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Abstract

This chapter focuses on some of the most advances made in the field of stability, dynamic,
and aeroelastic optimization of functionally graded composite structures. Practical realis-
tic optimization models using different strategies for measuring structural performance
are presented and discussed. The selected design variables include the volume fractions of
the composite material constituents as well as geometrical and cross-sectional parameters.
The mathematical formulation is based on dimensionless quantities; therefore, the analy-
sis can be valid for different configurations and sizes. Such normalization has led to a
naturally scaled optimization model, which is favorable for most optimization techniques.
Case studies include structural dynamic optimization of thin-walled beams in bending
motion, optimization of drive shafts against torsional buckling and whirling, and aero-
elastic optimization of subsonic aircraft wings. Other stability problems concerning fluid-
structure interaction has also been addressed. Several design charts that are useful for
direct determination of the optimal values of the design variables are introduced. The
proposed mathematical models have succeeded in reaching the required optimum solu-
tions, within reasonable computational time, showing significant improvements in the
overall structural performance as compared with reference or known baseline designs.

Keywords: functionally graded materials, composite structures, optimum design,
buckling stability, structural dynamics, fluid-structure interaction

1. Introduction

Functionally graded materials (FGMs) are new generation of advanced composites that have

gained interest in several engineering applications such as spacecraft heat shields, high-

performance structural elements, and critical engine components [1, 2]. They are formed of two

or more constituent phases with a continuously variable composition producing properties that

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



change spatially within a structure. FGMs possess a number of advantages that make them

attractive in improving structural performance, such as maximized torsional rigidity of compos-

ite shafts [3], improved residual stress distribution and enhanced thermal properties [4], higher

natural frequencies of composite beams [5], and broader aeroelastic stability boundaries of

aircraft wings [6]. Actually, the concept of FGMs was originated in Japan in 1984 during a space

project, in the form of proposed thermal barrier material capable of withstanding high-

temperature gradients.

Figure 1 shows variation of the volume fraction through the thickness of a plate fabricated

from ceramic and metal. Ceramic provides high-temperature resistance because of its low

thermal conductivity, while metal secures the necessary strength and stiffness. FGMs may also

be developed using fiber-reinforced layers with a volume fraction of fibers that is coordinate

dependent, rather than constant, producing favorable properties or response [6]. In this chap-

ter, much attention is given to fibrous-type and their constitutive relationships.

An excellent review paper dealing with the basic knowledge and various aspects on the use of

FGMs and their wide applications is given by Birman and Byrd [7], who presented compre-

hensive discussions of the development related to stability and dynamic of FGM structures.

Closed-form expressions for calculating the natural frequencies of an axially graded beam

were derived in [8], where the modulus of elasticity was taken as a polynomial of the axial

coordinate along the beam’s length. An inverse problem was solved to find the stiffness and

mass distributions so that the chosen polynomial serves as an exact mode shape. Qian and

Batra [9] considered frequency optimization of a cantilevered plate with variable volume

fraction according to simple power laws. Genetic algorithm was implemented to find the

optimum values of the power exponents, which maximize the natural frequencies. They

concluded that the volume fraction needs to be varied in the longitudinal direction of the plate

rather than in the thickness direction. Another work presented an analytical approach for

Figure 1. FGM ceramic/metal particulate composite with volume fraction graded in the vertical direction [1].
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designing efficient patterns of FGM bars having maximized frequencies while maintaining the

total mass at a constant value [10]. The distribution of the volume fractions of the material

constituents was optimized using either discrete or continuous variations along the bar length.

In the context of structural stability, Elishakoff and Endres [11] considered buckling of an

axially graded cantilevered column and derived closed form solution for the mode shape and

the critical load. A semi-inverse method was employed to obtain the spatial distribution of the

elastic modulus in the axial direction. In Ref. [12], the buckling of simply supported three-layer

circular cylindrical shell under axial compressive load was analyzed. The middle layer

sandwiched with two isotropic layers was made of an isotropic FGM whose Young’s modulus

varies parabolically in the thickness direction. Classical shell theory was implemented under

the assumption of very small thickness/radius and very large length/radius ratios. Numerical

results showed that the buckling load increases with an increase in the average value of

Young’s modulus of the middle layer. An exact method was given in [13] for obtaining

column’s designs with the maximum possible critical buckling load under equality mass

constraint. Both material and wall thickness grading in the axial direction have been applied

to determine the required optimal solutions. Case studies and detailed results were given for

the cases of simply supported and cantilevered columns. Another work by Maalawi [14]

presented a mathematical model for enhancing the buckling stability of composite, thin-walled

rings/long cylinders under external pressure using radial material grading. The main structure

is made of multiangle fibrous laminated layups having different volume fractions within the

individual plies. This produced a piecewise grading of the material and thickness in the radial

direction. The critical buckling contours are plotted for different types of materials, showing

significant improvement in the overall stability limits of the structure under the imposed mass

constraint.

Considering dynamic aeroelasticity of FGM structures, Shin-Yao [15] investigated the effect of

variable fiber spacing on the supersonic flutter of composite laminates using the finite element

method and quasi-steady aerodynamic theory. The formulation of the location-dependent

stiffness and mass matrices due to nonhomogeneous material properties was derived. This

study first demonstrates the flutter analysis of composite laminates with variable fiber spacing.

