
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1

Chapter

Automatic Mapping of Student
3D Profiles in Software Metrics
for Temporal Analysis of
Programming Learning and
Scoring Rubrics
Márcia Gonçalves de Oliveira, Ádler Oliveira Silva Neves
and Mônica Ferreira Silva Lopes

Abstract

The purpose of this chapter is to present an online system for a 3D representa-
tion of programming students’ profiles on software metrics that quantify effort and
quality of programming from the analysis of source codes. In this representation,
each student profile is a three-dimensional vector represented by a set of program-
ming solutions developed by a student and mapped on 348 metrics of software
during a programming course. Applying this profile representation, we developed a
system with the following functionalities: generation of student’s timelines to verify
the evolution of metrics in a sequence of programming solutions over a course, dif-
ferent visualizations of these variables, automatic selection of representative codes
for composition of rubrics with less effort of evaluation and selection of metrics
that more influence in scores attributed by teachers. The advantages of this system
are to enable the analysis of where the learning difficulties begin, the monitoring of
how a class evolves along a course and the dynamic composition of rubric represen-
tations to inform assessment criteria. The system proposed therefore presents itself
as a relevant tool to assist teachers about decisions of an evaluative process, allowing
in fact to assist students from the beginning to the end of a course.

Keywords: learning analysis, programming, software metrics, learning profiles

1. Introduction

Analysis of programming learning for purposes of assisting and qualifying a
learning process from beginning to end represents an onerous task to programming
practice, since the practice of assisted programming spends time and effort in
activities, assessment, especially when there is the application of a lot of exercises
and there are many students in a class. Thus, applying learning analysis that makes
it possible to compare programming solutions developed by different students and
to verify how a student’s solution evolve over time represent a real challenge for the
evaluation of programming.

Enhanced Expert Systems

2

Although there are already several solutions for representing and comparing
programming students’ profiles [1, 2], there are few solutions for a temporal analy-
sis of the learning of these students during a programming course.

A more recent proposal to analyze programming learning aims to map source
codes into software metrics that quantify effort and quality of programming
[3]. Through these metrics, for each programming activity, it is possible to
compare student’s solutions under different variables to identify classes of solu-
tions, common learning difficulties, good practices of programming and even
plagiarism.

Although the proposal of [3] makes it possible to compare student profiles
of a class in each programming activity, it is laborious for a teacher through this
instrument to verify how these evaluation metrics evolve over time, that is, to each
activity of a course, for each student. This type of monitoring allows the program-
ming teacher to identify in which students develop better in their learning processes
and where students begin to present learning difficulties.

In order to meet this need by offering programming teachers an instrument to
monitor the learning process of their students, this chapter extends the proposal of
[3] generating 3D views of student profiles mapped into selected software metrics.
These metrics characterize each student’s efficiency, style, and programming effort
with each programming solution they develop over a course.

In addition to the 3D representation to analyze learning, this system selects
dynamically programming solution samples for a teacher to score until finding
a representative set of rubric representations to inform evaluation criteria. This
functionality may contribute later to generate a representative set of programs to
train automatic assessment system of programming exercises.

Another feature of this system that is still in the testing phase is the prediction of
students’ performances in an activity based on their history of solving activities or
the solutions of that same activity developed by other students.

The main contribution of this chapter is, therefore, offering a tool to support
evaluation, decision-making in the field of programming, enabling teachers
to analyze and monitor their students’ learning for each programming activ-
ity under a wide range of variables, anticipating a predictable future of poor
performance.

In order to present the fundamentals and the functionalities of the proposed
system, this chapter is organized in the following order. Section 2 presents the
related work. Section 3 describes the system architecture with 3D representations
of profiles and the selection of rubric representations. Section 4 highlights reports
of application of our system in a programming distance course. Section 5 concludes
this work highlighting the main results, future work and final considerations.

2. Static analysis of programming

Static analysis is an automatic assessment approach to programming learning
based on analysis of code. Through static analysis, it is possible to analyze effort,
complexity, efficiency and quality of programming [4–6].

