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Abstract

Identification of the hypoxia-inducible factors (HIFs) as core players of the transcriptional 
response to hypoxia transformed our understanding of the mechanism underpinning the 
hypoxic response at the molecular level and led to discoveries on the role of metabolism 
in cell signaling alike. It has now become clear that HIFs act in the heart of a pathway 
where oxygen may be considered as a signaling entity recognized by molecular sensors 
conveying the oxygen signal to the transcriptional regulator HIFs as distal effectors. The 
pathway is under multiple levels of regulatory control shaping the cellular response to 
hypoxia and gives hypoxia signaling an intricate and dynamic activity profile. These 
include regulatory mechanisms within the HIF pathway as well as diverse interplay 
with other metabolic and signaling pathways of critical cellular functions. The emerging 
model reflects a multi-level regulatory network that apparently affects all aspects of cell 
physiology.

Keywords: hypoxia, hypoxia-inducible factors, prolyl hydroxylases

1. Introduction

The development of molecular machineries capable of utilizing atmospheric oxygen for bioener-
getic purposes was a key event in the evolution of life on Earth. This, along with other processes 
like compartmentalization, allowed eukaryotic organisms to substantially enhance metabolic 
efficiency. The accompanying development of a range of biochemical processes provided the 
bioenergetic capacity to permit the evolution of more complex life forms of metazoans [1]. In 
parallel, the high degree of dependence of a constant oxygen supply to maintain metabolic 
homeostasis provoked the evolution of counter measures termed the hypoxia pathway [2].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. The hypoxia pathway

The critical dependence on oxygen for metabolic homeostasis and survival led to the early 
evolution of a molecular mechanism that enabled cells, tissues, and organisms to adapt to 
hypoxia. This adaptive response is primarily orchestrated by a family of transcription factors 
termed hypoxia-inducible factors (HIFs) [3]. In mammals, three members of the helix-loop-
helix-type HIF family have been identified to date (HIF-1, HIF-2, and HIF-3) of which the pro-
totype is HIF-1 (Figure 1). The active HIF-1 is composed of discrete alpha and beta subunits 
(HIF-1α and HIF-1β, respectively) both of which are ubiquitously expressed in human tissues, 
whereas HIF-2α and HIF-3α are selectively expressed in certain cell types [4, 5]. Unlike HIF-β 
that is stably expressed in the cells, HIF-α subunits are continuously degraded by the 26S 
proteasome under normoxic conditions. This mechanism prevents the formation and activity 
of HIF heterodimers in sufficiently oxygenized cells and the launch of their hypoxia-adaptive 
genetic program. In hypoxia, however, HIF-α subunits escape from the constitutive degrada-
tion, become stabilized in the cytoplasm, dimerize with HIF-1β and the nuclear heterodimers 
rearrange gene expression pattern of the hypoxic cell. This primarily, but not exclusively, 
includes induction of genes that mediate the switch from oxygen-dependent to anaerobic 
metabolism.