Numerical results show that the sequence of the natural mode may be altered, and the two

natural frequencies may be close to each other because the fiber distribution may change the

distributed stiffness andmass of the plate. Therefore, it may change the flutter coalescent modes,

and the flutter boundary may be increased or decreased due to the variable fiber spacing. More

detailed discussions on stability, dynamic, and aeroelasticity of FGM structures are outlined in

Ref. [16]. The attained optimal solutions were determined by applying the global search tech-

niques [17, 18], which construct a number of starting points and use a local solver, such as

“fmincon” routine in the MatLab optimization toolbox [19]. Global search technique is distin-

guishedwith fast converging to the global optima even if it starts with a design point far from the

optimum. The local solver “fmincon” uses the method of sequential quadratic programming

(SQP), which has a theoretical basis related to the solution of a set of nonlinear equations using

Newton’s method and applies Kuhn-Tucker conditions to the Lagrangian of the constrained

optimization problem.
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It is the main intend of this chapter to present some fundamental issues concerning design

optimization of different types of functionally graded composite structures. Practical realistic

optimization models using different strategies for enhancing structural dynamics, stability, as

well as aeroelastic performance are presented and discussed. Case studies include frequency

optimization of thin-walled box beams, optimal design of drive shafts against torsional buck-

ling and whirling, and aeroelastic optimization of subsonic aircraft wings. Design of pipelines

against flow-induced flutter and/or divergence has also been addressed. Several design

charts that are useful for direct determination of the optimal values of the design variables

are introduced. In all, the given mathematical models can be regarded as useful design tools,

which may save designers from having to choose the values of some of their variables

arbitrarily.

2. Mathematical modeling of material grading

There are different scenarios in modeling the spatial variation of material properties of a

functionally graded structure. For example, Chen and Gibson [20] considered distributions

represented by polynomial functions and applied Galerkin’s method to calculate the required

polynomial coefficients from the resulting algebraic equations. They found that the linear

variation of the volume fraction is a best fit with that predicted experimentally for selected

composite beam specimens. Chi and Chung [21] studied the mechanical behavior of FGM

plates under transverse loading, where a constant Poisson’s ratio and variable moduli of

elasticity throughout the plate thickness were assumed. The volume fraction of the constituent

materials was defined by simple power laws, and closed form solutions using Fourier series

were given for the case of simply supported plates. In general, the distribution of the material

properties in functionally graded structures may be designed by either continuous or piece-

wise variation of the volume fraction in a specified direction. The most commonly utilized

distributions are summarized in what follows.

2.1. Thickness grading

The first early model of volume fraction variation through the thickness of a plate fabricated

from ceramic and metal was considered in [20]. This volume fraction is based on the mixture of

metal and ceramic and is an indicator of the material composition (volumetric wise) at any

given location in the thickness. If the volume fraction of ceramic is defined as “v” then the

volume fraction of metal is the remainder of the material, or (1 � v), assuming no voids are

present. A typical example, which was considered by numerous researchers in the field [1- 4]

assumed that the volume fraction “v” can be varied through the thickness coordinate z by the

power law (refer to Figure 1):

v zð Þ ¼
1

2
þ

z

h

� �p

� 1=2 ≤ z=hð Þ ≤ 1=2, p ≥ 0 (1)
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where h is the plate thickness and p is a volume fraction exponent, which dictates the amount

and distribution of ceramic in the plate. With higher values of p, the plate tends toward metal

while lower values tend toward ceramic (p = 0.0: fully ceramic, p = ∞: fully metal). Accordingly,

the distribution of the mechanical and physical properties of FGM can be defined in terms of the

material constants of the constituent phases based on a selected power-lawmodel. Designers can

vary the p-value to tailor the FGM to specific applications. In case of fibrous composites, Eq. (1)

ought to be modified to account for the limits imposed on the fiber volume fractions at

ẑ ¼ zlhð Þ ¼ �1=2 for consideration of other strength requirements and/or manufacturing restric-

tions. The modified form can be expressed as follows [5]:

vf ẑð Þ ¼ vf �0:5ð Þ þ vf 0:5ð Þ � vf �0:5ð Þ
� �

ẑ þ 0:5ð ÞP, (2)

Another type of the power-law expression was utilized by Bedjilili et al. [22], who considered

vibration of fibrous composite beams with a variable volume fraction through the thickness of

the cross section, as shown in Figure 2. It was concluded that by varying the fiber volume

fraction within the beam thickness to create a FGM, certain vibration characteristics are signif-

icantly affected. The utilized formula was given as:

vf ẑð Þ ¼ vf 0ð Þ þ vf 0:5ð Þ � vf 0ð Þ
� �

2 ẑj jð ÞP,

�0:5 ≤ ẑ ¼
z

h

� �

≤ 0:5, p ≥ 0
(3)

2.2. Spanwise grading

Some researchers considered grading of the fiber volume fraction in the spanwise (longitudi-

nal) direction of a composite plate. Librescu and Maalawi [6] investigated optimization of

composite wings using the concept of material grading in the spanwise direction. Both contin-

uous and discrete distributions of the fiber volume fractions were considered in the developed

optimization models. The following power-law expression was implemented:

