
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

1

Chapter

Evaluating a Course for Teaching
Advanced Programming Concepts
with Scratch to Preservice
Kindergarten Teachers: A Case
Study in Greece
Stamatios Papadakis and Michail Kalogiannakis

Abstract

Coding is a new literacy for the twenty-first century, and as a literacy, coding
enables new ways of thinking and new ways of communicating and expressing
ideas, as well as new ways of civic participation. A growing number of coun-
tries, in Europe and beyond, have established clear policies and frameworks for
introducing computational thinking (CT) and computer programming to young
children. In this chapter, we discuss a game-based approach to coding education
for preservice kindergarten teachers using Scratch. The aim of using Scratch was to
excite students’ interest and familiarize them with the basics of programming in an
open-ended, project-based, and personally meaningful environment for a semester
course in the Department of Preschool Education in the University of Crete. For
13 weeks, students were introduced to the main Scratch concepts and, afterward,
were asked to prepare their projects. For the projects, they were required to design
their own interactive stories to teach certain concepts about mathematics or physi-
cal science to preschool-age students. The results we obtained were more satisfac-
tory than expected and, in some regards, encouraging if one considers the fact that
the research participants had no prior experiences with computational thinking.

Keywords: Scratch, preservice kindergarten teachers, programming, computational
thinking

1. Introduction

According to the twenty-first century skills framework, digital literacy is an
important skill for students to develop so as the ability to encode and understand
code is becoming more and more a fundamental skill to master to participate actively
to our digital society and economy [14]. National and European policies acknowl-
edge the need to equip all citizens with the necessary competences to use digital
technologies critically and creatively [28, 38]. As Wing [47] states “to reading, writ-
ing, and arithmetic, we should add computational thinking to every child’s analytical
ability” (p. 33). Hence, its integration throughout all educational levels, as well as
the early ages, is considered valuable. Evidence shows that even children as young

Early Childhood Education

2

as 4 years old can engage in core computational thinking skills, provided they work
with a developmentally appropriate tool that supports such learning [21, 34, 42].

Yet, the introduction of computational thinking (CT) in compulsory education
requires support measures to prepare teachers [9]. Teachers themselves often have no
formal education in computing and cannot communicate to their students’ enthusi-
asm or understanding about what happens inside a computer to make it work [46].
Many primary teachers are unlikely to have the appropriate skill set to teach this new
technical subject [6, 22]. Ref. [5] highlights that one of the obstacles to incorporating
CT activities into the early childhood classroom is that early childhood educators have
had little or no experience with technology concepts and processes. If teachers are to
help young children learn CT concepts as well as STEM subjects (science, technology,
engineering, and mathematics), their professional development ought to help them
to explore content and teaching methods [11, 29]. This is considered important as
children’s experiences of science even at primary school inform their decisions about
studying science, which impacts on the supply of STEM professionals [24].

Therefore, there is a need for widespread professional development to support
in-service and preservice teachers in gaining the necessary experience, technical
skills, confidence, and understanding of suitable pedagogies to implement this
new curriculum successfully [6]. For these reasons, CT and programming is taught
in many parts of tertiary education that are not necessarily directly relevant to or
focused on information technology or STEM. These faculties include pedagogical
departments in which students have a first familiarity with CT and programming
either for their direct educational use or to be able to produce interactive and
multimedia learning materials [16]. Many researchers have already used Scratch at
the university in introductory programming courses, and their experiences report
on students’ high motivation and sometimes also on higher performance [25].

The rest of the paper is structured as follows: in the next section, the advantages
of choosing Scratch as an introductory programming environment are outlined;
the second section presents the methodology of the Scratch course employed in this
article; and the third section documents the results. The final section discusses the
results obtained, outlining the limitations and recommendations for future research.

2. The advantages of visual programming: Scratch

The inclusion of programming topics in the initial grades of school gives rise to
debates about the best ways to teach these contents [17, 30, 32]. In recent years, new
programming languages have been designed to be visually programmed without the
need to learn the syntax, as it is the case with traditional languages [26].

Visual block-based programming environments are increasingly being used
in introductory computer science lessons across elementary school grades. These
environments, and the curricula that accompany them, are designed to be devel-
opmentally appropriate and engaging for younger learners [45]. Within these rich
environments, the experience of coding can become playful and creative. They offer
many opportunities for learning and personal growth, exploration, and mastery of
new skills and ways of thinking [8]. Block programming eliminates the frustrations
of syntax errors which afflict novice learning traditional computer programming
languages [35]. Visual programming involves dragging and dropping instruction
blocks together to form a program in a graphical development environment. The
advantages of visual programming are [12]:

• Students do not need to learn syntax and cannot create syntax errors.