Figure 1. Domain structure of HIF polypeptides A: DNA-binding domain; B: basic helix-loop-helix domain; C: Per/
Arnt/Sim (PAS) A domain; D: PAS B domain; E: PAC motif; F: oxygen-dependent degradation domain; F1: N-terminal 
transactivation domain; G: ERK target domain; H: C-terminal transactivation domain. Amino acid positions indicated 
are based on current Uniprot.
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The molecular background of normoxic degradation of HIF-α was first elucidated in 2001 [6, 7] 
(Figure 2). It turned out that its continuous proteasomal elimination is triggered by the oxygen-
dependent hydroxylation mediated by a family of prolyl-4-hydroxylases reminiscent of procol-
lagen prolyl hydroxylases that had long been known at the time. To date, three HIF-regulating 
prolyl-4-hydroxylases (also known as PHD1, PHD2, and PHD3) have been identified in mam-
malian cells [8]. They utilize molecular oxygen, ascorbic acid, iron, and the tricarboxylic acid 
(TCA) cycle intermediate α-ketoglutarate as co-factors and co-substrates to hydroxylate the 
HIF-α subunits at conserved prolyl residues [6, 9]. In HIF-1α, these are proline 402 and 564 
and their hydroxylation increases the affinity of the polypeptide to the von Hippel-Lindau 
protein (pVHL), the substrate recognition component of the E3 ubiquitin ligase complex of 
Elongin-B and -C, Cul2, and Rbx1 [10]. This leads to pVHL-mediated ubiquitylation of lysine 
residues (lysine 532, 538, and 547 in case of HIF-1α) within the so-called oxygen-dependent 
degradation domain that renders the polypeptide for constitutive proteasomal degradation. 
In hypoxia, this hydroxylation activity is reduced due to the lack of available oxygen, result-
ing in stabilization of the HIF-α subunits. In addition to the PHD-mediated post-translational 
modifications, a second level of hydroxylation-dependent regulation of HIF-α has also been 

Figure 2. Oxygen sensing by hydroxylases. Abbreviations: FIH: factor inhibiting HIF; PHDs: prolyl-4-hydroxylases; HIF: 
hypoxia-inducible factor; ARNT: aryl hydrocarbon receptor nuclear translocator; pVHL: von Hippel-Lindau ubiquitin 
ligase; OH: hydroxylation; U: ubiquitylation; p300/CBP: transcriptional co-activators of HIF heterodimers.
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discovered. This post-translational modification is mediated by the asparagine hydroxylase 
termed factor inhibiting HIF (FIH). Unlike PHDs, however, the FIH-mediated hydroxylation is 
believed to primarily prevent HIF’s interaction with transcriptional co-activators like the p300/
CBP (Figure 2) [11–13].

In the hypoxia pathway, oxygen may be considered the “ligand” for oxygen sensor prolyl-
4-hydroxylases that principally govern HIF activity. This, eventually, culminates in the launch 
of a complex adaptive program that fundamentally affects cellular homeostasis via metabolic 
switch from the oxygen-dependent oxidative phosphorylation to glycolysis, increased angio-
genesis and enhanced erythropoiesis. Thus, it is not surprising that a range of additional 
inputs, including feedback loops and multiple cross talks with other signaling pathways, 
shape the spatial and temporal nature of the ultimate response to oxygen depletion. These 
interactions form a metabolic signaling network that confers a dynamic profile and a high 
degree of complexity upon the hypoxic response.

3. Regulatory measures in hypoxia signaling

3.1. Supracellular signaling

In principle, adaptation to hypoxia may involve two directions of counter measures; reduction 
of oxygen consumption and increase of oxygen supply. In multicellular organisms, the latter 
one requires coordinated supracellular, multi-organ measures governed by HIF-inducible 
genes including elevated erythropoiesis and angiogenesis. At a systemic level, hypoxia-acti-
vated HIFs induce erythropoietin (EPO) expression in liver and interstitial kidney cells that, 
subsequently, triggers erythropoiesis in the bone marrow [14, 15]. This elevated red blood cell 
production, however, requires increased iron supply of bone marrow erythroblasts regulated 
by, at least in part, the hepatocyte-specific iron homeostasis regulator hepcidin. This short 
peptide is believed to be responsible for inhibiting the iron release and absorption from mac-
rophages and intestinal epithelial cells, respectively, by binding the only known cellular iron 
exporter ferroportin [16]. Upregulated HIF-driven erythropoiesis provokes repression of the 
hepatic hepcidin-encoding gene, although the identity of the soluble mediator of this effect is 
yet to be confirmed [17–20]. The drop of serum hepcidin upon hypoxia, eventually, results in 
elevated iron release from the intestinal epithelium supplying the increased iron demand of 
expanded erythropoiesis [21].

