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Abstract

Persistent organic pollutants (POPs) are resistant to most of the known environmental 
degradation processes. Because of their persistence, POPs bioaccumulate in animal tis-
sues and biomagnify along food chains and food webs with potential adverse impacts on 
human and wildlife health and the environment. Although POPs are resistant to most 
of the environmental degradation processes, there are some environmental processes 
mostly microbial degradation that can degrade POPs to other forms that are not neces-
sarily simpler and less toxic. The Stockholm Convention on Persistent Organic Pollutants 
adopted in 2001 was meant to restrict the production and use of these toxic chemicals in 
the environment.

Keywords: degradation, POPs, bioaccumulation, biomagnification, Stockholm 
convention

1. Introduction

Persistent organic pollutants (POPs) are toxic organic compounds that are resistant to most 

of the degradation processes in the environment, and therefore they tend to persist in the 

environment, thus bioaccumulating in organisms and biomagnifying along the food chains 

and food webs in ecosystems. POPs pose a risk of causing adverse effects to human and 
wildlife health in particular and the environment in general. POPs include a wide class of 

chemical species with different physicochemical properties and toxicologies. The priority list 
of POPs consists of pesticides such as dichloro diphenyl trichloroethane (DDT), hexachloro-

cyclohexanes (HCHs), and hexachlorobenzenes (HCBs), industrial chemicals such as poly-

chlorinated biphenyls (PCBs), and unintentional by-products of industrial processes such as 
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polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs) and polycyclic aro-

matic hydrocarbons (PAHs). The first priority list of POPs consisted of 12 compounds com-

monly referred as the dirty dozen by the Stockholm Convention that was adopted in 2001.

Over the last decade, the priority list of POPs has been updated to include such compounds 

like brominated flame retardants (BFRs), such as polybrominated diphenyl ethers (PBDEs), 
listed under the Stockholm Convention in 2017 [1], and hexabromocyclododecanes (HBCDDs), 

currently under consideration for listing. A further group of recently recognized halogenated 

POPs are the perfluorinated alkyl substances, of which perfluorooctane sulfonate (PFOS), its 
salts, and perfluorooctane sulfonyl fluoride were also added to the Stockholm list in 2017. 
Other compounds in the new list include endosulfan, lindane, pentachlorobenzene, chlorde-

cone, and hexabromocyclododecane (HBCD).

POPs have a tendency to persist in the environment for long periods, are capable of long-

range transport, bioaccumulate in human and animal tissue and biomagnify in food chains 

and food webs, and have potential significant adverse impacts on human health and the 
environment. Exposure to POPs can cause serious health problems including certain can-

cers, birth defects, dysfunctional immune and reproductive systems, greater susceptibility 

to disease, and even diminished intelligence. Of all known POPs so far, the organochlorine 

compounds, including polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated diben-

zofurans (PCDFs), and polychlorinated biphenyls (PCBs), have received the most attention 
due to their persistence in the environment, bioaccumulation, biomagnification, and hazard 
effects to biota.

2. Sources of POPs in the environment

There are many ways that release POPs to the environment. POPs such as pesticides are 

released, as a result of plant protection efforts. The main sources of pesticide pollution include 

Figure 1. Emission of dioxins from industrial wastes. Source: Marie Sedillo et al. 2010.
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their use, transportation, storage, and disposal of obsolete pesticides. Some other chemicals 

[polychlorinated biphenyls (PCBs), pentachlorophenol] are used as oils, as dielectric and cool-

ing fluids in capacitors and transformers, for wood preservation, etc., and are released into 
the environment as a result of spills and evaporation. A number of substances like dioxins/

furans, polycyclic aromatic hydrocarbons (PAHs), and hexachlorobenzene are by-products of 

many industrial processes, mainly, thermal (fuel combustion and waste incineration, ferrous 

industry, coke and aluminum production, road transport, chemical synthesis of chlorinated 

substances, etc.) and are emitted directly into the air (Figure 1) [2].