3

Evaluating a Course for Teaching Advanced Programming Concepts with Scratch to Preservice…
DOI: http://dx.doi.org/10.5772/intechopen.81714

• Students can see what blocks (instructions) are available.

• Blocks often hide complex logic or operations in a single block.

The puzzle-like interface of these environments [10, 15, 33] allows novices
to avoid syntax issues (e.g., semicolon use) and thus, allows them to focus on
fundamental programmatic constructs (e.g., conditions, loops, variables). There
is no typing error or misremembering of the syntax involved in the “bugs.” The
only possibility for an undesired outcome is the semantic error [43]. Since nov-
ices are not bullied by the compiler as they do not have to write codes following
rigid syntactical rules, the programming is more meaningful and playful within
Scratch [46]. This is a great relief for introductory programming and saves the
learner much of the heartache traditionally forced on them by textual languages
[46]. Given the large amount of software available and children-friendly pro-
gramming environments such as Alice, Scratch, Greenfoot, and Kodu, teaching
coding has become a more intuitive and engaging experience for young students
[37] (see Image 1). In these graphical block-based programming environments, a
novice programmer creates interactive applications by snapping together graphi-
cal pieces on the screen, like putting together a jigsaw puzzle. In addition, these
environments are usually “low floor” and “high ceiling” and allow children to
create their own complex computer programs, rich in sound and graphics [19].

On 15 May 2007, a revolutionary programming tool inspired by Logo (con-
structivist learning) was made available to the public. Scratch (https://scratch.
mit.edu) is a free visual-based programming language environment especially
developed for children and novices by the Lifelong Kindergarten Group of the MIT
Media Lab. Like other visual block-based programming environments, Scratch
presents a user-friendly visual language that encourages active methods, with a
project-based learning and a role focused on student activity (see Image 2). Those

Image 1.
Key features of visual block-based programming environment (Adapted from [45]).

Early Childhood Education

4

characteristics consist Scratch as one of the most popular tools used for introducing
students to programming or better to CT (Evangelopoulou & Xinogalos, 2018).
Scratch is designed to support children and novice learning through the process of
experimenting and tinkering as it encourages learners to engage in creative learn-
ing experiences and express their ideas using code [44] enabling them to think
creatively, reason systematically, and work collaboratively; all of which are essential
skills required for the twenty-first century [20, 36].

Scratch can be used to program interactive stories, games, animations, music,
and art [27, 31]. Those creations are called projects. A project is made up of sprites,
which contain scripts, and they act on a stage [39]. The environment offers an
online and an offline editor and an online community with millions of users sharing
and remixing projects (Evangelopoulou & Xinogalos, 2018; [10]).

As Scratch has been developed with the aim of being very easy to use by anyone,
regardless of age, background, or interests, it is being used by young people in
schools, homes, and other learning environments around the world [44]. Only
in August 2018, the Scratch website had almost 19 million visits with 115 million
pageviews and 9 million unique followers! Also, Scratch is used at all levels of edu-
cation across diverse fields, such as computer science, math, language, arts, social
studies, and interdisciplinary projects (Evangelopoulou & Xinogalos, 2018; [10]).
Even though it is claimed that Scratch appeals more to younger audiences [41], some
universities (like Harvard, Berkley, and the University of California) have used
Scratch as an introduction to programming [25, 43].

The next stage in the Scratch story is version 3.0. The beta version was released
at https://beta.scratch.mit.edu/ on the first of August, and the official version will
be available on January 2, 2019 [40] (see Image 3). Scratch 3.0 is written in HTML5.
This means that with Scratch 3.0, the programmers will be able to play Scratch
projects on their phone, create Scratch projects on their tablet, and control Scratch
projects with their voice. There is also a version for kids for smart mobile devices,
called ScratchJr (Scratch Junior) [10, 21, 22, 34, 42].

Image 2.
Scratch 2 layout.