When hypoxia develops locally, sheer increase of the oxygen transport capacity may not be 
sufficient to elevate the oxygen supply of hypoxic tissues. In these conditions, hypoxia is 
accompanied by angiogenesis representing another tissue-level negative feedback loop of 
hypoxia signaling. This arm of the regulation is mediated by the key angiogenesis-regulating 
growth factor termed vascular endothelial growth factor A (VEGF-A). Similar to EPO, VEGFA, 
the key determinant of survival and proliferation of endothelial cells upon embryonic vas-
culogenesis, is another common target of HIF-1 and -2 [22, 23]. In addition, high levels of 
VEGF-A expressed by hypoxic stromal or tumor cells regulate endothelial cells metabolism 
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by biasing it toward glycolysis via induction of isoform 3 of 6-phospho-fructo-2-kinase/ 
fructose-2,6-biphosphatase [24]. Increased glycolysis not only supports endothelial cell sur-
vival under hypoxic conditions but also triggers vessel sprouting, further representing a 
complementary mechanism of VEGF-mediated angiogenesis [25]. Elevated oxygen and iron 
levels, consequently, provide prolyl-4-hydroxylases increased supply of their co-substrates 
completing the supracellular regulatory loop of hypoxia signaling [26].

3.2. Intracellular metabolic signaling in hypoxia

At the cellular level, HIFs reprogram metabolism directly targeting a cluster of metabolic 
enzyme-coding genes [27]. Their prototype is pyruvate dehydrogenase kinase-1 (PDK-1) 
which phosphorylates pyruvate dehydrogenase (PDH), the enzyme that supplies TCA cycle 
with acetyl-coenzyme A [28]. PDK-1 mediates inactivating phosphorylation of PDH that shuts 
down the TCA cycle due to shortage of acetyl-coenzyme A. This leads to fundamental changes 
in mitochondrial functions including the accumulation of TCA cycle intermediates [29]. Since 
HIF-regulating prolyl-4-hydroxylases utilize α-ketoglutarate and produce succinate during 
their catalytic activity, one can speculate that accumulation of the latter one blocks catalytic 
activity of prolyl-4-hydroxylases [30]. Indeed, it was found that loss-of-function mutations of 
succinate dehydrogenase, the TCA cycle enzyme that converts succinate into fumarate, block 
PHDs and, consequently, stabilize HIF-α subunits [31]. In addition, it has also been demon-
strated that this effect is, primarily, mediated by the accumulation of succinate (Figure 3) [32].

Besides their direct metabolic target genes, HIFs also regulate the hypoxia pathway sensor 
PHDs indirectly through the HIF-inducible microRNA-210 (miR-210)-mediated silencing 
of the glycerol-3-phosphate dehydrogenase 1 like protein (GPD1-L). GPD1-L has a simi-
lar enzymatic activity to that of the mitochondrial glycerol-3-phosphate dehydrogenase 
and catalyzes the redox conversion of glycerol-3-phosphate (G3P) to dihydroxyacetone-
phosphate [33]. Although the mechanism behind the connection is still not clear, the miR-
210-mediated downregulation of GPD1-L is accompanied by increased PHD-mediated 
HIF-1α degradation [34]. Since decreased enzymatic GPD1-L activity results in increased 
G3P levels, upregulated glycolysis may contribute to the redistribution of available oxy-
gen from mitochondria to PHDs and, thus, represents the link between miR-210 and the 
restoration of PHD activity. This hypothesis is further supported by the observation that 
inhibition of the mitochondrial respiration by nitric oxide is followed by redistribution of O

2
 

and inactivation of HIFs [35].