The main advantages of static analysis are lower cost, less reliance on the
teacher’s reference solution and the possibility of offering an evaluation closer
to human evolution, although many programming teachers have prioritize the
dynamic analysis, which is an analysis based on the correct and efficient execution
of programs. Static analysis can therefore be used in the analysis of programming
codes for the following purposes:

3

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

• Effort measurement and coding complexity [4]

• Prediction of performance [7, 8]

• Programming style analysis [5, 9]

• Evaluation by software metrics [3, 10]

• Recognition of signs of plagiarism [3]

• Recognition of rubrics [11]

• Recommendation of activities [1]

• Programming proficiency analysis [12]

• Analysis of learning difficulties and good programming practices [3].

Among the technological solutions of programming learning analysis based on
static analysis already proposed, we highlight: the metrics of Halstead and McCabe
[4, 5, 13], the evaluation of programming skills by software metrics [10], the rec-
ommendation system of activities according to learning difficulties [1], the analysis
of difficulties by software metrics [3], the evaluation of how programming students
learn from the analysis of their programming codes [14] and the programming
proficiency analysis of SCALE system [12].

2.1 The evolution of static analysis strategies of programming

The main static analysis strategies of programming developed from the 1960s to the
present day were based on software evaluation metrics that evolved from the purposes
of measuring codes and software quality for educational purposes of diagnosing learn-
ing difficulties and evaluating difficulties, skills and even programming skills.

In the 1970s and 1980s, the software metrics were used to analyze programming
codes for the purposes of estimating effort, complexity and programming style.
Thus, some developed strategies were associated the programming process with the
psychological complexity to evaluate performance in programming without neces-
sarily having the concern to help those who had more difficulties [4, 9].

During the 90s until the year 2010, strategies of static analysis based on metrics for
learning analysis, but in times when the Intelligent Tutoring Systems (ITS) were high, it
was sought to represent the model or profile of a student, focusing more on his learning.

In more recent research on programming learning analysis, in addition to having
a concern to better understand the students’ learning profiles, there have been
attempts to remedy learning difficulties [3]. Other trends in programming learning
analysis are proficiency assessment [12], prediction of performances [15] and the
classification of profiles by learning levels [2].

2.2 Related works

The main related works to our proposal are the assessment system based on the
software metrics of [3], the instruments of visualization of programming students’
profiles of [16], the recognition strategy of profiles by source code analysis metrics
of [2], the selection model of features of [17], the system of recognition of rubrics

Enhanced Expert Systems

4

with dimensionality reduction of [11] and the study of [18] involving the discovery
of longitudinal patterns.

PCodigo II is an online system of automatic mapping of students’ profiles in
software metrics to analyze programming learning [3]. In addition to profiling
mapping in 348 software metrics, PCodigo II has massive execution, similar profile
graphing, information visualization, and plagiarism analysis capabilities.

The first applications of PCodigo II of [3] in real programming exercises demon-
strate the effectiveness of this system for the diagnostic assessment of programming
learning. Thus applying PCodigo II in real programming exercises it was shown
that teachers, taking into account what the metrics say, can recognize the learning
difficulties, good programming practices and classes of learning profiles of a whole
class in a fast, detailed and holistic way.

The chapter of [16] presents some information visualization instruments in
a multidimensional perspective to help teachers in the analysis of programming
learning with mapping of profiles on software metrics. Through generated visual-
izations, we can analyze and compare profiles under different variables to recognize
learning difficulties and classes of solutions from similar characteristics.

The strategy of profile recognition by static analysis of codes based on metrics of
[2] aims to infer profiles of programmers from analysis of their Java code, classify
them according to skills and continually evaluate their progress in the practice of
programming in a course. The detected profiles are a novice, advanced beginner,
proficient and expert.

Some metrics used in this strategy are a number of sentences, conditional con-
trol and repetition structures, types of data, classes, operators, lines of code, and
other code. The advantage of this strategy in relation to our system is to classify and
qualify students. However, we automatically select the most appropriate metrics to
evaluate each type of programming solution.

