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Chapter

Lossy Compression of Remote
Sensing Images with Controllable
Distortions

Vladimir Lukin, Alexander Zemliachenko, Sergey Krivenko,
Benoit Vozel and Kacem Chehdi

Abstract

In this chapter, approaches to provide a desired quality of remote sensing images
compressed in a lossy manner are considered. It is shown that, under certain con-
ditions, this can be done automatically and quickly using prediction of coder per-
formance parameters. The main parameters (metrics) are mean square error (MSE)
or peak signal-to-noise ratio (PSNR) of introduced losses (distortions) although
prediction of other important metrics is also possible. Having such a prediction, it
becomes possible to set a quantization step of a coder in a proper manner to provide
distortions of a desired level or less without compression/decompression iterations
for single-channel image. It is shown that this approach can be also exploited in
three-dimensional (3D) compression of multichannel images to produce a larger
compression ratio (CR) for the same or less introduced distortions as for
component-wise compression of multichannel data. The proposed methods are
verified for test and real life images.

Keywords: lossy compression, remote sensing, image processing, performance
prediction

1. Introduction

A huge amount of data is provided nowadays by existing remote sensing (RS)
sensors, both spaceborne and airborne [1, 2]. Data volume is especially large if
images are hyperspectral (i.e., having hundreds sub-band images) and/or high
resolution ones. Note that both tendencies (to create and exploit multichannel
systems as well as to produce high resolution data) are typical for recent years.
Volume of acquired data additionally increases due to more frequent observations
of sensed terrains [2]—it has become a usual practice to monitor a territory quite
often, e.g., each week.

The obtained RS data have to be transferred, stored and/or disseminated. For
each of this operation, data compression can be desirable [1, 3, 4]. Meanwhile, there
are several obstacles that can prevent efficient execution of these operations.
Concerning data transferring: bandwidth of a communication channel used to
transfer data can be limited, time for transferring can be restricted, time and power
for compression can be limited as well [1, 3]. The same can relate to data dissemi-
nation although the limitations are usually less strict compared to downlink data
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transferring. Memory for RS data storage can be a problem too despite of rapid
development of new facilities in recent years [2].

Therefore, it is often desired to compress RS images [4, 5]. As known, there are
lossless and lossy image compression techniques [1]. Limits attainable by lossless
compression are practically reached [1]. Compression ratio (CR) for the existing
methods rarely reaches 5 even for compressing hyperspectral data when inter-band
correlation is exploited in full extent [4]. However, larger CR values are required
often. Then, lossy compression of acquired RS data has to be applied.

The main peculiarity of lossy compression is that it introduces losses (distor-
tions, degradations) into RS images. Then, it can be useful only under condition that
introduced losses do not sufficiently negatively influence the goals the acquired RS
data are intended for (terrain classification and/or parameter estimation, specific
object detection, etc.). One assumption is that introduced losses have to be of the
same level or smaller than degradations due to noise in original data [6]. Therefore,
noise characteristics have to be taken into consideration and, thus, they should be
known in advance or pre-estimated [7-11]. This also means that it is necessary to be
able to control introduced distortions and/or to provide a desired level of losses.
Moreover, often this should be done automatically, e.g., in on-board compression
[3, 12].

A slightly other assumption is possible if compressed images are subject to visual
inspection and analysis. Then, introduced distortions should be such that they do
not degrade image visual quality [13]. Then, one has to take into account both
specific properties of component images, e.g., variations of their dynamic range
[7, 14, 15] and peculiarities of human vision system (HVS).

Finally, one more assumption is that introduced distortions should be such that
they do not have (noticeable) negative impact on classification accuracy or perfor-
mance of other operations of RS data processing at final stages. Note that classifica-
tion accuracy reduction is connected with metrics characterizing introduced
distortions [16].

Thus, introduced distortions should be controlled for all aforementioned strate-
gies. Here by “controlled” we mean several aspects. First, distortions have to be
measured or estimated or predicted to ensure that they are not larger than allowed
threshold according to a certain metric (criterion) [17, 18]. Second, introduced
distortions can be accurately measured only if compression and decompression are
already done. Then, if distortion level has to be changed, coder parameters have to
be changed and metric calculation has to be done after next iteration of compres-
sion/decompression [18]. This is often impractical, especially on-board. Then, it is
more reasonable to talk about distortion estimation or prediction without compres-
sion and decompression but with approximate providing of a desired quality of
compressed data.