5

Evaluating a Course for Teaching Advanced Programming Concepts with Scratch to Preservice…
DOI: http://dx.doi.org/10.5772/intechopen.81714

3. Description of the course

3.1 The choice of the programming language

Novice programmers who are not interested in traditional approaches to coding
become motivated when coding activities are introduced as a way to tell a story, or
in connection with other disciplines and interest areas, such as music and art [44].
One of the main issues in the realization of the workshop was the choice of the
programming language and how much time to allocate to the programming part
[1]. As it is desirable that the preservice teachers be exposed to CT, and to its related
concepts so as to be able to apply them effectively in the classroom and in learning
activities, we decided to adopt Scratch as the introductory programming language
environment at the Department of Preschool Education in the University of Crete.
The reasons behind conception and design of this project are: we supposed that
preservice teachers had different programming backgrounds and/or experience,
and we felt that using Scratch as an introduction could be motivating, as it provides
novices in programming with a meaningful and playful learning environment to
create interactive games, animated stories, and simulations.

3.2 Objectives of the course

Technology and digital tools have become ubiquitous, but they can be ineffec-
tive or distracting if they are not integrated into the learning process in meaningful
ways [5]. This paper presents an innovative approach that is guided by the con-
structionist philosophy developed by Seymour Papert. In constructionist learning
environments, new knowledge is built through the programs created by learners
[45]. In those environments not only can novice programmers design, build, and
program their own interactive artifacts while having fun, but they can also learn
how to work in groups and develop socioemotional skills [7]. In the process, they
encounter powerful ideas from the realms of math, science, technology, and
engineering [7].

Image 3.
Scratch 3.0 layout.

Early Childhood Education

6

The course was developed to help preservice teachers introduce CS as a new
subject to their students. It was also developed to demonstrate that even without a
background or training in this subject, preservice kindergarten teachers have the
ability to learn fundamental CS theory and concepts. It was focused on CS educa-
tion in the context of developing higher-order thinking and problem-solving skills.
We also wanted to encourage students to become innovative and think critically
about how technology impacts their daily teaching techniques (see Image 4).

3.3 Course elements

Taking into account studies found in the literature [10, 43, 44], the course com-
bines a little theoretical training with a strong practical component, encouraging
the active participation of the trainee. Thus, the course elements are (see Image 5):

• Element 1. Scratch and applications built in Scratch. This element is divided
into three parts:

 ○ The first one is about fundamentals and principles of CT.

 ○ The second part is about the Scratch environment, basic commands, control
structures, and some advanced commands.

 ○ The third part is about the construction of projects in the form of anima-
tions, interactive stories, and educational games in Scratch. The Creative
Computing Curriculum Guide (http://scratched.gse.harvard.edu/guide/)
and the Scratch cards (https://scratch.mit.edu/info/cards/), a set of 12 cards
which are available to download free from the Scratch website, were used as
learning material, in order to help the students’ teams to explore the features
of Scratch on their own learning rhythm.

Image 4.
The trajectory of the course approach.

7

Evaluating a Course for Teaching Advanced Programming Concepts with Scratch to Preservice…
DOI: http://dx.doi.org/10.5772/intechopen.81714

• Element 2. This element consists of building applications in the Scratch
environment.

 ○ The students firstly were required to make their own version of the popular
Angry Birds game. The idea was based on a similar project in the book
entitled Raspberry Pi Projects for Kids [3]. In this game the player launches a
bird through the air using a slingshot and attempts to hit all of the pigs at the
other end of the level. This was a complex programming activity. In terms of
the computational thinking framework, it involves the computational con-
cepts of operators such as variables, control structures, keyboard-handling
blocks, etc. The students had also to handle physics issues such as flight,
gravity, and bouncing. For that reason, supplementary learning materials
such as worksheets and group activity instructions were given to them.
Furthermore, the educator advised the students how to manage the process
of game development, working collaboratively, etc. Also, the educator
offered his guidance to the students, helping them to complete their games
and introducing even more complex CS concepts when needed.

 ○ Secondly, they were asked to create either an interactive story (based on an
Aesop myth) or an educational game (trying to teach Greek language learn-
ing, math, or science). At the end of the semester, the students presented
their projects. The program that each student created was also collected and
analyzed to understand the outcomes of students’ computational practices
and their application of computational concepts.

3.4 Method

3.4.1 Participants

During the period between September 2017 and January 2018, 15 third-year
female preservice kindergarten education students enrolled in a science education
course entitled “Science education in early childhood” at a Greek university for

Image 5.
Course description.

Early Childhood Education

8

13 weeks. The lessons were 3 hours per week. The course was offered as optional,
and the students took part in the study after ethics approvals were received and all
participants signed consent forms. All research participants had basic computer
skills, but they had no previous experience with neither computational thinking nor
the use of Scratch or any other programming environment.