For an automatic selection of evaluation variables, we highlight the selection
model of the characteristics of [17], which combines clustering techniques and
algorithm to create a feature map by selecting relevant terms in the texts of the
groups of notes of the evaluation of a teacher. In our proposal, the relevant char-
acteristics, that is, the most important metrics for each programming solution, we
can visualize through heat maps comparing different solutions from five or more
software metrics.

Regarding the composition of rubrics, a strategy to highlight is the proposal of
[11], which is based on clustering and Principal Component Analysis techniques to
recognize, from solutions developed by students, examples of solutions that repre-
sent, in a rubric scheme, the scores attributed by a teacher. This work complements
these proposals by generating a ranking of samples of programming solutions for a
teacher to score until finding the best set of rubric representations with a diversity
of marks awarded.

According to [18], to understand how learning unfolds in the over time, it is
necessary to move to a new learning perspective in which the units of analysis are
separate but interrelated learning events.

Following this idea, the study of [18] investigates and validates longitudinal
patterns in online participation as a measure to differentiate student performances.

The proposal of the system of this work, based on the study of [18], seeks to
understand how programming learning unfolds and analyze longitudinal patterns.

In this way, following this proposal, in relation to the other Works Presented, we
advanced in the 3D representation of profiles of programming students, in the view
of characteristics represented by software metrics over time and the composition of
rubrics from a ranking of selected solutions automatically for a teacher to score.

5

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

3. 3D representation system of programming students’ profiles

The system of representation of profiles presented in this chapter is an evolu-
tion of PCodigo II, a software developed by which, by software metrics that quanti-
fies effort and quality of programming, recognizes possible learning difficulties,
good programming practices and until strong evidence of plagiarism among
programs [3].

Thus our system extends the students’ profiles representation of PCodigo II in a
temporal dimension, selects more relevant metrics and allows the automatic selec-
tion of representative examples from a set of source codes for composition of rubric
representation.

Figure 1 shows the system’s architecture proposed in a scheme of inputs, pro-
cessing and outputs come an integration of our system to the 1.0 and 3. x versions of
Moodle virtual learning environment.

According to Figure 1, for version 1.9 of Moodle, the system receives as input
a backup of Moodle’s Compacted Classroom (in .zip, .rar, .gz or .tgz formats). For
version 3. x of Moodle, the system is accessed through Teacher’s Credentials to access
a distance programming course of Moodle.

The course data imported from Moodle are as follows: student listing, activity
listing, activity notes and Submissions, that are files of programming exercises.
These data are then extracted by the Extracting and Preprocessing module and
Submissions containing source codes that were written in C, C++, Java or Python
languages are mapped to vectors whose dimensions are software metrics that quan-
tify effort and quality of programming [3]. The submitted C programs are mapped
on 348 software metrics and the Python programs, in 42 metrics.

Each vector representation on software metrics of a student’s programming solu-
tion we call Learning State. Then, after generating Learning States of a programming
class, the system gathers these representations in a Cognitive Matrix for analysis and
comparison of programs written by students [3].

In order to analyze solutions in a generic way, we have reduced each Learning
State to five metrics: Maintainability, Cyclomatic Complexity, Indentation, Laconism
and Modularization. They are described as follows:

• Maintainability represents the student’s ability to write durable and adaptable
code to new needs.

• Cyclomatic Complexity informs the complexity of a programming code that is
the number of paths of a method [Curtis et al. 1979].

• Indentation metric characterizes the instructions of a program within structures
and functions.

• Laconism expresses the capacity to express itself in a few words that in pro-
gramming is measured by the number of tokens per line of code.

• Modularization informs organizational capacity of the parts of a functional or
data module.

Then, bringing together the cognitive matrices for each programming solution
of a course, a 3D Representation of Learning Profiles of a programming class. The
same procedure is performed for a Reduced Matrix. This timeline formed by a set of
Learning States of a student over a course is called Learning Profile.

Enhanced Expert Systems

6

Learning Profile shows how a set of student’s assessment variables evolves
over a course. Thus, through the analysis of profiles of learning it is possible to
understand main learning difficulties of students and to reorient teaching with
formative assessment actions in order to anticipate the predictable future of poor
performances.