Certainly, CR can be important as well. Then, an appropriate compromise has to
be provided between CR and introduced losses. Note that CR also depends upon a
used coder and a way data redundancy is exploited. In this sense, it is worth
incorporating inter-channel correlation inherent for multichannel RS data that can
be done in different ways [19-21]. It is possible to apply different transforms
[11, 22-24] or to carry out different groupings of component images [11, 25, 26].

Lossy compression of images with taking into account noise type [27] and
characteristics has been paid considerable attention [28-30]. Possible existence of
optimal operation point (OOP) and its prediction have been claimed and studied
[13, 18]. Problems of CR prediction and its providing for coders based on discrete
cosine transform (DCT) have been considered [18, 31]. Meanwhile, problems of
prediction of compressed image quality and providing a desired quality have not
been thoroughly analyzed yet.
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In this direction, a certain work has been done. In particular, an approach to
quality prediction for wavelet based compression of remote sensing images has
been put forward [32]. Prediction of mean square error (MSE) of introduced losses
for JPEG has been done [33]. However, control and prediction of metric values for
more advanced coders as AGU [34] and ADCT [35] that outperform JPEG consid-
erably [36] were not developed till last 2 years. Since providing of a desired metric
value using iterative (multiple) compression/decompression requires sufficient
time and resources [36], it was decided to design a new approach without iterations
[37]. Later this approach has been further advanced [38-40], mainly for single-
component (grayscale) images in 8-bit representation and with taking into account
possible presence of noise.

In this chapter, we consider application of the designed approach to RS images
including multichannel data and keeping in mind the following: (1) dynamic range
of component images in multichannel data varies in wide limits and 16-bit repre-
sentation is often used for them; (2) in many component images of multichannel
(e.g., hyperspectral) data, input peak signal-to-noise ratio (PSNR) is high and noise
influence is negligible; (3) there is essential correlation of signal component in
neighbor sub-band images of multichannel images. We show that by taking into
account these properties, it is possible to carry out efficient compression of
multichannel RS data with controllable quality.

2. Peculiarities of RS image lossy compression

To understand the problem of lossy compression, some preliminaries are
needed.

First, lossy compression introduces distortions due to which a decompressed
image differs from the corresponding original one (subject to compression). These
distortions are introduced at the stage of quantization of coefficients of a used
orthogonal transform: wavelet, DCT or some other [34, 35, 41]. If DCT serves as the
basis of lossy compression, quantization step (QS) or scaling factor (SF) serve as
parameter that controls compression (PCC). A larger QS or SF leads, in general, to
greater introduced distortions and a larger CR [34, 35] but MSE of introduced losses
and attained CR values considerably depend upon complexity of a compressed
image and noise presence.

Figure 1 presents three images: noise-free image Frisco of low complexity, the
same image corrupted with additive white Gaussian noise with zero mean and
variance 100, and noise-free image Airfield of quite high complexity (it contains a
lot of edges and fine details).

Figure 1.
Noise-free and noisy (o = 10) test images Frisco and the test image airfield.
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Figure 2 shows dependences of mean square error MSE,; between original and
compressed images on QS for the case the advanced DCT (ADCT) coder [42] is
applied. It is seen well that smaller distortions are introduced if an image is noise-
free and has a simpler structure. The values of MSE(QS) for the same QS can
differ by several times and, thus, i.e., QS itself does not determine MSE(QS).

Dependences CR(QS) for the same images are presented in Figure 3. It is seen
that the simple structure noise-free image Frisco is compressed in the best way
whilst the complex structure image Airfield is compressed with the smallest CR.
The reason is that the percentage of DCT coefficients that are assigned zero values
after quantization increases if image complexity is lower, noise intensity is less, and
QS is larger [31, 43]. Thus, the rate/distortion curve is individual for each particular
image and QS has to be adapted to image and noise properties to provide a desired
compromise or to satisfy imposed requirements.