Figure 2. Thickness distribution of the fiber volume fraction in FGM beam, vf (0) = 40%, vf (1/2) = 60% [22].
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vf ŷð Þ ¼ vfr 1� βf ŷ
P

� �

, 0 ≤ ŷ ¼
y

L

� �

≤ 1

βf ¼ 1� ∆f

� 	

,∆f ¼ vft=vfr

(4)

where vft and vfr are the fiber volume fractions at wing tip and root, respectively. Δf is called the

tapering ratio of the fiber volume fraction. Figure 3 shows the different patterns of the fiber

volume fraction distribution for different values of the power exponent p. Both configurations

of fibers aligned in the transverse (chordwise) and in the longitudinal (spanwise) directions are

shown. The volume fraction is constrained to lie between 25% and 75% in order not to violate

other strength and manufacturing requirements.

A more general distribution, given in Eq. (5), was tried by Shih-Yao [15], who applied it

successfully to investigate the effect of grading on the supersonic flutter of rectangular com-

posite plates.

vf ŷð Þ ¼ vfr βf 1� ŷnð Þ
p
þ ∆f

h i

, n ¼ 1, 2, 3 p ≥ 0 (5)

2.3. Determination of mechanical properties

A variety of approaches have been developed to predict the mechanical properties of fibrous

composite materials [23]. The common approaches fall into the following general categories:

mechanics of materials; numerical methods; variational approach; semiempirical formulas;

experimental measurements. Mechanics of materials approach is based on simplifying assump-

tions of either uniform strain or uniform stress in the constituents. Its predictions can be adequate

only for longitudinal properties of unidirectional continuous fibrous composites. Numerical

methods using finite difference, finite element, or boundary element methods yield the best

predictions; however, they are time-consuming and do not yield closed-form expressions. Vari-

ational methods based on energy principles have been developed to establish bounds (inequality

relations) on the effective properties. The bounds are close to each other in the case of longitudi-

nal properties, but they can be far apart in the case of transverse and shear properties. Semiem-

pirical relationships have been developed to avoid the difficulties with the above theoretical

approaches and to facilitate computations. The so-called Halpin-Tsai relationships have consis-

tent forms for all properties of fibrous composite materials and can be used to predict the effects

of a large number of system variables. Table 1 summarizes the mathematical formulas for

determining the equivalent mechanical and physical properties for known type and volume

fractions of the fiber (Vf) and matrix (Vm) materials [23]. The 1 and 2 subscripts denote the

principal directions of an orthotropic lamina, defined as follows: direction (1) principal fiber

direction, also called fiber longitudinal direction; direction (2) in-plane direction perpendicular

to fibers, transversal direction. The factor ξ is called the reinforcing efficiency and can be

determined experimentally for specified types of fiber and matrix materials. Whitney [24]
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Figure 3. Spanwise grading of fibers in a fibrous composite plate [6]. (a) Fibers aligned in chordwise direction, (b) fibers

aligned in spanwise direction, and (c) fiber volume fraction distribution for different power exponents.
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suggested the range 1 < ξ < 2 depending on the fiber array type, for example, hexagonal, square,

etc. Usually, ξ is taken equal to 1.0 for theoretical analysis procedures in the case of carbon or

glass fibrous composite laminates.

3. Frequency optimization of FGM thin-walled box beams

This section presents a mathematical model for optimizing the dynamic performance of thin-

walled FGM box beams with closed cross sections. The objective function is to maximize the

natural frequencies and place them at their target values to avoid the occurrence of large

amplitudes of vibration. The variables considered include fiber volume fraction, fiber orientation

angle, and ply thickness distributions. Various power-law expressions describing the distribution

of the fiber volume fraction have been implemented, where the power exponent was taken as the

main optimization variable [25]. The mass of the beam is kept equal to that of a known reference

beam. Side constraints are also imposed on the design variables in order to avoid having

unacceptable optimal solutions. A case study on the optimization of a cantilevered, single-cell

spar beam made of carbon/epoxy composite is considered. The results for the basic case of

uncoupled bending motion are given.

3.1. Structural dynamic analysis

Figure 4 shows a slender, composite thin-walled beam constructed from uniform segments,

each of which has different cross-sectional dimensions, material properties, and length.

Tapered shapes of an actual blade or wing spar can be adequately approximated by such a

piecewise structural model with a sufficient number of segments. The various parameters and

variables are normalized with respect to a reference beam, which is constructed from just one

segment with single unidirectional lamina having equal fiber and matrix volume fractions, that

is, Vfo = Vmo = 50%. The different quantities are defined in the following:

Ns = number of segments (panels).

j = subscript for the j-th segment, j = 1, 2,…….Ns.

Property Mathematical formula*

Young’s modulus in direction (1) E11 Em Vm + E1f Vf

Young’s modulus in direction (2) E22 Em (1 + ξηVf)/(1-ηVf); η = (E2f –Em)/(E2f + ξEm)

Shear modulus G12 Gm (1 + ξηVf)/(1-ηVf); η = (G12f –Gm)/(G12f + ξGm)

Poisson’s ratio ϑ12 ϑmVm þ ϑ12fV f

Mass density r rm Vm + rf Vf

*Subscripts “m” and “f” refer to properties of matrix and fiber materials, respectively.