The concept of metabolite-mediated regulation of PHDs is further supported by the obser-
vation that, in hypoxia, another microRNA, miR-183, targets isocitrate dehydrogenase, the 
TCA cycle mediator that produces α-ketoglutarate from isocitrate. Although the mecha-
nism of its hypoxic upregulation is yet to be determined, the miR-183-mediated blockade of 
α-ketoglutarate production exploits the α-ketoglutarate-dependent nature of prolyl-4-hydrox-
ylases and promotes stabilization of HIF-α via inhibition of PHDs [36]. Thus, PHDs not only 
act as oxygen sensors but can also integrate metabolic stimuli forming synergistic metabolic 
positive feedback loops within hypoxia signaling [37].
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3.3. Transcriptional feedbacks

HIFs directly induce genes with wide range of functions including both PHD2 and PHD3 
(Figure 4). Although HIF-mediated transactivation of PHDs resembles a canonical, direct nega-
tive feedback arm within the PHD-HIF axis, it may have more complex functions [38, 39]. HIFs 
can only transactivate their targets upon oxygen depletion so one can speculate that, induction 
of the oxygen-dependent PHDs is useless under hypoxia. In fact, however, despite their oxygen 
dependency, which prevents them from functioning under hypoxic conditions, experimental 
data indicate that enzymatic activity of both PHD2 and PHD3 remains detectable in hypoxic 

Figure 3. Interplay of the hypoxia and metabolic signaling. Abbreviations: TCA cycle: tricarboxylic acid cycle; C4, 
C5, and C6 represent the 4, 5, and 6 carbon metabolites of the TCA cycle, respectively; IKKα, IKKβ, and IKKγ are the 
Inhibitory kappa-B kinase alpha, beta, and gamma subunits, respectively; PDH: pyruvate dehydrogenase; PDK1: PDH 
kinase 1; GPD1-L: Glycerol-3-phosphate dehydrogenase 1-like protein; PHDs: prolyl-4-hydroxylases; NF-κB: nuclear 
factor kappa-B; HIF: hypoxia-inducible factor; ARNT: aryl hydrocarbon receptor nuclear translocator; pVHL: von 
Hippel–Lindau ubiquitin ligase; OH: hydroxylation; U: ubiquitylation; p300/CBP: transcriptional coactivators of HIF 
heterodimers; miR-183 and miR-210 are microRNA-183 and microRNA-210, respectively.
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cells maintaining reactivity of the HIF system for further hypoxic insults [39]. Thus, HIF-
mediated induction of PHDs in conjunction with their metabolic effects, possibly, functions as 
a mechanism responsible for resetting hypoxia signaling to a new steady state at lower oxygen 
levels.

The HIF-target miR-210 also plays multiple, apparently opposing, roles in the regulation of 
the hypoxia pathway. It not only indirectly facilitates HIF activity by targeting GPD1-L but 
also silences MYC antagonist MNT, a member of the MYC/MAD/MYX transcription factor 
family [40]. This downregulation deliberates MYC-mediated induction of genes like those 
involved in the resolution of HIF-induced cell cycle arrest or metabolic switch via PDK1 
illustrating the complexity of the HIF-provoked signaling responses. While, through the 

Figure 4. Cross talk between the hypoxia, anabolic, mitogen, and inflammatory signaling pathways. Abbreviations: 
ROS: reactive oxygen species; RICTOR: rapamycin-insensitive companion of mTOR; mTORC2: mammalian target 
of rapamycin complex 2; PKB/AKT: protein kinase B; mTOR: mammalian target of rapamycin; LOX: Lysyl oxidase; 
GSK3β: glycogen synthase kinase-3 beta; RHEB: Ras homolog mTOR complex 1-binding protein; 80S: mature eukaryotic 
ribosome; MINT: Amyloid beta precursor protein binding family A, member 3; MT1-MMP: membrane-type 1 matrix 
metalloproteinase; TSC1/2: Tuberous Sclerosis complex 1/2; REDD1: DNA damage-inducible transcript 4; PHDs: prolyl-
4-hydroxylases; FIH: factor inhibiting HIF; MAPK: mitogen activated protein kinase; HIF: hypoxia-inducible factor; 
ARNT: aryl hydrocarbon receptor nuclear translocator; FBW7: F-Box and WD-40 domain-containing protein 7; OH: 
hydroxylation; U: ubiquitylation; p300/CBP: transcriptional coactivators of HIF heterodimers; miR-155: microRNA-155.
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former action, MYC counteracts hypoxia signaling, MYC-mediated induction of PDK1 syn-
ergizes with HIF activity [41]. Since MYC has also been reported to support HIF-1α directly 
by interfering with the VHL-dependent degradation of HIF-1α, data strongly suggest the 
existence of a MYC-mediated feedforward loop in the HIF pathway [42]. In return, HIF coun-
teracts MYC by various underlying mechanisms including the induction of MXI1, another 
MYC antagonist, competition with MYC for promoter binding or promoting its proteasomal 
degradation [43, 44]. Since the opposing effects of the HIF/MYC interaction in the regulation 
of cell cycle and metabolism may reflect differences of the experimental models used, the 
biological relevance of the hypoxia-inducible miR-210-promoted MYC functions requires 
further investigations. Additional targets of miR-210 like the mitochondrial iron-sulfur clus-
ter scaffold protein or transferrin suggest the potential signal integration role of miR-210 in 
hypoxia signaling [45, 46].