3.4.2 Evaluation

In order to evaluate the course, we examined both cognitive (how effectively
they learned) and affective (how enjoyable the experience was, and how motivated
by it the students were) factors. Thus, in this study we collected both quantitative
and qualitative data:

• The quantitative part was conducted in pretest/posttest quasi-experimental
design. Moreover, to understand the learning of programming topics, we
evaluated students’ projects in terms of students’ use of the elements of
Scratch language as well as the project functionality and appearance. For that
reason, students’ project(s) were examined by using the Dr. Scratch tool.

• The qualitative approach used a short questionnaire and semi-structured
interviews. Data were recorded through field notes, made by the researchers.
This approach aimed at evaluating essentially three points:

 ○ The conception about the potential of Scratch and CT activities as a learning
support tool

 ○ The intention to introduce a CT curriculum

 ○ The level of satisfaction about the course

The respondents were asked to answer both to closed questions (yes/not) and
open questions (“Do you think that Scratch and coding activities can be a useful
support learning tool? Why?,” “Do you think about introducing some coding activi-
ties in your lessons? Why?”).

4. Results

In this section we present and analyze the course results in terms of students’
performance and satisfaction.

4.1 Performance analyses

Dr. Scratch is an online tool (http://drscratch.org/) that assesses Scratch projects
with respect to seven “dimensions,” namely, logical thinking (LT), data-information
representation (IR), user interactivity (IN), flow control (FC), abstraction (AB) and
problem decomposition, parallelism (PA), and synchronization (SN). A project can
be graded (from 0 to 3) for each dimension in one of the levels, depending on the level
of sophistication achieved by the project code [25, 26]. Thus, a total evaluation ranges
from 0 to 21 (7 dimensions multiplied by [0–3]). We analyzed 15 different projects. The
projects gathered were scored with values ranging between 10 and 20 (see Table 1).

Similar to other studies [27], this study revealed challenges with respect to
the use of concepts, such as the parallelism and synchronization. Also, very few
applications made use of random numbers and logical expressions. On the contrary,

9

Evaluating a Course for Teaching Advanced Programming Concepts with Scratch to Preservice…
DOI: http://dx.doi.org/10.5772/intechopen.81714

the frequently used coding concepts such as flow control and user interactivity
reveal that the students in their projects make an adequate use of specific conditions
and foresee users’ interaction. Except the fact that Dr. Scratch provides feedback
on several aspects which are related to computational thinking, the software
categorizes the project developer skills in three different categories/levels: Basic,
Developing, and Master. The 15% of the developed apps were “Basic,” and 85%
were “Developing.” There were no projects on the “Master” level. Image 6 shows
an example of how Dr. Scratch categorizes developer skills. The screenshots of
the graphical user interface, code parts, and Dr. Scratch scores of five randomly
selected projects are displayed in the Appendix.

4.2 Students’ self-efficacy analyses

To evaluate students’ self-efficacy in utilizing programming and computa-
tional thinking within their future teaching endeavors, we adapted the Teachers’
Self-Efficacy in Computational Thinking (TSECT) [4]. We used the first seven of
the nine TSECT items (see Table 2). All items use a five-point Likert scale with
options of strongly agree, agree, neither agree nor disagree, disagree, and strongly
disagree. TSECT was given as a pre- and posttest before and after the intervention.
Questionnaire analysis was performed with SPSS 23.

Statistical measure Dimension of computational thinking

PA LT FC IN IR AB SN

Mean 1.88 1.54 2.16 1.81 1.68 0.72 1.84

Std. dev. 0.38 0.29 0.41 0.32 0.29 0.22 0.41

Minimum 0 0 1 1 1 1 1

Maximum 3 3 3 3 3 2 3

Table 1.
Project score given by Dr. Scratch.

Image 6.
Example of Dr. Scratch project evaluation.

Early Childhood Education

10

A t-test of the pre and post-survey TSECT scale revealed a statistically significant
increase in TSECT from pre (M = 12.03, SD = 4.39) to post (M = 18.14, SD = 3.59),
t(14) = 3.98, p < .0001. From the students’ answers, we can conclude that after the
intervention, they feel themselves confident enough to create projects and they plan
to incorporate programming as an instructional tool in their future classrooms.