Assuming no voids are present, then Vm + Vf = 1.

Table 1. Halpin-Tsai semiempirical relations for calculating composite properties [23].
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NL(j) = number of layers in the j-th segment.

k = subscript for the k-th layer, k = 1, 2,…NL(j).

L̂j ¼ Lj=Lo
�

) = normalized length of the j-th segment.

L̂ ¼ L=Loð Þ ¼
PNs

j¼1 L̂j = normalized total beam length.

Ĥ j = Hj=H0

� 	

= Ĥ j ¼
PNL jð Þ

k¼1 ĥkj= normalized total wall thickness of the j-th segment.

ĥkj ¼ hkj=H0

� 	

= normalized thickness of the k-th layer in the j-th segment.

θkj = fiber orientation angle in the k-th layer in the j-th segment.

Γ̂ j ¼ Γj=Γo ¼ ∮ Jds=∮ ods = normalized circumference of the j-th segment cross section.

Γj = πDj for circular C.S., Γj = 2(aj + bj) for rectangular C.S.

r̂kj ¼ rkj=ro = normalized density of the k-th layer in the j-th segment.

V f ,kj = fiber volume fraction in the k-th layer in the j-th segment.

rkj = rfV f ,kj þ rm 1� V f ,kj

� 	

, ro ¼ 0.5(rf + rm).

Figure 4. General configuration of a multisegment, composite box beam [25]. (a) Circular cross section, (b) rectangular

cross section.
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rf = fiber mass density, rm = matrix density.

m̂ j ¼ mj=mo

� 	
¼ normalized mass per unit length of the j-th segment.

mj ¼ Γj

PNL jð Þ
k¼1 rkjhkj = mass per unit length of the j-th segment, mo ¼ ΓoroHo.

Ij = mass polar moment of inertia per unit length of the j-th segment.

=
PNL jð Þ

k ∮ rkjhkj y
2 þ z2

� 	
ds.

The normalized total structural mass is given by the expression:

bMs ¼ Ms=M0 ¼
XNs

j¼1

bMj ¼
XNs

j¼1

m̂ jL̂j ¼
XNs

j¼1

Γ̂ jL̂j

XNL jð Þ

k¼1

r̂kjĥkj (6)

where Mo ¼ moLo ¼ ΓoroHoLo is the total mass of the uniform baseline design. A quantity with

subscript “o” refers to a reference beam parameter.

3.1.1. Constitutive relationships

The displacement field of anisotropic thin-walled closed cross-sectional beams was derived by

Dancila and Armanios [26], who used a variational asymptotic approach to obtain the follow-

ing constitutive equations:

Fx

Mx

My

Mz

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

¼

C11 C12

C12 C22

C13 C14

C23 C24

C13 C23

C14 C24

C33 C34

C34 C44

2

6666664

3

7777775

U0
1

φ0

U00
3

U00
2

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

(7)

where Fx, Mx, My, and Mz stand for the axial force, torsional, and bending moments, respec-

tively, and Cmn are the cross-sectional stiffness coefficients derived in terms of closed-form

integrals of the geometry and material constants. The notations U1, U2, U3, and ϕ are the

kinematic variables representing the average displacements and rotation of the cross section.

The primes denote differentiation with respect to x.

3.1.2. Equations of motion

The general equations of motion for the free vibration analysis are derived using Hamilton’s

principle and expressed in terms of the kinematic variables, where it was shown that a closed

form solution is not available [25]. However, particular choices of cross-sectional shape and

layup can produce zero coupling coefficients in the equations of motion. Two special layup

configurations can be considered, namely circumferentially uniform stiffness (CUS) and

circumferentially asymmetric stiffness (CAS). The equations of the CUS type consist of two

coupled equations for extension-twist and two uncoupled bending equations. For the CAS type,
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the extension displacement (U1) is uncoupled, as well as the edgewise bending (U2), while the

flapping displacement (U3) is coupled with twist (φ). The general solution can be obtained by

separating the space and time variables, where the time dependence is assumed to be harmonic

with circular frequency, ω. The solutions for the uncoupled axial and bending equations are

straightforward, while those for the coupled equations involve much mathematics [26].

3.1.3. Solution procedure of uncoupled bending motion

The basic important case to be considered first is the uncoupled bending response, which exists

in both CUS and CAS layup configurations. Using the multisegment model depicted in Figure 4

and considering flapping motion (U3), the associated eigenvalue problem can be written directly

in the form:

C33, jU
0000
3 � ω2mjU3 ¼ 0 (8)

which must be satisfied over the length Lj of any segment composing the beam structure.