Besides miR-210, the HIF-inducible miR-155 represents another level of microRNA-mediated 
transcriptional regulation of the hypoxia pathway. Upon a hypoxic insult, it shapes dynamics 
of the HIF-response by facilitating the RISC-mediated degradation of the HIF-1α transcript 
[47]. Intriguingly, the miR-155-mediated direct silencing of HIF-α expression not only illus-
trates an isoform-specific resolution of hypoxia signaling upon prolonged hypoxia but also 
resembles the HIF-mediated induction of PHDs and might ensure the cellular reactivity to 
hypoxia at lower pO

2
 levels.

An additional form of the transcriptional regulation of hypoxia signaling is mediated by the 
HIF3A-encoded isoform termed inhibitory PAS domain protein (IPAS). IPAS is an alternative 
splicing product of the HIF3A locus and generates a polypeptide that lacks the C-terminal 
transactivation domains of HIF-1 and -2α (Figure 1) [48]. As such, it functions as a dominant 
negative regulator of HIFs by competing with HIF-1β [49]. The IPAS-specific splicing product 
is hypoxia-inducible and, at last in part, is under the control of a HIF-1-specific hypoxia-
response element representing one of the classic negative feedback loops of the hypoxia path-
way [48, 50]. Interestingly, the IPAS-specific mRNA splicing also takes place in the absence 
of the HIF-1-binding site of the IPAS promoter suggesting the existence of HIF-independent 
factors involved in the expression of IPAS [50]. The uncoupled nature of IPAS expression 
and IPAS mRNA splicing underpins the presence of an additional control layer in the IPAS-
mediated HIF regulation. Indeed, since normoxic expression of IPAS is, apparently, restricted 
to corneal epithelial cells and some neuronal elements in mice, the HIF-independent control 
mechanisms may contribute to the tissue-specific nature of the IPAS-mediated regulation of 
hypoxia signaling.

4. Cross talks

4.1. Cross talk through HIF-1β

Due to the fundamental role of oxygen in the cellular homeostasis, the hypoxic insult requires 
counter measures that rely on tight coordination of the full spectrum of cellular functions. As 
part of this, extensive interplays exist between the primary hypoxia sensing PHD-HIF axis 
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and distinct molecular machineries involved in cellular functions like catabolism, cell cycle, 
or cellular defense mechanisms. One of the mediators of these interactions is the β subunit of 
HIF heterodimers also known as the aryl hydrocarbon nuclear translocator (ARNT).