3. Why are POPs resistant to most of the environmental degradation 

processes?

In the initial list of the Stockholm Convention, POPs are typically polyhalogenated organic 

compounds which exhibit high lipid solubility. For this reason, they bioaccumulate in fatty tis-

sues of animals. Halogenated compounds also exhibit great stability reflecting the nonreactiv-

ity of C-Cl bonds toward hydrolysis and photolytic degradation in the environment. The high 

electronegativity of halogens compared to carbon gives the carbon-halogen bond a significant 
polarity/dipole moment. The electron density is concentrated around the halogen, leaving the 

carbon relatively electron poor. This introduces ionic character to the bond through partial 

charges (Cδ+Clδ−). The partial charges on the chlorine and carbon exert electrostatic attraction 
between them, contributing to the unusual bond strength of the carbon-halogen bonds. The 

carbon-halogen bonds are known to be “the strongest in organic chemistry,” because halogen 

forms the strongest single bond to carbon [3, 4]. The bond also strengthens and shortens as 

more halogens are added to the same carbon on a chemical compound.

The stability and lipophilicity of persistent organic compounds often correlate with their 

halogen content; thus, polyhalogenated organic compounds are of particular concern. They 

exert their negative effects on the environment through two processes, long-range transport, 
which allows them to travel far from their source, and bioaccumulation, which reconcentrates 

these chemical compounds to potentially dangerous levels in animal tissues [5].

4. Health effects of POPs

POP exposure may cause developmental defects, chronic illnesses, and death. Some are car-

cinogens, possibly including breast cancer. Many POPs are capable of endocrine disruption 
within the reproductive system, the central nervous system, or the immune system. People 

and animals are exposed to POPs mostly through their diet, occupationally, or while growing 

in the womb [6]. For humans not exposed to POPs through accidental or occupational means, 

over 90% of exposure comes from animal food products due to bioaccumulation in fat tissues 

and bioaccumulation through the food chain. In general, POP serum levels increase with age 

and tend to be higher in females than males [7].

Degradation Pathways of Persistent Organic Pollutants (POPs) in the Environment
http://dx.doi.org/10.5772/intechopen.79645

19



4.1. Effect on endocrine disruption

Exogenous substance/mixture that alters the function(s) of the hormonal system and conse-

quently causes adverse effects in an intact organism or its progeny or its subpopulation is called 
endocrine disruptors. The majority of POPs are known to disrupt the normal functioning of 

the endocrine system. Low-level exposure to POPs during critical developmental periods of 

the fetus, newborn, and child can have a lasting effect throughout its lifespan. A 2002 study 
[8] synthesizes data on endocrine disruption and health complications from exposure to POPs 

during critical developmental stages in an organism’s lifespan. The study aimed to answer 

the question whether or not chronic, low-level exposure to POPs can have a health impact on 

the endocrine system and development of organisms from different species. The study found 
that exposure of POPs during a critical developmental time frame can produce a permanent 

change in the organism’s path of development. Exposure of POPs during non-critical develop-

mental time frames may not lead to detectable diseases and health complications later in their 

life. In wildlife, the critical development time frames are in utero, in ovo, and during reproduc-

tive periods. In humans, the critical development time frame is during fetal development [9].

4.2. Effect on the reproductive system

The same study in 2002 with evidence of a link from POPs to endocrine disruption also linked 

low-dose exposure of POPs to reproductive health effects. The study stated that POP expo-

sure can lead to negative health effects especially in the male reproductive system, such as 
decreased sperm quality and quantity, altered sex ratio, and early puberty onset. For females 

exposed to POPs, altered reproductive tissues and pregnancy outcomes as well as endome-

triosis have been reported [9, 10].