Normalizing with respect to the reference beam, we get:

Û 0000
3 � β̂4

j Û3 ¼ 0 (9)

where β̂ j=
ffiffiffiffi

ω̂
p

m̂ j=Ĉ33, j

� �1=4
, Ĉ33, j ¼ C33, j=C33,0, and ω̂ ¼ ωL20

m0

C33,0

� �1=2
. Eq. (9) must be satisfied

in the interval 0 ≤ x ≤ L̂j, where x ¼ x̂ � x̂j is a local coordinate of the j-th segment and

x̂ ¼ x=Loð Þ: The general solution is well known to be:

Û3 xð Þ ¼ a1 sin β̂ jxþ a2 cos β̂ jxþ a3 sinh β̂ jxþ a4 cosh β̂jx (10)

Expressing the constants ai, i ¼ 1, 2, 3, 4 in terms of the state variables vector {S}T =

{U3 �U0
3 � C33U

00
3 � C33U

000
3 gT at both ends of the j-th segment, we get

Sf gjþ1 ¼ T jð Þ
h i

Sf gj (11)

where [T(j)] is called the transfer matrix of the j-th segment with its elements given in detail

in Ref. [25]. The state variable vectors can be computed progressively along the length of

the beam by applying continuity among the interconnecting joints of the different segments

composing the beam structure. An overall transfer matrix denoted by [T], which relates

the state variables at both ends of the beam, can be obtained from the following matrix

multiplication:

T½ � ¼ T Nsð Þ
h i

T Ns�1ð Þ
h i

……:: T 2ð Þ
h i

T 1ð Þ
h i

(12)

The required frequency equation for determining the natural frequencies can then be obtained

by applying the associated boundary conditions and considering only the nontrivial solution

of the resulting matrix equation.
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3.2. Formulation of the optimization problem

Several design objectives can exist in structural optimization including minimum mass, maxi-

mum natural frequencies, minimum manufacturing cost, etc. [17]. Considering the reduction of

vibration level, two optimization alternatives can be formulated, namely, frequency placement

by separating the natural frequencies from the harmonics of the excitations or direct maximiza-

tion of the natural frequencies. The latter can ensure a simultaneous balanced improvement in

both stiffness and mass distributions of the vibrating structure. The related optimization prob-

lems are usually formulated as nonlinear mathematical programming problem where iterative

techniques are implemented for finding the optimal solution in the selected design space.

Numerous computer programs [18] are available to solve nonlinear optimization models, which

can be interacted with structural and eigenvalue analyses routines. The MATLAB toolbox opti-

mization routines can be useful in solving some types of unconstrained and constrained optimi-

zation problems. One of the most commonly applied routines that find the constrained optima of

a nonlinear merit function of many variables is named “fmincon” [19].

3.2.1. Basic optimization problem

Before performing the necessary mathematics, it is essential to recognize that design optimiza-

tion is only as meaningful as its core model of structural analysis. Any deficiencies therein will

absolutely be affected in the optimization process. Consider the basic problem of a uniform

cantilevered, thin-walled, single-cell spar constructed from just one segment with one unidi-

rectional lamina (Ns = 1, NL = 1). The total length and outer cross-sectional dimensions are

given preassigned values equal to those of the baseline design. The remaining set of variables

is, therefore, X = V f ; Ĥ ;θ
� �

. The associated frequency equation for such a basic case is:

cos β̂L̂ cosh β̂L̂ ¼ �1, or cos
ffiffiffiffi

ω̂
p

m̂=Ĉ33

� �1
4
L̂ cosh

ffiffiffiffi

ω̂
p

m̂=Ĉ33

� �1
4
L̂ ¼ �1 (13)

It is seen that
ffiffiffiffi

ω̂
p

is an implicit function of the design variables and can be calculated numer-

ically by any suitable method such as Newton-Raphson or the Bisection method. However, the

frequency equation can be solved directly for the whole term
ffiffiffiffi

ω̂
p

m̂=Ĉ33

� �1
4

L̂ without regard to

the specific values of the design variables. The computed roots are:

ffiffiffiffiffi

ω̂ i

p

¼ Ĉ33=m̂
� �1

4 1

L̂

� �

1:8751, 4:6941, 7:8548,…π i� 0:5ð Þ i ≥ 4ð (14)

In Eq. (14), the frequency parameter
ffiffiffiffiffi

ω̂ i

p
can be imagined as an explicit function of the design

variables. So, for prescribed values of the design variables within the domain of side con-

straints,
ffiffiffiffiffi

ω̂ i

p
can be obtained directly from the above equation. Therefore, it is possible to place

the frequency at its desired value and obtain the corresponding value of any one of the design

variables directly from Eq. (14). The selected composite material of construction is made of

epoxy-3501-6 and carbon-AS4 (see Table 2), which has favorable properties and is highly

recommended in many applications of civil, aerospace, and mechanical engineering [23].
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Figure 5 depicts the functional behavior of the dimensionless fundamental frequency param-

eter
ffiffiffiffiffiffi

ω̂1

p
combined with the structural mass constraint (M̂s ¼ 1). The imposed side constraints

are:

0:25; 0:75;�π=2ð Þ ≤ V f ; Ĥ ;θ
� �

≤ 0:75; 1:25;π=2ð Þ (15)

It is remarked that the function is continuous and well behaved everywhere in (Vf – θ) design

space. The contours are symmetric about the horizontal line θ = 0 where the constrained global

maxima occurs when the fiber volume fraction reaches its upper limiting value. It can then be

concluded that the unidirectional lamina is favorable when considering beam designs with

Property Fiber: Carbon-AS4 Matrix: Epoxy-3501-6

Density (g/cm3) rf = 1.81 rm = 1.27

Modulus of elasticity (GPa) E1f = 235.0

E2f = 15.0

Em = 4.30

Modulus of rigidity (GPa) G12f = 27.0 Gm = 1.60

Poisson’s ratio ν12f = 0.20 νm = 0.35

Table 2. Material properties of fiber and matrix materials [23].