Besides its critical role in the formation of active HIFs, the constitutively expressed HIF-1β, 
as its alias indicates, is also the partner of the aryl hydrocarbon receptor (AhR), a transcrip-
tion factor that targets genes involved in the biotransformation of xenobiotics [51, 52]. The 
class I bHLH/PAS protein family member AhR is ubiquitously expressed and activated by 
various endo- and exogenous ligands. In its inactive state, it forms heterodimers with repres-
sor proteins, like the heat shock protein 90, in the cytoplasm [53]. Upon ligand binding, its 
nuclear localization signal becomes exposed and, following the consequent nuclear translo-
cation, AhR dimerizes with HIF-1β [54]. The class II bHLH/PAS HIF-1β is essential for the 
AhR-mediated induction of genes with 5′-TNGCGTG-3′ sequences (also known as xenobiotic 
response element [XRE]) present in their promoters [55–57]. These include phase I and II 
detoxifying enzymes like the cytochrome P450 (CYP1A1) and UDP-glucuronosyltransferase 
1 isoforms, respectively [58].

Due to their shared partner, it was proposed that activation of hypoxia signaling affects AhR-
mediated responses and vice versa, AhR-mediated engagement of HIF-1β attenuates hypoxia 
responses. Indeed, in hypoxic cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 
the prototype ligand for AhR, the AhR-mediated CYP1A1 expression was found reduced. In 
contrast, TCDD treatment of cells inhibited HIF-mediated transcriptional responses indicat-
ing the cross talk between the AhR and hypoxia signaling [59]. Compromised formation of 
the AhR/HIF-1β or HIF-1α/HIF-1β heterodimers, in the presence of hypoxia or AhR ligands, 
respectively, indicates that, in human cells, HIF-1β acts as the limiting factor of the dimer 
formation [60]. Experimental data also indicates that HIF-1α has higher affinity to HIF-1β 
than that of the AhR, suggesting that human cells experience the oxygen depleted milieu as 
a potentially more harmful environmental stimulus than that of the presence of xenobiotics 
[61]. In the case of genes under the regulation of both HRE and XRE sequences, cross talk 
between the hypoxia and AhR pathways is even more complex as simultaneous presence of 
AhR ligands and hypoxia was found to be rather additive, reflecting the cell-type or stimulus-
dependent nature of these responses [62].

4.2. Cross talk between the hypoxic and anabolic signaling

Hypoxia is one of the strongest stimuli of autophagy that is considered as an indicator of 
depleted ATP pools of hypoxic cells. In concert, the HIF-orchestrated adaptive program 
involves downregulation of catabolic pathways like the one regulated by the mammalian tar-
get of rapamycin (mTOR) (Figure 4). The involvement of mTOR in the regulation of HIF-1 was 
first suggested by independent studies on the oncogene-related activation of VEGF [63–66]. 
Unlike PHDs, mTOR enhances HIF-1-mediated transcriptional activity without affecting its 
degradation rate [64, 67]. mTOR alters the protein expression pattern of hypoxic cells, at least 
in part, via phosphorylation of the eukaryotic initiation factor 4E-binding protein 1 (eIF4E-
BP1), a suppressor of the 5′ CAP-dependent translation [68]. These observations together with 
findings on the negative effects of rapamycin on HIF-1 suggest that mTOR enhances HIF-α 
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mRNA translation [69]. This concept is also supported by the observation that downregula-
tion of the mTOR complex 2 (mTORC2), a redox-sensitive activator of the PKB/AKT path-
way, leads to decreased abundance of the HIF-2α transcripts in the polysomal fractions [70]. 
Current data indicate that the dominant upstream regulator of the hypoxia-related mTOR 
activity is protein kinase B (PKB/AKT) [67]. Hypoxic activation of PKB/AKT that, at least in 
part, depends on reactive oxygen species (ROS), was shown to regulate PHD activity and 
promote stabilization of HIFs [71–73]. Intriguingly, HIF is actively involved in the generation 
of ROS under hypoxia by inducing lysyl oxidase (LOX) [67]. LOX encodes a copper-depen-
dent amine oxidase that catalyzes cross-linking of collagen and elastin in the extracellular 
matrix while producing hydrogen peroxide (H

2
O

2
). Current data indicate that, following its 

HIF-dependent upregulation in hypoxia, LOX-generated H
2
O

2
 activates the PKB/AKT-mTOR 

axis resulting in the upregulation of HIF-1α translation illustrating a positive feedback loop 
between mTOR and HIF [67]. It is noteworthy that HIF-mediated induction of PHDs, thus, 
may not only play a role in resetting the hypoxia pathway at a lower oxygen tension but also 
represents a limiting step of the mTOR-mediated enhancement of HIF-1α translation [74].