Furthermore, after completion of the course, the researchers conducted a focus
group interview with a structured interview form. All the students noted that the
added cognitive effort was worthwhile and decided to bring coding activities into
the early childhood classroom. The students noted that they experienced a signifi-
cant shift in mindset during the course. Before the course started, all students iden-
tified the lack of CT knowledge and skills as a major challenge. After the course, all
of them could successfully define key CT concepts. They expressed a high degree of
confidence that they taught the CT lessons effectively contributed to their learning.
Moreover, all students noted that they made major leaps in correcting their miscon-
ceptions about what CT is and understanding fundamental CT concepts. After the
focus group interview, the researchers noted that the majority of the students could
explain what CT is and describe the main concepts covered during the course. It is
also worth to mention that all students indicated that they would like to continue
CT training in the following academic year, if that was possible. They also men-
tioned that they would recommend the course to other students.

4.3 Limitations

In this chapter, we studied how a course helped preservice teachers to learn and
introduce CT concepts into their daily teaching practices as a new subject to their
students. The programming and teaching behaviors that emerged still need to be
validated through further studies. Furthermore, since the data was collected from
female students from one university department, the findings should be applied to
subjects from other disciplines with caution. Moreover, it may be useful to employ
a mixed method approach that incorporates long-term practical research methods
for a deeper investigation of factors affecting attitudes and intentions toward using
Scratch in respect to the students’ gender.

5. Discussion and conclusion

Discussions about the appropriateness of technology in early childhood
are mostly put aside, and the pressing question is not “Should we introduce

Item Wording

1 I feel confident writing simple programs in Scratch

2 I know how to teach programming concepts with Scratch

3 I can encourage a positive attitude toward programming to my students

4 I can become a mentor teacher and support my students to use programming as a tool to explore
other topics

5 I’m sure myself to use programming as an educational tool within a classroom

6 I can adapt methods, lesson plans, and curriculum materials for using programming as an
educational tool

7 I can create lessons plans using programming as an educational tool

Table 2.
Modified TSECT instrument items.

11

Evaluating a Course for Teaching Advanced Programming Concepts with Scratch to Preservice…
DOI: http://dx.doi.org/10.5772/intechopen.81714

computers?” but “How should we introduce them?” ([11] as cited in [7]). If cod-
ing is conceived as a skill that must begin to be taught early in life [8], and new
curricula worldwide in preschool and primary education is covering computa-
tional thinking, digital technologies and related areas are being introduced, many
preservice teachers are having to undergo professional development to be able to
deliver the new material [13]. There are a number of obstacles to bringing coding
into the classroom. Even putting obstacles such as the cost to training, teachers
have a tendency to teach the way they were taught, and systemwide reform is
difficult to implement. To properly bring hands-on learning (or coding, robot-
ics) into the classroom, the classroom must change from a teacher lecturing to a
teacher being a mentor [7].

In this paper we described a course that we have developed at the Department
of Preschool Education at the University of Crete in an attempt to help preservice
teachers to learn CT concepts and programming. Owing to the fact that preservice
teachers find it difficult to master the syntax of programming languages in general
[23], we believe that the choice of visual programming language is an important
factor in learning programming [18]. In this course we chose Scratch as the main
programming environment to create an area for preservice teachers for their
innovative ideas and a platform to cultivate preservice teachers’ computational
thinking.

The results, like other studies, show that by enhancing the course curriculum
with Scratch and development projects in the Scratch environment, students’ per-
formance on CT improved significantly. Similar to Kim et al. [23] research results,
we also agree that “Scratch helped pre-service teachers focus on what they could
do with programming languages (p. 971).” Scratch helped preservice teachers to
overcome their programming difficulties (e.g., syntax) and to focus on core aspects
of computational thinking [23].

As it is widely known, changes in learning and teaching practice in class can
precede changes in teachers’ attitudes and beliefs. Thus, the changes in attitude
noted in this study suggest that the preservice teachers believe that Scratch would
be a useful tool to do their job and using Scratch would enable them to use technol-
ogy more effectively [4]. Similar to the study of Arpaci [2], preservice teachers
think that using Scratch would increase their productivity, enhance their effective-
ness, improve their job performance, and ease their job. Another important thing to
consider is that students with no prior programming experience noted that Scratch
had assisted them in learning programming.

Based on the success of course, we made the following conclusions:

• We believe that training preservice kindergarten teachers to coding is the best
strategy to ensure that all in-service kindergarten teachers will have a tech-
nological literacy and computational thinking skills. By introducing coding
in university, students will have enough time and exposure to acquire solid
computational thinking before they teach in kindergarten.

• The majority of preservice teachers are willing to invest time and effort in
training related to CT skills. They recognize that they need to have a tech-
nological literacy and computational thinking skills to be prepared for the
future.