3.1 Selection of metrics

The Reduced Matrix generation process is performed by Selection of Metrics
module (see Figure 1) using the Recursive Feature Elimination (RFE) method of the
Scikit-Learn library [19] and a linear regression algorithm. The inputs of Selection
of Metrics are the grades of some programming solutions and the Cognitive Matrix
mapped on 348 software metrics generated by PCodigo II [3]. The Selection of Metrics
returns the metrics most related to the grading pattern through a metric ranking.

3.2 Timeline of programming solutions

The timeline consists of a vector representation of the five fundamental met-
rics or selected metrics most closely related to a teacher’s grade from each course
programming exercise. This representation contributes to the analysis of how the
evaluation metrics evolve for each student during a course and to generate a train-
ing set from to predict future exercise performance from history of exercises and
performances associated with them.

3.3 Clusters analysis and composition of rubrics

A hierarchical approach we have used s to form clusters of similar solutions. In
this way, a representative would be selected from each of these clusters to receive a
teacher’s grade and that grade would be reproduced for the other standards in the
same cluster.

Unlike PCodigo II [3], in which clustering is performed with a previously
defined number of clusters, a dendrogram based on centroid was generated, from
which can be extracted the amount of clusters required, which, in this work, was

Figure 1.
Architecture of the 3D representation system of students’ profiles.

7

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

placed as half of the samples from the algorithm BFS (Breadth-first search) tree,
where the depth is given by the distance noted on each edge, that is Euclidean
Distance.

According to Figure 1, for Composition of Rubrics with the purpose of assisting
teacher’s programming exercises, we have developed an automatic selection of
representative samples of codes and metrics more related to the marks assigned by a
teacher to this small set of representative codes.

In order to select this small set of representative codes, we have used a hierarchi-
cal representation of clusters by Selection Dendrogram with Euclidean Distance
similarity measure. In Selection Dendrogram, the first samples marked yellow are the
samples selected from Correction Ranking, that is a list automatically generated to
indicate the best correction sequence of programming exercises so that the teacher
can score a smaller set of samples of programs that represents the diversity of marks.

Through this representation, a search in depth not aware of plagiarism is per-
formed starting with the more atypical samples and accumulating distances (from
root to node) which are expressed at each node of the dendrogram. Then, after the
selected samples are scored by a teacher and the metrics that most impact the grades
assigned by him are verified to analyze possible correction inconsistencies.

3.4 Prediction of performance

In order to begin the performance prediction experiments, we have chosen two
prediction methods: based on cluster analysis and based on previous performance
histories.

In prediction based on cluster analysis, we used the selection ranking that selects
representative samples of the Dendrogram Selection subgraphs to form a training
set of the prediction model based on linear regression with 50% examples of a set
of punctuated programming solutions by a teacher. The other 50% are predicted
automatically by prediction model with reference based on diversity of the scores
assigned by a teacher to the training set examples.

In the prediction of performances based on a history of previous performances,
through a time series generated from the 3D representation (students × activities ×
metrics), a regressor model of each metric is trained and a regressor of metrics for
grades, then the metrics of the next exercise are predicted as well as your grade. In
this case, the training set is represented by the solutions solved by the same student
along the course and the note to be predicted is the next solution to the history
samples of that set.

4. Experiments and results

The first experiments of the system functionalities proposed in this chapter
were in a Moodle’s classroom of a distance course of C Programming Language in
Brazil. Through the access credentials of a programming teacher, we obtained a
zipped copy of the classroom from this course to the processing of learning analysis
from students’ codes. Next, all C programming code files were extracted along the
programming distance course by about 25 programming students.

After the generation of 3D representations of learning profiles (Activities ×
Students × Metrics), gathering 10 activities, 25 students and 348 metrics of software,
we use this information to generate the following results and views:

• For each activity, the list of metrics that were considered the most relevant to
assign marks.

Enhanced Expert Systems

8

• For a class as a whole, a list of selected metrics from 348 metrics, that were
considered the most relevant to assign marks.

• Dendrogram automatically generated on all the metrics that make up the
student profile.