Figure 5. Level curvesof
ffiffiffiffiffiffi

ω̂1

p
function augmentedwith the constraint M̂s ¼ 1 in V f � θ

� 	

design space (Ns= 1,NL = 1, L̂ ¼ 1Þ.
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maximum bending frequency. The optimal design point was found to be (Vf, Ĥ , θ) = (0.75, 0.92, 0)

at which
ffiffiffiffiffiffi

ω1
p� 	

max
¼ 2:02589. This corresponds to an optimization gain of about 8.04% as

measured from the reference value 1.8751. Before ending this section, it is interesting to address

here the dual optimization problem of minimizing the total structural mass under preserved

frequency (
ffiffiffiffiffiffi

ω̂1

p
=1.8751). The optimal solutionwas calculated to be (Vf, Ĥ , θ) = (0.50, 0.915, 0) and

M̂s,min = 0.915, which corresponds to a mass saving of 8.5% as compared to the baseline design.

A couple of words are stated here regarding the side constraints in Eq. (15). First of all, it is

reminded that the main focus of the present study is to optimize the fiber volume fraction in

order to achieve higher values of the natural frequencies without mass penalty. The optimization

is performed with respect to a known baseline design, which is considered to be conservative

having reserve strength to withstand severe dynamic loads. The imposed side constraint on the

total wall thickness, normalized with respect to that of the baseline design, is included for

consideration of strength and stability requirements, which are not considered in the present

study. So, the imposed limits with a percentage of 25% below or above that of the baseline can be

practically accepted for the given model formulation. On the other hand, appropriate values of

the upper and lower bounds imposed on the fiber volume fraction are chosen to avoid having

unacceptable designs from the manufacture point of view. For example, the filament winding is

usually associated with the highest fiber volume fractions. With careful control of fiber tension

and resin content, values of around 75% would be reasonable [27].

3.2.2. Optimization model for discrete grading

A comprehensive analysis and formulation of discrete optimization models for beam structures

considering both stability and dynamic performance were formulated in [28], where mathemat-

ical programming coupled with finite element analysis procedures was implemented. For the

case of a two-segment spar beam, (Ns = 2, NL = 1), the reduced optimization problem can be

defined as follows:

Minimize F Xð Þ ¼ –

ffiffiffiffiffiffi

ω̂1

p

� �

Subject to M̂s ¼ 1

X

Ns

1

L̂j ¼ 1

0:25; 0:0ð Þ ≤ Vfj; L̂j

� �

j¼1,2
≤ 0:75; 1:0ð Þ

(16)

Using the equality constraints, two of the design variables can be expressed in terms of the

other two variables. Figure 6 shows the functional behavior of the dimensionless frequency

combined with the structural mass constraint. It is remarked that the function is well defined

in the feasible domain of the selected design space (VA �L̂)1. Two empty regions can be

observed at the upper left and right parts of the design space, where violation of the equality
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mass constraint is indicated. In the left one, the fiber volume fraction is equal to 100%,

violating the imposed side constraint. The feasible domain is seen to be split into two distinct

zones separated by the baseline contour, which is represented by the vertical line Vf1 = 50%.

The constrained optimum is to found to be (V fj, L̂jÞj¼1,2 = (0.75, 0.50), (0.25, 0.50) corresponding

to (
ffiffiffiffiffiffi

ω̂1

p
)max = 2.0645 with 10.10% optimization gain.

3.2.3. Optimization model for continuous grading

For continuous grading models, the associated optimization problem is cast as follows: find

the design variables vector X = (Δf, p), which minimizes the objective function:

F Xð Þ ¼ �
ffiffiffiffiffiffi

ω̂1

p

subject to the constraints:

M̂s ¼ 1

0:33 ≤ ∆f ≤ 3:0

P ≥ 0

(17)

Figure 6. Level curves of
ffiffiffiffiffiffi

ω̂1

p
function augmented with M̂s ¼ 1 in V f 1; L̂1

� �

design space (Ns = 2).
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Solutions obtained by applying the power-law model of Eq. (3) have shown that no improve-

ments can be achieved using grading of the fiber volume fraction in the thickness direction. On

the other hand, grading in spanwise direction has shown some interesting results. Considering

spanwise grading according to Eq. (4), Figure 7 depicts the level curves of the fundamental

frequency parameter
ffiffiffiffiffiffi

ω̂1

p
combined with the mass constraint in the design space ∆f ; p

� 	

. It is

observed that the feasible domain is bounded from below and above by the constraint curves

corresponding to the upper and lower bounds imposed on the fiber volume fractions at tip and

root. The horizontal line ∆f = 1.0 (i.e., Vf = 50% at root and tip) split the domain into two zones.