4.3. Effect on gestational weight gain and newborn head circumference

A Greek study in 2014 investigated the link between maternal weight gain during pregnancy 

exposure and PCB level in their newborn infants, their birth weight, gestational age, and 

head circumference. The lower the birth weight and head circumference of the infants was, 

the higher POPs levels during prenatal development had been, but only if mothers had either 

excessive or inadequate weight gain during pregnancy. No correlation between POP exposure 

and gestational age was found [11]. A 2013 case-control study conducted in 2009 in Indian 

mothers and their offspring showed prenatal exposure of three types of organochlorine pesti-
cides (HCH, DDT and DDE) impaired the growth of the fetus, reduced the birth weight, head 
circumference and chest circumference [12].

5. Environmental effects of POPs

POPs can travel long distances in the environment by air or in water so that they are found 

in ecosystems in which they have never been used and far from their source. Animals of the 

Canadian Arctic have significant levels of PCBs, organochlorine pesticides (like DDT), and 
metals, and this poses a health risk to the human population that relies on these animals as a 

food source. The long-range transport of POPs leads to global pollution (Figure 2) [13].

Persistent Organic Pollutants20



Figure 2. Transboundary movement of POPs. (Source: Ref. [13]).

Figure 3. Transport and circulation of PCDDs/PCDFs and PCBs in the environment. (Source: Ref. [14]).
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The slow decomposition of PCDDs/PCDFs and PCBs in the environment and the hazards 

they pose for living organisms make them large-scale environmental degraders, especially 

because their toxicity can be further enhanced by their ability to accumulate in the soil and 

sediments and their bioaccumulation and biomagnification within aquatic and land food 
chains (Figure 3) [14].

6. Degradation pathways of POPs in the environment

Despite the fact POPs are resistant to most of the degradation processes in the environment, 

some molecular alterations are possible in the environment that does not necessarily lead 

to simpler and less toxic compounds. Some of POP metabolites are equally complex and 

even more toxic than the parent molecules. Most of the degradation processes of POPs in the 
environment are assisted by microorganisms. Nevertheless, the half-lives of biodegradation 

processes of POPs are significantly long, thus accounting for their persistency in the environ-

ment. Some representative examples of POP degradations are as presented below.

6.1. Degradation of heptachlor

Heptachlor is known to undergo oxidative dechlorinating in the soil to form 1-hydroxychlor-

dene and by the influence of soil microorganisms to form heptachlor epoxide with a half-life 
of up to 112 days [15] as shown in Scheme 1.

6.2. Degradation of DDT

p,p’-DDT can be broken down in the soil by Enterobacter aerogenes microorganisms in the 

presence of UV light and/or iron catalyst to reduced dehydrochlorinated compounds, DDE, 
and DDD as well as oxidized derivatives which ultimately form p,p’-dichlorobenzophenone 

(Scheme 2). o,p’-DDT degrades in the same way as p,p’-DDT [16].

6.3. Degradation of endosulfan

The technical grade of endosulfan consists of two isomers, alpha and beta in the ratio of 70:30. 
In the environment, endosulfan is photolytically degraded to yield endosulfan sulfate in soil 

and endosulfan diol in aquatic environment. Endosulfan sulfate is equally toxic as the parent 
molecule (Scheme 3) [16].

6.4. Degradation of hexachlorobenzene

In anaerobic condition, biodegradation of HCB in an arable soil takes place with several dechlori-

nation steps, indicating the following main HCB transformation pathways: HCB → pentachloro-

benzene (QCB) → 1,2,3,5-tetrachlorobenzene (TeCB) → 1,3,5-TCB → 1,3-dichlorobenzene(DCB), 

with 1,3,5-TCB as the main intermediate dechlorination product [17] (Scheme 4).
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6.5. Degradation of aldrin/dieldrin

The NADPH
2
-dependent enzymatic oxidation of aldrin to dieldrin and aldrin to aldrin-

diol by two enzyme systems is present in excised roots. The enzymatic oxidation of aldrin 

in plants is known to be more species specific than the oxidation by microorganisms [10] 

(Scheme 5).