We have already mentioned that compression of noisy images has several pecu-
liarities. Suppose that an acquired (noisy) image in a k-th component is image is
represented as [8, 10]

L = 1 g (1) i= L Lj =1 L k= 1., K (1)

where Iﬂglsy is the ijth sample of the kth component image, ny;; is the ijth value of

true

the in the kth component image supposed dependent on i - the true value for the

kijth voxel, I and ] define the image size, K is the number of components. One can
determine input MSE for each component image as

—— airfield.bmp
50| —— frisco.bmp + noise
—— frisco.bmp
40
430
=
20
10
0
0 5 10 15 20 25 30
Qs

Figure 2.
Dependences MSE vs QS for noise-free and noisy images Frisco and noise-free image airfield.
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Figure 3.
Dependences CR vs QS for noise-free and noisy images Frisco and noise-free image airfield.
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and, respectively, input PSNR
PSNRJ"” = 10log 1 (DE/MSELP ) k= 1,... K, (3)

where Dy, is image dynamic range assumed individual for each component image
Dk = IP** — If?i“ where I;’* and Iﬂ“in are maximal and minimal values in the kth
image, respectively).

Earlier analysis [7, 44] has shown that MSEi?p, k=1,.. Kand PSNRLHP, k=1,
..., K'in very wide limits for such typical examples of multichannel RS data as
images provided by hyperspectral sensors AVIRIS [45] and Hyperion [46]. For
more than 80% of component images, input PSNR exceeds 40 dB. This means that,
most probably [42], OOPs for these component images do not exist, i.e.

MSE; = Z§=1ZJJ:1< kij — If{ri;‘e )2 /(IJ) steadily increases if QS becomes larger
({Ifdj, i=1..,Lj=1,..,], k=1, .., K} denotes compressed image in a k-th
channel; OOP exists for a k-th component image if MSE| (QS)) has one minimum).

If so, i.e. if quality of the compressed noisy image steadily decreases with QS
growth, there should be some reasonable strategy to carry out compression for such
an image or a group of images with similar properties. Here it is worth recalling the
following. Analysis done in the paper [16] has shown that lossy compression has
practically no negative impact on image classification accuracy if the metric PSNR-
HVS-M [47] is not less than 42-44 dB.

The metric PSNR-HVS-M (PSNR — HVS — M = 10 log 19 (D7 /MSE{V*M),
k=1,.,K, MSE{;IVSM is MSE with taking into consideration specific features of
human vision system (HVS)) takes into account two important peculiarities of
human vision system: less sensitivity to degradations in high spatial frequencies and
masking effect of textures. One can be surprised that visual quality metric has
been used in analysis. This can be explained by the fact that the required values of
PSNR-HVS-M > 42 dB mean that quality of a compressed image is such that
introduced distortions are invisible. According to PSNR, this happens if PSNR}
exceeds 35-37 dB [48].

Thus, we need to provide a desired (controlled) quality of compressed images.
This should be done quickly (desirably, without iterative compression/decompres-
sion), rather accurately, and with producing a large CR. We expect that CR increase
can be gained due to grouping of component images.

3. An approach to providing controlled losses

Let us start from considering lossy compression of a single-channel noise-free
image in 8-bit representation. After compression, one obtains {Ij;,i=1,..,Lj=1,
... ), k=1, ..., K} where quality of this image becomes worse for a larger CR or
smaller bpp that takes place for larger QS or SF if a DCT-based coder is applied. Let
us see how this happens for JPEG with uniform quantization of DCT coefficients.
Suppose that an image to be compressed is divided into N=IJ/4 non-overlapping
blocks of the size 8 x 8 pixels. Then, in each block, we have DCT coefficients

{D(n,k,1),n=1,...N,k=1,...,7,1=1,...,7} . After quantization, we have



Satellite Information Classification and Interpretation

{Dq(n,k,1),n=1,..,.N,k=1,..,7,1=1,...,7}. Then, MSE of losses can be
determined as

S MSE, = ¥ 3 ¥ (ADy(n. k1))’ @)

zl~
=]
Il
-
=}
Il
=
T
o
g

where

Dy(n,k,1) = [D(n,k,1)/QS, k=0,..,71=0,..,7,
ADg4(n,k,1) = QS x Dq(n,k,1) = D(n,k,1),k =0, ..,7,1=0, .., 7.

and [] denotes rounding-off to the nearest integer, n denotes the block index.

A usual assumption concerning distribution of quantization errors is that it is
uniform or close to uniform. Then, MSE is about QS?/12. This is true for quite small
QS (see data in Figure 2) but, for larger QS, MSE becomes smaller than QS?/12. The
main reason is that distributions of alternating current (AC) DCT coefficients differ
a lot depending upon an image. Figure 4 presents these distributions using the same
scale for the three considered images (Figure 1). Obviously, these distributions
differ from Gaussian and from Laplacian (assumed in the paper [33]) as well. For
the simple structure image, the distribution is quite narrow and it has heavy tails. If
noise is present, the distribution “widens” and becomes closer to Gaussian.