• There are CT education resources such as lessons and teaching materials avail-
able online which are suitable for the novice programmers. Those lessons and
teaching resources can be implemented as curriculum which reflects a scaffold-
ing approach.

Early Childhood Education

12

In future work, it would be an idea to plan out a more open-ended set of challenges,
which would allow students to use most advanced CT concepts. Also, it would be a
good idea to integrate in the course smart robots such as Bee-Bot and Kibo or Internet-
connected smart toys such as Sphero. Also, as a new version of Scratch, Scratch 3.0 is
on the way and it would be a good idea to integrate in a new course the use of smart
mobile devices such as tablets as a part of new students’ experience.

Acknowledgements

We like to thank all of the students involved in this project.

Conflict of interest

There is no conflict of interest to be declared.

A.Appendix

Example of the user interface, code, and Dr. Scratch scores in two randomly
selected students’ projects.

A.1 Project 1. Learn Greek alphabet

A. User interface

13

Evaluating a Course for Teaching Advanced Programming Concepts with Scratch to Preservice…
DOI: http://dx.doi.org/10.5772/intechopen.81714

B. Code example

C. Dr. Scratch score

A.2 Project 2. The Fox and the Crow: An Aesop’s Fable

A. User interface

Early Childhood Education

14

B. Code example

C. Dr. Scratch score

15

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Evaluating a Course for Teaching Advanced Programming Concepts with Scratch to Preservice…
DOI: http://dx.doi.org/10.5772/intechopen.81714

Author details

Stamatios Papadakis and Michail Kalogiannakis*
Department of Preschool Education, Faculty of Education, University of Crete,
Crete, Greece

*Address all correspondence to: mkalogian@edc.uoc.gr

16

Early Childhood Education

[1] Agatolio F, Moro M. A workshop
to promote Arduino-based robots
as wide spectrum learning support
tools. In: Merdan M, Lepuschitz W,
Koppensteiner G, Balogh R, editors.
Robotics in Education. Advances in
Intelligent Systems and Computing. Vol.
457. Cham: Springer; 2017. pp. 113-125

[2] Arpaci I. A comparative study of the
effects of cultural differences on the
adoption of mobile learning. British
Journal of Educational Technology.
2015;46(4):699-712

[3] Bates D. Raspberry Pi Projects for Kids.
Birmingham B3 2PB, UK: Packt Publishing
Ltd; 2015

[4] Bean N, Weese J, Feldhausen R, Bell
RS. Starting from Scratch: Developing
a pre-service teacher training program
in computational thinking. In: 2015
IEEE Frontiers in Education Conference
(FIE), Camino Real El Paso, El Paso,
TX, USA, 2015. pp. 1-8. DOI:10.1109/
FIE.2015.7344237

[5] Becker SA, Brown M, Dahlstrom E,
Davis A, DePaul K, Diaz V, et al. The
NMC Horizon Report: 2018 Higher
Education Edition. Austin, Texas: The
New Media Consortium: 2018. pp. 1-54

[6] Benton L, Hoyles C, Kalas I, Noss R.
Bridging primary programming
and mathematics: Some findings of
design research in England. Digital
Experiences in Mathematics Education.
2017;3(2):115-138

[7] Bers MU. Blocks to Robots: Learning
with Technology in the Early Childhood
Classroom. New York: Teachers College
Press; 2007

[8] Bers MU. Coding, playgrounds and
literacy in early childhood education:
The development of KIBO robotics
and ScratchJr. In: Global Engineering
Education Conference (EDUCON).
IEEE; 2018. pp. 2094-2102

[9] Bocconi S, Chioccariello A, Dettori G,
Ferrari A, Engelhardt K. Developing
computational thinking in compulsory
education—Implications for policy and
practice. Technical report, European
Union Scientific and Technical Research
Reports, EUR 28295 EN. 2016

[10] Buitrago Flórez F, Casallas R,
Hernández M, Reyes A, Restrepo S,
Danies G. Changing a generation’s way
of thinking: Teaching computational
thinking through programming. Review of
Educational Research. 2017;87(4):834-860

[11] Clements DH, Sarama J. Learning
Math, Science and Technology is good for
preschoolers. 2017. Available from: https://
www.childandfamilyblog.com/early-
childhood-development/learning-math-
science-technology-preschoolershoolers/
[Accessed: 25-06-2018]

[12] Curran J. A guide to programming
languages for coding in class. 2017.
Available from: https://www.
teachermagazine.com.au/articles/a-
guide-to-programming-languages-for-
coding-in-class [Accessed: 26-06-2018]