• Dendrogram automatically generated on all the metrics that make up the
student profile, after normalization to values between 0 and 1.

• A heat map for each activity with selected metrics that best represent each
activity.

• A heat map for each activity with the metrics that best represent the marking
criterion for the class as a whole.

• A heat map for each student (historical in time) with the metrics that best
represent the correction criterion for the class as a whole.

• A heat map for each activity with five metrics representing skills and difficul-
ties programming.

• A heat map for each student (historical in time) with five metrics representing
the students’ programming skills and difficulties.

• Prediction of student grades, where grades are assigned to submissions that are
similar to each other.

One of the activities we use for this experiment was applied in a C programming
distance course and contains the following statement:

Write a program to get the number of P points of three teams in a football champion-
ship, according to the following mathematical expression:

 𝘗 = 5𝘎𝘗 − 𝘎𝘕 + 3𝘝𝘍 + 2𝘝𝘊 + 𝘌

In this formula, GP is the number of positive goals, GN is the number of goals taken,
VF is the number of wins away from home, VC is the number of victories at home and E
is the number of draws. The output of this program must show, according to the number
of points obtained by a team, the champion and the runner-up of a championship.

We chose this activity for learning analysis because the use of logical expressions
and conditional and repetitive control structures allows us to differentiate the solutions
in order to recognize which solutions show difficulties to construct logical expres-
sions in control structures. In this way, a good solution of this activity will present few
comparisons and a few lines of programming code. On the other hand, a solution with
several comparisons, instructions and control structures built into the arrangement
evidences programming effort and difficulties to construct logical sentences.

In Figure 2, using this activity as an example of results 1 and 2, and views 5, 6, we
highlight two modes of analysis of programming solutions of our system for a program-
ming activity: first, from software metrics Maintainability, Cyclomatic Complexity,
Indentation, Laconism and Modularization and from metrics that were considered the
most relevant for the attribution of marks, that is, the Reduced Matrix metrics.

9

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

In graphs of Figure 2, the columns indicate students’ solutions and columns,
metrics. In each column, the white color (scale 1) indicates the highest value and
the black color (scale 0), the smallest value of a metric. The interpretation of
whether the higher value is better depends on the level of information of each
code. However, the teacher can perform this interpretation comparing value of the
best solutions and the worst solution. In this way, it would have an instrument to

Figure 2.
Analysis of solutions by software metrics.

Enhanced Expert Systems

10

evaluate which indicators characterize good programming solutions and those that
express the most difficulties.

According to Figure 2, in the first graph, high value of Complexity, low value
of Indentation and high value of Laconism differentiate al_00017 solution, that is
indicated by the red arrow in Figure 2, from too much and stand out as a poor
solution. In the second graph, however, according to the assessment criteria based
on three metrics related to a teacher’s mark, this solution follows the pattern of the
others and is therefore not indicated as a bad solution.

In Figure 3, where there is an example of view 9, we highlight how the five
major metrics evolve each exercise for a same student over a course. It is observed
that this student, indicated in the first line of the graph by a green arrow, has a
predominance of the black color in his programming solution, indicating low
values, and meaning good performances in the easiest exercises. On the other
hand, in the last exercise by a red arrow he did, the colors appear lighter, indicat-
ing more complex activities and more difficulties. That more evident when, from
this exercise that has higher Complexity value, the student stopped delivering the
activities of programming, as it is noticed in the black color indicating a lack of
performance in the following activities. We see in this visualization the potential
of the tool to enable a teacher to recognize where a student began to demonstrate
difficulties.

The graph of Figure 4 is the ranking view for a teacher to assign marks to activi-
ties with the least effort of correcting. This graph is a dendrogram that presents
the hierarchy of developed solutions for a programming activity represented by
software metrics normalized to values between 0 and 1. Distances are marked in
gray and pink.

The graph of Figure 5 is a ranking view for a teacher to assign marks to activi-
ties with the least effort of correcting. This graph is a dendrogram that presents the
hierarchy of developed solutions for a programming activity. Distances are marked
in gray and pink, and the selected samples are marked in yellow.