PKB/AKT has also been shown to affect the proteasomal degradation of HIF-1α through gly-
cogen synthase kinase 3β (GSK3β) [75]. GSK3β-mediated phosphorylation of HIF-1α facilitates 
its binding to FBW7, an E3 ubiquitin ligase, which recognizes GSK3β-phosphorylated pro-
teins and targets them for proteasomal degradation [76]. Since inactivating phosphorylation 
of GSK3β is primarily mediated by PKB/AKT, activation of the PKB/AKT pathway not only 
influences the translational rate of HIF-1α via mTOR but also mimics the effect of hypoxia via 
inhibition of proteasomal degradation of the HIF-1α polypeptide.

To make the picture even more colorful, mTOR also phosphorylates MINT3, a membrane-type 
matrix metalloproteinase (MT-MMPs) regulator, at its threonine 5/serine 7 residues [77]. This 
modification promotes binding of MINT3 to FIH-1 leading to the inactivation of the latter [78]. 
By sequestering the HIF-1 suppressor FIH-1 to the Golgi membrane in cooperation with the 
MT1-MMP, the mTOR/MINT3/MT1-MMP axis can also support transcriptional activity of HIF-1 
independently of its translational rate. Interestingly, in renal cell carcinoma, MT1-MMP has been 
found to be a target gene for HIF-2 raising the question if the mTOR-regulated MINT3/MT1-
MMP/FIH-1-mediated positive feedback loop is a general mechanism in the regulation of HIFs 
[79]. Although its biological relevance is yet to be determined, it is noteworthy that mTOR has 
also been reported to associate with HIF-1α via the mTOR complex 1 member RAPTOR and a 
putative TOR motif within the HIF-1α polypeptide [66]. Since mTOR is a serine/threonine kinase 
and one of the known posttranslational modifications that favors HIF-1α transcriptional activity 
is phosphorylation, the possibility that this co-localization also supports the effect of mTOR on 
HIF-1 via direct phosphorylation cannot be excluded but is yet to be confirmed [66, 80].

Eventually, rapamycin-sensitive upregulation of HIF-1 supports the induction of a wide range 
of HIF-1 targets, of which many have been found to form feedback loops via regulation of the 
hypoxia-related activity of mTOR. These include REDD1 that activates the tuberous sclerosis 
complex 1/2 (TSC1/2) [81]. The TSC1/2 possesses GTPase-activating function that renders the 
mTOR activator RHEB inactive [82]. BNIP3, another known HIF-1 target, also facilitates the 
accumulation of the GDP-bound form of RHEB and the consequent downregulation of mTOR 
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in hypoxia [83]. In addition, the HIF-1-inducible miR-155 also targets elements of the mTOR 
pathway including RHEB, the mTORC2 member RICTOR and the mTOR effector ribosomal 
protein S6KB2 [84]. Downregulation of these targets, seemingly, complements the effect of 
REDD1 and BNIP3 and may contribute to the limitation of mTOR signaling in hypoxia.