[13] Duncan C, Bell T, Atlas J. What
do the teachers think?: Introducing
computational thinking in the primary
school curriculum. In: Proceedings of
the Nineteenth Australasian Computing
Education Conference. ACM; 2017.
pp. 65-74

[14] European Schoolnet. Guidelines
for School Leaders. Brussels,
Belgium. 2018. http://www.eun.
org/documents/411753/1866395/
EUN+Annual+Report+2017_
Public+Version_FINAL2.pdf/4dffb8dc-
cf21-4506-acc1-cf17696a710c

[15] Evangelopoulou O, Xinogalos S.
MYTH TROUBLES: An open-source
educational game in Scratch for greek
mythology. Simulation & Gaming.
2017;49(1):71-91

References

17

Evaluating a Course for Teaching Advanced Programming Concepts with Scratch to Preservice…
DOI: http://dx.doi.org/10.5772/intechopen.81714

[16] Fesakis G, Serafeim K. Influence
of the familiarization with Scratch
on future teachers’ opinions and
attitudes about programming and ICT
in education. ACM SIGCSE Bulletin.
2009;41(3):258-262

[17] Gomes TCS, Falcão TP, Tedesco
PCDAR. Exploring an approach
based on digital games for teaching
programming concepts to young
children. International Journal
of Child-Computer Interaction.
2018;16:77-84

[18] Iskrenovic-Momcilovic O. Choice
of visual programming language for
learning programming. International
Journal of Computers. 2017;2:250-254

[19] Jaipal-Jamani K, Angeli C. Effect
of robotics on elementary preservice
teachers’ self-efficacy, science learning,
and computational thinking. Journal
of Science Education and Technology.
2017;26(2):175-192

[20] Kalelioglu F, Gülbahar Y. The effects
of teaching programming via Scratch
on problem solving skills: A discussion
from learners’ perspective. Informatics
in Education. 2014;13(1):33-50

[21] Kalogiannakis M, Papadakis S.
Pre-service kindergarten teachers
acceptance of “ScratchJr” as a tool for
learning and teaching computational
thinking and Science education. In:
Proceedings of the 12th Conference
of the European Science Education
Research Association (ESERA),
«Research, Practice and Collaboration
in Science Education»; 21-25 August
2017. Dublin, Ireland: Dublin City
University and the University of
Limerick; 2017

[22] Kalogiannakis M, Papadakis S.
A proposal for teaching ScratchJr
programming environment in
preservice kindergarten teachers. In:
Proceedings of the 12th Conference
of the European Science Education

Research Association (ESERA),
«Research, Practice and Collaboration
in Science Education»; 21-25 August
2017. Dublin, Ireland: Dublin City
University and the University of
Limerick; 2017:965-982

[23] Kim H, Choi H, Han J, So HJ.
Enhancing teachers’ ICT capacity for
the 21st century learning environment:
Three cases of teacher education
in Korea. Australasian Journal of
Educational Technology. 2012;28(6)

[24] Mackintosh J, White E, Dickerson C.
Developing teachers as leaders of science
in primary schools. Journal of Emergent
Science. 2017;12:64-71

[25] Martínez-Valdés JA, Velázquez-
Iturbide JÁ, Hijón-Neira R. A
(relatively) unsatisfactory experience
of use of Scratch in CS1. In: Proceedings
of the 5th International Conference on
Technological Ecosystems for Enhancing
Multiculturality (TEEM’17); 18-20
October 2017; Cádiz, Spain (Article. 8).
New York, NY, USA: ACM; 2017

[26] Moreno-León J, Robles G. Code
to learn with Scratch? A systematic
literature review. In: Global Engineering
Education Conference (EDUCON),
2016 IEEE. IEEE; 2016. pp. 150-156

[27] Moreno-León J, Robles G,
Román-González M. Towards data-
driven learning paths to develop
computational thinking with Scratch.
IEEE Transactions on Emerging Topics
in Computing. 2017. DOI:10.1109/
TETC.2017.2734818

[28] Papadakis S. Creativity and innovation
in European education. 10 years
eTwinning. Past, present and the future.
International Journal of Technology
Enhanced Learning. 2016;8(3-4):279-296

[29] Papadakis S. The use of computer
games in classroom environment.
International Journal of Teaching and
Case Studies. 2018;9(1):1-25