Scheme 1. Degradation pathways of heptachlor in the soil.

Scheme 2. Degradation of p,p’-DDT in the environment.
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6.6. Degradation of lindane

Dehydrohalogenation of lindane to γ-hexachlorocyclohexane takes place in moist soil and 

is attributed to the soil microorganisms such as Bacillus coli and Clostridium sporogenes. Also 

these bacteria produced trace amount of benzene and monochlorobenzene from lindane 

(Scheme 6) [18].

6.7. Degradation of PCBs

Various microorganisms are involved in a two-stage process of degradation of PCBs, which 

happens in aerobic and anaerobic environments. Degrading PCBs is similar to the degra-

dation of biphenyl. However, the chlorines on PCBs prevent them from being utilized as a 

substrate of biphenyl degradation. Due to high chemical stability, PCBs cannot be used as 

energy sources. However, due to the chlorination, PCBs can be used as electron acceptors in 

anaerobic respiration to store energy, which is also the first stage of the degradation pathway, 
reductive dechlorination. Once the PCBs are dechlorinated to a certain degree, usually lower 

than five chlorines presenting in the structure and one aromatic ring has no chlorine, they can 

Scheme 5. Degradation of aldrin in the environment.

Scheme 4. Degradation of hexachlorobenzene.

Scheme 3. Degradation of endosulfan in the environment.
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undergo the biphenyl degradation pathway (BP pathway) to be degraded to accessible carbon 

or CO
2
 in the aerobic environment. BP pathway is a pathway that utilizes series of enzymes 

(BphA, B, C, D, E, F, G) to convert biphenyl to TCA cycle intermediates (pyruvate and Acyl-
CoA) and benzoate. However, there are few microorganisms that can dechlorinate substrate 

under natural conditions. Even with selective media, the accumulation of PCB-dechlorinating 
microorganisms is still slow, which is one reason for the slow degradation rate. As a result, 

PCBs usually go through a co-metabolism pathway that involves different microorganism 
species [7, 14, 17, 25] (Scheme 7).

6.8. Degradation of dioxins by reductive dehalogenation

It has been well reported that several species of strictly or facultatively anaerobic bacteria are 

capable of de-halogenating chlorinated aliphatic and aromatic compounds. Some of these 

dehalogenation processes have been shown to couple to ATP synthesis via a chemiosmotic 

mechanism. The reductive dehalogenation linked to energy conservation is called “halor-

espiration” or “dehalorespiration.” For example, a sulfate-reducing bacterium, Desulfomonile 

tiedjei strain DCB-1, has been shown to conserve energy for growth from reductive dehaloge-

nation of 3-chlorobenzoate by an uncharacterized chemiosmotic process. Bacterial dehalor-

espiration with tri- or tetrachlorinated benzene as a terminal electron acceptor is also known 

to take place. Gibbs free energy of formation of various PCDDs/PCDFs and redox potentials 

for PCDD/PCDF substrate/product couples indicate that the reductive dehalogenation of 

PCDDs/PCDFs is an exergonic reaction, and this implies that microorganisms acquire energy 

via anaerobic electron transport with PCDDs/PCDFs as terminal electron acceptors.

Despite its physiological and ecological importance, the biological reductive dehalogenation 

of PCDDs/PCDFs as well as of PCBs has been studied much less than the aerobic biodegrada-

tion of dioxin-related compounds. This biological reaction has so far been studied mostly in 

sediments, sludge, and soils containing anaerobic microbial consortia. Earlier work related to 
this subject showed changes in PCDD-/PCDF-congener distribution patterns and the resultant 

Scheme 6. Degradation of lindane in the environment.
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accumulation of less-chlorinated forms in sediments. More intensive studies on microbial 
dehalogenation of PCDDs/PCDFs in the environment started appearing in the past decade. 

Microbial dehalogenation of PCDDs/PCDFs takes place by removal mainly at positions 1, 4, 
6, and/or 9 and led to much more toxic congeners, including 2,3,7,8-TCDD, in some cases. 