It is seen from analysis of distribution in Figure 4a that if QS is about 10, most of
AC DCT coefficients become zeros after quantization. Thus, we have decided to
analyze quantization errors more in detail. Histograms of these errors for four cases
are given in Figure 5. The histogram in Figure 5a shows that error distribution is
close to uniform for the noise-free image Airfield that has wide distribution of AC
DCT coefficients (Figure 4c). The distribution is also practically uniform for noisy
image Frisco (noise standard deviation equals to 5, Figure 5d). Then, MSE of
introduced losses is really close to QSs? /12 (see data in Figure 2). In other cases
(Figure 5b and c), the distributions sufficiently differ from uniform. This happens
for noise-free image Frisco. Thus, introduced losses MSE is less than QS*/12.

Hence, MSE ~ QS?/12 can be treated as the upper limit of introduced losses.
Note that this is valid not only for JPEG but for the coders AGU and ADCT [38-40].
This means that having a desired (threshold) MSE, it is possible to easily calculate
QS as /12 MSEgs. A question is when the approximation MSE ~ QS?/12 is valid?
Note that if MSE is smaller than QS?/12, one can benefit from using a larger QS and
providing a larger CR. Clearly, that if a desired PSNR,s has to be provided, it has to
be recalculated to MSE,, taking into account dynamic range for a given image as
MSEges = D?/10( PSNRer/10),

Our idea [38-40] is that MSE can be predicted in one of two ways.

The first way is determined as

R

1 R
MSE,.q = — ¥ MSE, AD,(n, k,1
S pred R r§1 SE 64Rr21k20120( (n © )) (5)

ADy(r,k,1) = QS x Dy(r,k,I) = D(r,k,1),k=0,..,7,1=0,..,7,r=1,..,R (6)

where R is the number of analyzed blocks (R « N), C is a correcting factor used
for a given coder. In other words, we employ statistics of DCT coefficients calcu-
lated in a limited number R of analyzed blocks of size 8x8 pixels. According to our
studies [38, 40], it is enough to have R about 500 where analyzed blocks are
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Figure 4.
Distributions of AC DCT coefficients for the noise-free image Frisco (a), noise-free image airfield (b) and noisy
image airfield (c), all in the same limits from —200 to 200.

randomly distributed over area of an image to be compressed to have prediction
accurate enough. Taking into account that number of 8 x 8 pixel blocks in com-
pressed images usually exceeds several thousands, prediction occurs to be much
faster than even compression by JPEG. Certainly, prediction is much faster than
compression by AGU (uses 32 x 32 blocks, efficient coding and deblocking after
decompression) and, especially, ADCT (exploits partition scheme optimization).
Expressions (5 and 6) allow predicting MSE for a given QS. But they do not allow
direct setting of QS. One has to apply an iterative procedure that starts
from QS = /12 MSEqes. If the predicted MSEeq (5) occurs to be considerably
(e.g., by 15-20% or more) smaller than MSEq, then a larger QS has to be tried with
calculating (6) for all analyzed blocks and (5) again. Since the already calculated
DCT coefficients are available, the procedure is quite fast.
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Figure 5.
Examples of histograms of quantization error for AC DCT coefficients (see comments under each histogram,).

The second way is the following. Suppose that the predicted MSE can be
presented as

MSEpred = (QS*/12)f0(X) )

where f((X) is a function of one or two parameters X that can be easily and
quickly calculated for DCT coefficients determined in analyzed blocks. Then one
has to find such parameter(s) and the function. To solve this task, we have
exploited our earlier experience in predicting filtering efficiency [49] and compres-
sion ratio [18] by simple analysis of DCT statistics in 8x8 pixel blocks and regression
analysis [50, 51].

The prediction strategy is the following. We suppose that there is an input
parameter (or a few parameters) that can characterize a compressed image. It is also
assumed that output (predicted) parameter (MSE, PSNR, CR, or another metric) is
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strictly connected with this (these) input parameter(s). This connection (prediction
approximation) is available to the moment to carry out prediction, i.e., in our case,
the function f((X) has been obtained in advance (in off-line mode). Then, one has

to calculate input parameter(s) for a given QS and insert it (them) into f((X).