Early Childhood Education

18

[30] Papadakis S. Is pair programming
more effective than solo programming
for secondary education novice
programmers?: A case study.
International Journal of Web-Based
Learning and Teaching Technologies.
2018;13(1):1-16

[31] Papadakis S, Kalogiannakis M.
Using gamification for supporting an
introductory programming course.
The case of ClassCraft in a secondary
education classroom. In: Proceedings
of the 2nd EAI International
Conference on Design, Learning
and Innovation; 30-31 October 2017;
Heraklion, Greece. 2017

[32] Papadakis S, Orfanakis V. The
combined use of lego mindstorms
NXT and app inventor for teaching
novice programmers. In: Alimisis
D, Moro M, Menegatti E, editors.
Educational Robotics in the Makers
Era. Edurobotics 2016. Advances in
Intelligent Systems and Computing.
Vol. 560. Cham: Springer; 2016.
pp. 193-204

[33] Papadakis S, Orfanakis V.
Comparing novice programing
environments for use in secondary
education: App Inventor for Android
vs. Alice. International Journal of
Technology Enhanced Learning.
2018;10(1-2):44-72

[34] Papadakis S, Kalogiannakis M,
Zaranis N. Developing fundamental
programming concepts and
computational thinking with
ScratchJr in preschool education: A
case study. International Journal of
Mobile Learning and Organisation.
2016;10(3):187-202

[35] Papadakis S, Kalogiannakis M,
Orfanakis V, Zaranis N. The
appropriateness of Scratch and app
inventor as educational environments
for teaching introductory programming
in primary and secondary education.

International Journal of Web-Based
Learning and Teaching Technologies.
2017;12(4):58-77

[36] Papadakis S, Kalogiannakis M,
Orfanakis V, Zaranis N. Novice
programming environments. Scratch
and app inventor: A first comparison.
In: Fardoun HM, Gallud JA, editors.
Proceedings of the 2014 Workshop
on Interaction Design in Educational
Environments. New York: ACM; 2014.
pp. 1-7

[37] Papavlasopoulou S, Sharma K,
Giannakos MN. How do you feel about
learning to code? Investigating the
effect of children’s attitudes towards
coding using eye-tracking. International
Journal of Child-Computer Interaction.
2018:17:50-60

[38] Redecker C. European Framework
for the Digital Competence of Educators:
Digital Competence Framework for
Educators . Punie Y. (ed). EUR 28775
EN. Publications Office of the European
Union, Luxembourg, 2017. ISBN 978-
92-79-73494-6, DOI:10.2760/159770,
JRC107466

[39] Resnick M, Maloney J, Monroy-
Hernández A, Rusk N, Eastmond E,
Brennan K, et al. Scratch: Programming
for all. Communications of the ACM.
2009;52(11):60-67

[40] Scratch-wiki. Scratch 3.0. 2018.
Available from: https://en.scratch-wiki.
info/wiki/Scratch_3.0 [Accessed:
25-06-2018]

[41] Smith S, Burrow LE. Programming
multimedia stories in Scratch to
integrate computational thinking and
writing with elementary students.
Journal of Mathematics Education.
2016;9(2):119-131

[42] Strawhacker A, Lee M, Bers
M. Teaching tools, teachers’ rules:
Exploring the impact of teaching styles

19

Evaluating a Course for Teaching Advanced Programming Concepts with Scratch to Preservice…
DOI: http://dx.doi.org/10.5772/intechopen.81714

on young children’s programming
knowledge in ScratchJr. International
Journal of Technology and Design
Education. 2018;28(2):347-376

[43] Topalli D, Cagiltay NE. Improving
programming skills in engineering
education through problem-based game
projects with Scratch. Computers &
Education. 2018;120:64-74

[44] Tsur M. Scratch Microworlds:
Introducing novices to Scratch using an
interest-based, open-ended, scaffolded
experience [doctoral dissertation].
Massachusetts Institute of Technology;
2017

[45] Weintrop D, Hansen AK, Harlow
DB, Franklin D. Starting from Scratch:
Outcomes of early computer science
learning experiences and implications for
what comes next. In: Proceedings of the
2018 ACM Conference on International
Computing Education Research. ACM;
2018. pp. 142-150

[46] Wilson A, Moffat DC. Evaluating
Scratch to introduce younger
school children to programming.
In: Proceedings of the 22nd Annual
Psychology of Programming Interest
Group. Leganés, Spain: Universidad
Carlos III de Madrid; 2010. p. 14

[47] Wing JM. Computational thinking.
Communications of the ACM.
2006;49(3):33-35