The maximum yield of cell protein coincided with the production of less-chlorinated DD iso-

mers, where no methanogenic activity was detected. Experiments with sediment microcosms 
spiked with the much less toxic congener 1,2,3,4-TCDD revealed that reductive dehalogena-

tion occurred at the lateral positions with 1,2,4-TrCDD as the main intermediate, leading to 

2-MCDD as the final end product. The available information indicates that MCDDs/MCDFs 
are not dehalogenated further [14, 19–21] (Scheme 8).

Scheme 8. Possible degradation pathways of reductive dechlorination of 1,2,3,4-TCDD (A) and 1,2,3,7,8-PeCDD (B) by 

Dehalococcoides sp. strain CBDB1.

Scheme 7. Degradation of PCBs in the environment.
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7. What can be done to control or remove POPs in the environment?

The Stockholm Convention on POPs clearly provides suggestive solutions by restricting the 

production and use of POPs in the environment. The Convention requires that production 

and use of POPs be stopped and their stockpiles destroyed so that the resulting products are 

no longer POP. Article 6 of the Convention addresses the identification and management of 
POP waste. The Convention requires that such wastes be managed in a safe, efficient, and 
environmentally sound manner and that the disposal be done such that the POP content be 

destroyed or irreversibly transformed so it is no longer a POP.

Stockpiles of POPs are well documented worldwide, which include obsolete pesticides, PCBs 

discarded from use (PCB oils and liquids), and heavily contaminated soil (e.g., soil surround-

ing landfills and deep wells containing POPs). To eliminate these stockpiles of POPs from 
the environment, two basic POP destruction technologies are suggested, namely, combustion 

technology and non-combustion technology.

The combustion technologies (hazardous waste incinerators, rotary kilns, furnaces, boilers, 

IR incinerators, etc.) are usually believed to be the most economically appropriate way for 
concentrated POP waste treatment. This is why in industrialized nations POP wastes are 

routinely burnt in incinerators, and for most countries combustion technologies still remain 

the most economically acceptable way to treat POP waste on the macroscale. Modern waste 
incinerators are designed to satisfy the required emissions levels.

Over the last 15 years, a number of non-combustion technologies have been demonstrated to 

effectively treat POP wastes in countries such as Canada, the USA, Australia, and Japan. Some 
methods, particularly for PCBs, are outlined by the UNEP. However, even developed non-
combustion technologies can hardly be competitive with incineration. Other non-combustion 

technologies lack in research or technical development, and most of them have a scarce com-

mercial operation history.

Current studies aimed at minimizing POPs in the environment are investigating their behav-

ior in photocatalytic oxidation reactions. POPs that are found in humans and in aquatic 

environments the most are the main subjects of these experiments. Aromatic and aliphatic 

degradation products have been identified in these reactions. Photochemical degradation 
is negligible compared to photocatalytic degradation. A method of removal of POPs from 

marine environments that has been explored is adsorption. It occurs when an absorbable 

solute comes into contact with a solid with a porous surface structure. Current efforts are 
more focused on banning the use and production of POPs worldwide rather than the removal 

of POPs [20, 22–24].

8. Conclusion

POPs pose one of the most challenging problems in environmental science and technology. 

Their fate, transport, and biodegradation in the environment occur via complex networks, 
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involving complicated interactions with other contaminants and with slow biodegradation 

and various physiological, chemical, and biological processes. Those processes can be used 

and modified in order to diminish their environmental concentration. There are more promis-

ing results of such activities performed by various researchers worldwide. Nevertheless, the 

still existing challenge is to develop a bioremediation strategy that involves and integrates 

different types of solutions, on the scale of the whole ecosystem, in order to optimize the 
effectiveness of pollutant removal from the environment. For POP stockpiles, the combustion 
technologies remain by far the most effective and economic method of removing them from 
the environment.
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