It has been shown in [52] that a good parameter integrally characterizing an
image (its complexity) is probability Py that AC DCT coefficients after quantization
become equal to zero (this parameter can be also treated as probability that AC DCT
coefficient absolute values are smaller than QS/2). It is obvious that Py can be very
easily calculated. Keeping these properties of Py in mind, we have obtained scatter
plots of 12MSE/QS? to estimate fo(Pg). A wide set of test noise-free images has
been used that included standard optical images, test RS images and test medical
image (this was done to understand does the image nature (origin) influence per-
formance of lossy compression; in fact, very similar results have been obtained for
test images of different origin; the main factor is image complexity). Each point of
the scatter plot corresponds to one test image compressed with some QS where
vertical coordinate is Py determined for this case).

Figure 6 presents scatter plots obtained for AGU and ADCT coders with exam-
ples of fitted curves. The main and very important observation is that the scatter
plots behave in a compact manner, i.e. points that have approximately the same
arguments have close values of 122MSE/QS?. Another observation is that the scatter
plots for two considered coders behave in a very similar manner, i.e. there is a
tendency to monotonous decreasing of 12MSE/QS? if Py increases. Finally, the
scatter plots confirm that, in many practical situations, MSE ~ Qs? /12. At least, this
is true for Py < 0.6.

It is worth recalling here that Py < 0.6 corresponds to rather small QS. To prove
this, Figure 7 presents the scatter plot from [48] and the fitted curve. As it is seen,
for Py < 0.6, CR does not exceed 5. If Py > 0.6, there is the tendency of reduction of
fo(Po). The scatter plot points are placed not so compactly here. Thus, prediction
using only f((Pg) becomes less accurate. Nevertheless, the following prediction
procedure can be proposed:

2 . - ' | T  —
- .e * mseqs212 vs. dct0
— Fitting curve

-

mseqs212
o o o
£ @ (o]

-
N

o

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
dct0
a
T ee ) e o - T T T T T T T T
N 1 e, o ®* mseqs212 vs. dct0 |
~ Fit curve
w
3
wn 05 | =
=
0 | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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b
Figure 6.

Scatter plots for AGU (a) and ADCT (b) coders.
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Figure 7.
The scatter plot of CR on Po and the fitted curve for the coder AGU.

1. Determine QS = /12 MSEe,, obtain AC DCT coefficients for analyzed blocks
and calculate P for this QS.

2.1f P < 0.6, use QS = /12 MSE,,s and stop the procedure.

3. Otherwise, increase QS by about 5%, calculate Py and compare
(QS?*/12)fo(Po) to MSEges; if (QS*/12)fo( Po) ~ MSEes then stop; otherwise
continue till satisfying this condition.

As it is seen, all the operations are very easy and fast since they are performed
for a limited number of AC DCT coefficients. Moreover, using the same parameter,
it is possible to predict both MSE and CR. Then, it is easy to find a proper compro-
mise depending upon priority of requirements and imposed restrictions.

One question is what curves to fit and what are criteria of fitting quality to be
used. There are different approaches but we employed goodness-of-the-fit R* and
RMSE [50] as two main criteria (the former one has to be maximized and the latter
one minimized for a given scatter plot). Without going to details, we can state the
following. For each scatter plot, usually there are several functions able to provide
approximately the same R* and RMSE. Sums of two exponentials (see an example in
Figure 7), polynomials of low order, Fourier series, power functions are good
candidates to be tested. Using the corresponding tools of Matlab or Excel, it is
possible to quickly find optimal or, at least, appropriately good solution.

4. Peculiarities of compression
4.1 Visual quality metrics

We have already mentioned that it is often desirable to predict visual quality
metrics. To check whether or not this is possible, the scatter plot was got for
MSEqvs-m/ (QS2 / 12) vs. Po (Figure 8). As it is seen, this ratio is about 0.05 for
small Py (this happens for small QS and/or complex structure images), i.e. PSNR-
HVS-M is by about 13 dB larger than PSNR. This means that introduced losses are
masked by image content well and, most probably, they cannot be noticed visually.

10
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Figure 8.
The scatter plot MSEnvs_m/(QS*/12) vs. Po and the fitted curve, AGU coder.

The difference in PSNR-HVS-M and PSNR decreases to 5-7 dB for Py > 0.5, i.e.
typical conditions of lossy compression. The scatter plot and the fitted curve show
that MSEyys_m can be predicted well for a given QS. In other words, visual metrics
can be predicted too using the proposed approach. Again, the sum of two exponen-
tials (just this case is presented in Figure 8) can serve well as approximation curve
with quite small number of varied parameters.