According to Figure 5, first selecting the samples of greater dissimilarity, the
teacher punctuates the most different ones and then some of the more similar ones.

As this teacher follows the ranking of samples suggested by the system, he
himself can identify how far he can correct to obtain a minimum set of representa-
tion of the diversity of the solutions developed for composition of rubrics and, in
the future, for to train automatic assessment exercises of programming exercises
with a set of examples of teachers’ marks. In this case, we consider 50% for training
and 50% for testing of the prediction model.

Figure 6 presents our first prediction results performed at a distance learning
C programming. In this graph, we present performance results of all the program-
ming solutions developed by a student (al_00009) throughout a programming
course. In the presentation of these results, for each submitted programming
solution, we compared the grade given by a teacher with the grades predicted by our
system from a history of activities previously solved by that same student and from
solutions of other students of class in that same activity based on nearest neighbor
methods. This process of performance analysis is performed for all students of the
distance learning course through our system.

According to the graph of Figure 6, it is observed that the prediction of a
student’s performance in an activity based on a history of exercises solved by that
student and in the solutions of that exercise developed by other students still
present themselves divergent from the assigned marks by a teacher, although in
higher performances these approaches approximate the evaluation of a teacher.

11

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

In addition, the predictive results of these approaches approximate as the history of
solved exercises used increases. Thus, we present good expectations to advance in
the studies of these methods to predict the performance of programming students.

In conclusion, with some examples of the results generated by the system of
this chapter, we shown the potential of this tool for programming teachers to
accompany the process of learning their students from the beginning to the end of
a course from a broad or reduced set of metrics and with less teachers’ evaluation
effort.

Figure 3.
Evolution of metrics for each activity.

Enhanced Expert Systems

12

Figure 6.
Timeline with prediction of performance in programming.

Figure 4.
Dendrogram of solutions of a programming activity represented on normalized software metrics (without
grades).

Figure 5.
Dendrogram of solutions of a programming activity selected from a correction ranking (with grades).

13

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

Author details

Márcia Gonçalves de Oliveira*, Ádler Oliveira Silva Neves
and Mônica Ferreira Silva Lopes
Federal Institute of Espírito Santo, Vitória, Espírito Santo, Brazil

*Address all correspondence to: marcia.oliveira@ifes.edu.br

5. Conclusion

The system proposed in this chapter was presented as a relevant tool to assist
teachers in their evaluation decisions, enabling them to assist the learning process
of their students in each programming exercise.

For this, our system can recognize where the learning difficulties begin, moni-
tor how students evolve along a course, generate rubric representation and, soon,
predict future performances of programming students.

These possibilities of learning analysis contribute a lot to reducing teachers’
efforts in the onerous task of evaluating programming exercises so that they can
better track the learning process of students and reorient their formative actions.

Some future works from this research are using samples indicated for manual
correction as training references of a semi-automatic programming evaluation
system and improving our strategy to predict performances in activities from the
timeline of solved programming exercises or from students’ solutions that solved
exercises similar to the one we intend to predict a grade.

Through this work we offer, therefore, a multidimensional and the clinical
analysis tool to help teachers in their formative assessment actions and students to
be better assisted in their difficulties and skills in the practice of programming.

14

Enhanced Expert Systems

[1] De Oliveira MG, Marques Ciarelli
P, Oliveira E. Recommendation of
programming activities by multi-label
classification for a formative assessment
of students. Expert Systems With
Applications. 2013;40(16):6641-6651

[2] Ferreira Novais D, Varanda Pereira
MJ, Rangel Henriques P. Profile
detection through source code
static analysis. Drops-Idn/6014.
2016;51(9):1-9

[3] Neves A, Reblin L, França H, Lopes
M, Oliveira M, Oliveira E. Mapeamento
Automático de Perfis de Estudantes
em Métricas de Software para Análise
de Aprendizagem de Programação. In
Brazilian Symposium on Computers
in Education (Simpósio Brasileiro
de Informática na Educação-SBIE).
2017;28(1):1337

