg adsorbent dose. Gharbani [37] reported PANI/tin(II)molyb-
dophosphate for the removal of malachite green (MG). It was demonstrated that the 
removal efficiency was 93% for 50 mg/L of MG at pH 10 and the adsorption process 
followed Freundlich isotherm model. In another study, Ballav et al. [72] synthesised 
PANI coated ligno-cellulose composite (PLC) via in-situ polymerisation of aniline 
monomer for the removal of Reactive Black 5 (RB-5) from aqueous solutions. The 
authors reported that the equilibrium adsorption isotherm studies revealed that the 
Langmuir isotherm provided the best fit with monolayer adsorption capacity of 
312 mg/g. The Maity’s research group also reported the use of PANI-coated lignin-
based adsorbent for the uptake of reactive dye eosin yellow (EY) from aqueous solu-
tion [73]. The adsorption capability of the adsorbent was found to be more effective 
than the unmodified adsorbent at lower pH.

Adsorbent Pollutant qmax 

(mg/g)

pH Conc. 

(mg/L)

Adsorbent 

dose (mg)

Refs.

PANI/PAN Cr(VI) 67.03 2 5 10 [28]

PAMpDA@Fe3O4 Co(II) 116.3 6 50 50 [69]

PPy-PANI/Fe3O4 Cr(VI) 303.0 2 100 50 [3]

Fe3O4/GO/PANI Cr(VI) 153.4 6.5 100 50 [47]

PANI@Ni(OH)2 Cr(VI) 625.0 4 100 10 [2]

PANI/zeolite Cr(VI) — 2 50 200 [48]

PANI/PVP Mn(II) 50.30 7 100 250 [31]

Table 2. 
Some of the PANI nanocomposites for heavy metals adsorption.

Adsorbent Pollutant qmax 

(mg/g)

pH Conc. 

(mg/L)

Adsorbent 

dose (mg)

Refs.

PANI/MWCNTs CR 147 2 50 7 [74]

PANI/PA 6 MO 48.8 — 10 30 [54]

ZnFe2O4-PANI Rhodamine B 

RHB

1000 2 10 500 [29]

PANI/CMC/TiO2 CR 94.28 2.6 82 140 [30]

PANI/Fe0 CR 99.6 7 100 1000 [75]

PPy–PANI NFs CR 222.22 4 200 1000 [35]

Starch/PANI Reactive Black 5 811.30 5 10 60 [76]

Table 3. 
Some of the PANI based nanocomposites for dye adsorption.
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6. Conclusions

This chapter encompasses the work done on PANI nanocomposites/nano-
structures for the removal of heavy metal ions and dyes from aqueous solution. 
Adsorption technology was widely studied due to its flexibility in design and 
operational simplicity. The use of PANI nanocomposites as adsorbents has been 
investigated for adsorption of pollutants owing to their inherent properties such 
as high surface area, environmental stability, easy preparation and good water 
dispersion. The literature showed that a variety of morphological structures can be 
obtained, which depend strongly on the method of synthesis, and thus have various 
effects on the adsorption of the pollutant. For example, PANI based nanocompos-
ites and nanostructures are preferable prepared via in-situ polymerisation. It was 
demonstrated that the pH, contact time, temperature, adsorbent dosage, concentra-
tion, nature of adsorbent and the presence of competing ions have an influence 
on the removal efficiency of nanocomposites. Hence, optimisation of adsorption 
parameters has been studied for the removal of heavy metals such Cr(VI), Hg(II), 
As(V), Co(II) and dyes such as CR, MB, MO, MG and RB5 from wastewater using 
various PANI nanocomposites and nanostructures. Overall, these nanocomposites 
display improved removal efficiency towards heavy metals and dyes adsorption. 
Hence, data in this chapter provides insight into PANI based materials for potential 
use as economically valuable adsorbents for the removal of dyes and heavy metals 
ions from wastewater.
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