4.2 Experimental data for component-wise compression

Let us present the results of applying the proposed approach to real-life
hyperspectral data. Images of Hyperion sensor dataset EO1H1800252002116110KZ
have been compressed. Hyperion sensor produces data of bad quality (very noisy)
in sub-bands with indices k = 1,...,12 and k = 58,...,76. The images in these sub-bands
are often discarded in analysis, so we have not compressed them.

Then, two approaches to compression have been compared. Both presume
component-wise compression. The first one has been proposed earlier [11]. Images
are compressed after applying variance stabilizing transform that takes into account
signal-dependent noise properties and converts this noise to additive with variance
approximately equal to unity. Then, the recommended QS = 3.5 (this notation is
used in figures below). Inverse transform is applied component-wise after decom-
pression. For the proposed method, the component-wise images have been
transformed to the interval from 0 to 255. Then, for each of them, AGU coder has
been applied with QS = 17 that approximately corresponds to PSNRy.s = 34.5 dB
(MSEges 724 ~ 17 x 17/12). The notation QS = 17 is used for the corresponding data.

The obtained PSNR values calculated between compressed and original compo-
nent images are presented in Figure 9. As it is seen, PSNR for the method [11] in
most sub-bands occurs to be considerably larger than PSNR,, set by us. Only in
some sub-bands (indices 165-185) where input PSNR is quite small the determined
PSNR values are about 40 dB (i.e., the introduced losses are invisible in
decompressed images). For the proposed approach, PSNR for the introduced losses
is considerably smaller but, for all sub-band images, PSNR anyway exceeds 35 dB.
As it follows from analysis of data in Figure 10, CR for all sub-bands exceeds 5 (a
more detailed study shows that P, > 0.6 in all cases). Thus, MSE is smaller than
QS?/12 (see data in Figure 6) and the provided PSNR is larger than expected.

The main observation for data in Figure 10 is that CR for the proposed method is
by several times larger than for the prototype method for almost all sub-bands
except the bands with small input PSNR. Thus, we have gained essential benefit in
CR sense while introduced distortions remained invisible.

11
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Figure 9.

PSNR for component-wise compression by the method ([11], QS = 3.5), the proposed component-wise
approach (QS = 17), and the proposed 3D compression method (QS = 17, bl = 4).
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Figure 10.

CR for component-wise compression by the method ([11], QS = 3.5), the proposed approach (QS = 17), and
the proposed 3D compression method (QS = 17, bl = 4).

We do not present examples of original and compressed component images
because visually they are identical. Note that setting a larger PSNR,s leads to larger
PSNR of introduced losses and smaller CR for each component image, respectively.
By setting a larger PSNRg,s one can ensure that classification accuracy does not
make worse.

4.3 3D compression

Consider now possibilities of 3D compression in groups. There are many differ-
ent options [11]. We have analyzed one of the simplest ones where component
images have been transformed to the 8-bit representation limits, then combined in
4-band groups, and then compressed by 3D version of AGU coder. After decom-
pression the images have to be “stretched” to original limits.
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As previously in Section 4.2, we have employed QS = 17. For convenience of
comparison, the obtained data are also presented in Figures 9 and 10, for 3D
compression they are denoted as QS = 17, bl = 4. CR values for the 3D case are
shown the same for all components of the same group. As it is seen, CR values for
3D compression are about two times larger than for the proposed component-wise
compression. This is an obvious advantage of 3D compression. Meanwhile, there
are also very interesting observations stemming from analysis of data for PSNR
(Figure 9). As it is seen, there are many sub-bands for which PSNR for 3D com-
pression is considerably larger (and the introduced losses are sufficiently smaller)
than for component-wise compression. PSNR values are almost the same if sub-
bands with small input PSNR are compressed. This is one more positive feature of
3D compression that should be studied more in detail in the future.

5. Conclusions

We have considered the task of lossy compression of RS images with controlla-
ble quality characterized by traditional metrics. It is shown that MSE and PSNR can
be predicted for DCT-based coders and, due to this, it is possible to provide a
desired MSE or PSNR without compression/decompression iterations quite quickly
and accurately. Being applied to compress RS images without visible distortions,
this approach allows providing CR considerably larger than for approach based on
taking noise properties into account.

Moreover, it is demonstrated that prediction of some visual quality metrics is
also possible. It is also shown that 3D compression of images collected into groups
provides considerably better results. However, additional studies are needed to
predict distortion parameters in this case. Examples for real-life data as
hyperspectral image are presented.
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