[4] Curtis B, Sheppard SB, Milliman
P, Borst MA, Love T. Measuring
the psychological complexity of
software maintenance tasks with the
Halstead and McCabe metrics. IEEE
Transactions on Software Engineering.
1979;5(2):96-104

[5] Berry RE, Meekings BAE. A
style analysis of C programs.
Communications of the ACM.
1985;28:80-88

[6] Khirulnuzam AR, Ahmad S,
Nordin J. The Design of an Automated
C Programming Assessment Using
Pseudo-code Comparison Technique.
National Conference on Software
Engineering and Computer Systems.
2007;1-10

[7] Xu S, Chee YS. Transformation-
based diagnosis of student programs for
programming tutoring systems. IEEE
Transactions on Software Engineering.
2003;29:360-384

[8] Naude KA, Greyling JH, Vogts
D. Marking student programs using
graph similarity. Computers in
Education. 2010;54(2):545-561

[9] Rees MJ. Automatic assessment aids
for Pascal programs. SIGPLAN Notices.
1982;17(10):33-42

[10] Hung S, Kwok L, Chung A. New
metrics for automated programming
assessment. In: Proceedings of the IFIP
WG34/SEARCC (SRIG on Education
and Training) Working Conference
on Software Engineering Education.
Amsterdam, The Netherlands:
North-Holland Publishing Co.; 1993.
pp. 233-243

[11] de Oliveira MG, Reblin LL, de
Souza MB, Oliveira E. Automatic
recognition of rubric representations
in programming exercises clusters.
Brazilian Journal of Computers in
Education. 2018;26(02):60

[12] Kumar V, Boulanger D, Seanosky
J, Panneerselvam K, Somasundaram
TS, et al. Competence analytics.
Journal of Computers in Education.
2014;1(4):251-270

[13] Halstead MH. Elements of
Software Science (Operating and
Programming Systems Series).
New York, NY, USA: Elsevier Science
Inc.; 1977

[14] Blikstein P, Worsley M, Piech C,
Sahami M, Cooper S, Koller D.
Programming pluralism: Using learning
analytics to detect patterns in the
learning of computer programming.
The Journal of the Learning Sciences.
2014;23(4):561-599

[15] Oliveira MG, Monroy NAJ,
Zandonade E, Oliveira E. Análise de
componentes latentes da aprendizagem

References

15

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

de programaçao para mapeamento
e classificaçao de perfis. In Brazilian
Symposium on Computers in Education
(Simpósio Brasileiro de Informática na
Educação-SBIE). 2014;25(1):134-143

[16] Oliveira M, França H, Neves A,
Lopes M, Silva AC. Instrumentos
de Visualização da Informação para
Avaliação Diagnóstica em Curso de
Programação a Distância. In: Anais do
Workshop de Informática na Escola.
October 2017;23(1):452

[17] Spalenza M, Oliveira E, Oliveira
M, Nogueira M. Uso de Mapa de
Características na Avaliação de Textos
Curtos nos Ambientes Virtuais de
Aprendizagem. In: Brazilian Symposium
on Computers in Education (Simpósio
Brasileiro de Informática na Educação-
SBIE). 2016. p. 1165. Available from:
http://www.br-ie.org/pub/index.php/
sbie/article/view/6802

[18] Tang H, Xing W, Pei B. Time
really matters: Understanding the
temporal dimension of online learning
using educational data mining.
Journal of Educational Computing
Research:0735633118784705. Available
from: https://journals.sagepub.com/
doi/pdf/10.1177/0735633118784705?c
asa_token=gYB8xtamE-AAAAAA:byyb
5nlAyEnPrkI8u7gAtJNjn5Il4hysSOTAmS
GBB1DLTCkjPJ3kqYm8Qy7iFTo3AHSfa
59mDuAK5Q

[19] Pedregosa F, Varoquaux G,
Gramfort A, Michel V, Thirion B, Grisel
O, et al. Scikit-learn: Machine learning
in python. Journal of Machine Learning
Research. 2011;12:2825-2830. Available
from: http://dl.acm.org/citation.
cfm?id=2078195%5Cnhttp://arxiv.org/
abs/1201.0490