The lower zone encompasses the constrained optimum solution: (
ffiffiffiffiffiffi

ω̂1

p
)max = 2.01875 at the

design point (∆f, P)opt. = (0.34, 1.01).

Figure 7. Level curves of
ffiffiffiffiffiffi

ω̂1

p
function augmented with M̂s ¼ 1 in ∆f ; p

� 	

design space (Ns = NL = 1) with spanwise

grading “Eq. 4.”

Vf—power-law model (Δf, p)opt.,
ffiffiffiffiffiffi

ω1
p� 	

max
, gain %

Thickness grading (Eq. (3)) (1.0, 0.0), 1.8751 0.0%

Spanwise grading (Eq. (4)) (0.34, 1.01), 2.01875, 7.66%

Spanwise grading (Eq. 5)

n = 1 (0.34, 1.02), 2.01938, 7.70%

n = 2 (0.34, 2.425), 2.04813, 9.23%

n = 3 (0.34, 5.175), 2.06125, 9.93%

Table 3. Optimal solutions using different grading patterns (M̂s = 1).
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Table 3 summarizes the attained optimal solutions for the different grading patterns. It is seen

that the highest optimization gain is obtained by using spanwise grading of Eq. (5) with the

coordinate exponent n = 3.

4. Optimization of FGM drive shafts against torsional buckling and

whirling

One of the important design issues in mechanical industries is the buckling and whirling

instabilities that may arise from the loads applied to a power transmission shaft. These insta-

bilities result in a reduced control of the vehicle, undesirable performance, and often cause

damage, sometimes catastrophic, to the vehicle structure. Therefore, by incorporating such

considerations into an early design optimization [29], the design space of a power transmission

shaft will be reduced such that undesirable instability effects can be avoided during the range

of the vehicle’s mission profile. Figure 8 shows an idealized structural model of a long, slender

composite shaft having circular thin-walled cross section. The main structure is constructed

solely of functionally graded, fibrous composite materials. The laminate coordinates are

defined by x parallel to the shaft axis, y points to the tangential direction, and z points to the

radial direction. Predictions of both torsional buckling and whirling instabilities are based on

simplified analytical solutions of equivalent beam and shell structures. The coupling between

bending and torsional deformations, introduced by the composite construction, and its influ-

ence on such instabilities is considered.

4.1. Torsional buckling optimization problem

Bert and Kim [30] derived the governing differential equations of torsional buckling in the form:

Nx,x þNyx,y � 2Tu,xy ¼ 0

Nxy,x þNy,y þ Mxy,x=R
� 	

þ My,y=R
� 	

� 2T v,y þ w,x=R
� 	

¼ 0

Mx,xx þ Mxy þMyx

� 	

,xy
þMy,yy �Ny=Rþ 2T v,x=R� w,xy

� 	

¼ 0

(18)

where Nx and Ny are the normal forces, Nxy and Nyx are shear forces, Mx and My are bending

moments, and Mxy and Myx are torsional moments. All are applied to the midsurface and

measured per unit wall thickness of the shaft. T is the applied torque, R is the mean radius, and

(u, v, w) are the displacements of a generic point on the middle surface of the shaft wall. An

iterative process is outlined in Ref. [30] for calculating the buckling torque for specified boundary

conditions. There are other simple empirical equations based on experimental studies that can

give a reasonable estimate of the buckling torque. The most commonly used formula for the case

of simply supported shaft is [31]:

Tcr ¼ 2πR2H
� 	

0:272ð Þ Exð Þ0:25 Ey

� 	0:75
H=Rð Þ1:5 (19)

where Tcr is the critical buckling torque and H is the total wall thickness of the shaft. Expres-

sions of the equivalent modulii of elasticity in the axial (Ex) and hoop (Ey) directions for
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symmetric and balanced laminates are given in Ref. [31]. The various parameters and variables

are normalized with respect to known baseline design, which is constructed from cross-ply

laminates [0o/900]N with equal volume fractions of the fibers and matrix materials, that is,

Vf = Vm = 50%. Optimized shaft designs shall have the same transmitted power, length, outer

diameter, boundary conditions, and material properties of those known for the baseline design.

The different dimensionless quantities are defined in Ref. [31]. The optimal torsional buckl-

ing problem is to find the design variables vectorX
!
¼ V f ;θ; ĥ

� �

k¼1,2,…NL

, which minimizes the

objective function:

Minimize F ¼ �T̂ cr

subject to mass limitation : M̂ � 1 ≤ 0
(20)

Torsional strength :
τmax

τallow

� �

� 1:0 ≤ 0

Whirling : Ω̂max � Ω̂cr ≤ 0

(21)

Side constraints : 0:30;�
π

2
; 0:015

� �

≤ V f ;θ; ĥ
� �

k¼1,2,…NL

≤ 0:70;
π

2
; 0:20

� �

0:75 ≤
X

NL

k¼1

ĥk ≤ 1:25
(22)

where T̂ cr ¼ Tcr=Tcro, Ω̂ ¼ Ω ∗ 2πð Þ= 60ω1,o

� 	

are the dimensionless critical torque and rota-

tional speed, respectively. The baseline design parameters are denoted by subscript “o.”