4.3. Interplay with the imflammatory and mitogen signaling pathways

Besides its role in the mTOR-mediated HIF regulation discussed above, hypoxia-inducible miR-
155 is one of the identified measures directly targeting HIF-1α mRNA, indicating its pivotal role 
in the regulation of the HIF pathway. Sequence analyses revealed that, besides the HIF respon-
sive element, NF-κB consensus sequences are also present in the miR-155 promoter indicating the 
capacity of NF-κB-mediated stimuli to influence the HIF pathway via miR-155 [47]. Studies on the 
proposed link between hypoxia and inflammation revealed that NF-κB can also induce HIF1A via 
evolutionary conserved consensus binding sites identified in the HIF1A promoter [72, 85–87]. Since 
this induction is not sufficient for the accumulation of HIF-1α in the absence of hypoxia, current 
data suggest that the canonical NF-κB pathway is rather for pre-setting the HIF-1α mRNA level 
according to the redox state and inflammatory cytokine composition of the extracellular milieu [88]. 
This concept is further supported by the observation that NF-κB activity can be both up- and down-
regulated upon inhibition of prolyl-4-hydroxylases depending on the NF-κB stimulus received [89].

Intriguingly, besides HIF1A, NF-κB transactivates ARNT as well, leading to enhanced formation 
of HIF-1β:HIF-2α that attenuates the proteasomal degradation of the latter. Considering the cell-
type specific expression pattern of HIF-2α, the NF-κB-mediated induction of ARNT may represent 
a tissue-specific arm of the NF-κB-governed regulation of hypoxia signaling [90]. The interplay, 
however, is apparently bidirectional and the hypoxic signal can also be conveyed to the inflam-
matory pathway. Under normoxic conditions, PHDs inhibit the I kappa B kinase (IKK) complex 
attenuating the dissociation of inhibitory kappa B (IκB) from NF-κB [85, 88, 91]. In the absence 
of oxygen, however, the PHD-mediated blockade of IKK is resolved, the IKK complex becomes 
active leading to the phosphorylation of IκB and release of sequestered NF-κB subunits. The con-
sequent formation of active NF-κB heterodimers culminates in moderate upregulation of the basal 
NF-κB activity that is believed to potentiate NF-κB responsiveness to cytokines like the tumor 
necrosis factor-alpha (TNF-α) or reactive oxygen species, stimuli typically accompanying inflam-
matory conditions [72, 92–95]. Thus, the interaction between the NF-κB and HIF pathways well 
illustrates the close pathophysiologic connection between hypoxia and inflammation and allows 
the cell to integrate inflammatory stimuli in the adaptive response under hypoxic conditions.

Anabolic extracellular signals that activate the mTOR pathway often diverge and activate the 
ERK signaling cascade as well, raising the question if ERK and hypoxia signaling interplay. 
Experimental data indicate that the HIF-1α polypeptide can be phosphorylated by p42/44 
MAP kinases both under hypoxic conditions and in response to receptor-mediated ERK-
activating stimuli [96–98]. The ERK-mediated phosphorylation was found to enhance the 
transcriptional activity of HIF-1 in various model systems, although the exact mechanism 
is still not clear [99, 100]. On one hand, it was proposed that phosphorylation of HIF-1α at 
positions 641 and 643 supports the transcriptional activity by attenuating its nuclear export 
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[101, 102]. On the other, it was also demonstrated that ERK activity fundamentally alters the 
predicted composition of HIF-1-containing nuclear complexes suggesting multiple effects of 
ERK activity on hypoxia signaling [103]. Independently of the mechanistic details, current 
data suggest that ERK-mediated upregulation of the HIF pathway differs from the mTOR-
mediated effect and, primarily, acts on the transactivation function of HIFs, possibly, comple-
menting the mTOR-mediated effects (Figure 4).

5. Conclusion

Extensive experimental work over the past three decades deciphered the molecular back-
ground of the cellular response to oxygen depletion, one of the fundamental physiologic 
processes. To date, these efforts depictured an intricate molecular network that bridges, 
apparently, every aspect of cellular physiology. Within this network, the PHD-HIF axis 
plays an integrative role of various signals that allows the hypoxic cell to shape dynamics 
of the adaptive response according to the actual endogenous metabolic state and surround-
ing microenvironment alike. Deeper understanding of these molecular machineries gives the 
opportunity to develop more efficient medical modalities for pathologies like chronic inflam-
mation, ischemia or neoplasms.
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