τmax ¼ Tmax=2πR
2H

� 	

is the maximum shear stress, Tmax is the maximum applied torque, and

τallow is the allowable shear stress that can be calculated according to the embedded material

properties and volume fraction of the fiber [23]. This optimization problem may be thought as a

search in an (3NL) dimensional space for a point corresponding to the minimum value of the

objective function and such that it lies within the region bounded by subspaces representing the

constraint functions. It must be noted that the outside dimensions (outer diameter and length) of

Figure 8. Shaft model and definition of reference axes.
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the shaft are restricted by the available interior space of the vehicle and will be considered as

preassigned parameters in the present model formulation. The first case study to be examined

herein is a shaft with discrete thickness grading constructed from eight plies (�θ �θ)s with the

same properties of carbon/epoxy composites (see Table 2) and same thicknesses. This sequence

is applied in filament wound circular shells, as such a process demands adjacent (�θ) layers.

Figure 9 depicts the obtained contours in the (Vf1-θ) design space, which are, as seen, monotonic

and symmetric about the zero ply angle. A local maximum of T̂ cr can be observed near the

design point (Vf1,θ) = (0.7, 90o) with T̂ cr = 1. This figure illustrates that the maximum critical

buckling torque can be achieved when the fiber orientation angle is close to 90o. Other case

studies including both discrete and continuous grading with several optimal solutions can be

found in Ref. [31]. At the start of the optimization process in each case, the shaft wall was

divided into a large number of layers with equal thicknesses, for example, NL = 32. It has been

found that the optimization algorithm treats the number of layers as an additional implicit

variable. Sometimes the computer discards one or more layers by letting their thicknesses sink

to the lower limits and sometimes makes some consecutive layers identical, that is, having the

same fiber orientation and volume fraction. Such a situation was repeated for many cases of

study. It was found that the appropriate number to be taken for the shaft problem under

consideration is NL = 8. This would eliminate much of the numerical effort necessary for

performing structural analysis in each optimization cycle and, consequently, reduces the com-

putational time considerably.

The final attained optimal solution was a cross ply layup [900/00]4 with the fiber volume

fraction in the eight layers reached its upper value of 70%. The optimal dimensionless ply

Figure 9. T̂ cr—contours in (Vf1-θ) design space under mass constraint M̂ ¼ 1. (Case of drive shaft with eight symmetric,

balanced, carbon/ epoxy layers)
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thickness was found to be [0.1994, 0.0967, 0.152, 0.019]s at which the shaft torsional buckling

capacity was increased by 32.1% above that of the baseline design. However, the total struc-

tural mass has reached its baseline value, and whirling constraint became active at the

achieved optimum design point.

4.2. Whirling optimization problem

The calculation of the critical speed, also referred to as whirl instability of a rotating shaft, is

based on the work given in Refs. [32, 33]. The critical speed is defined as the point at which the

spinning shaft reaches its first natural frequency. The shaft is modeled as a Timoshenko beam,

which implies that first-order shear deformation theory with rotatory inertia and gyroscopic

action was used. The shaft is assumed to be pinned at both ends with a Cartesian coordinate

system (x, y, z), where x is measured along the longitudinal axis of the shaft. The displacements

in the y and z directions are denoted by v and w, respectively, and Φ is the angle of twist. The

cross-sectional area, second moment of area, and polar moment of area are denoted by A, I,

and J, respectively. The equations of motion are derived by invoking Hamilton’s principle,

with the following results [32]:

CB

∂
2v

∂X4
þ rA

∂
2v

∂t2
� rI þ

CB

CS

rA

� �

∂
4v

∂X2
∂t2

� 2rIΩ
∂
3w

∂x2∂t
�
rA

CS

∂
3w

∂t3

� �

þ
rIrA

CS

∂
4v

∂t4
þ CBT=2ð Þ

∂
3ϕ

∂x3
¼ 0

(23)

CB

∂
4w

∂x4
þ rA

∂
2w

∂t2
� rI þ

CB

CS

rA

� �

∂
4w

∂x2∂t2
þ 2rIΩ

∂
3v

∂x2∂t
�
rA

CS

∂
3v

∂t3

� �

þ
rIrA

CS

∂
4w

∂t4
þ CBT=2ð Þ

∂
3ϕ

∂x3
¼ 0

(24)

CBT=2ð Þ
∂
3v

∂x3
þ

∂
3w

∂x3

� �

� CBT=2ð Þ
rA

CS

∂
3v

∂x∂t2
þ

∂
3w

∂x∂t2

� �

þ CT

∂
2ϕ

∂x2
� rJ

∂
2ϕ

∂t2
¼ 0 (25)

The symbol t denotes time and Ω the rotational speed. The rA, rI, and rJ terms account for

translational, rotary, and torsional inertias, respectively, while the 2rI terms account for the

gyroscopic inertia effects. It is assumed that the flexural and bending-twisting coupling rigid-

ities (CB and CBT) associated with bending about the y and z axes are identical; likewise for the

transverse shear stiffness (Cs) [32]. Bert and Kim [33] considered the case of simply supported

shaft and assumed separable solution in space and time to solve the associated eigenvalue

problem. The derived frequency equation is given by:

C2
11 � C2

12

� 	

C33 � 2C11C13C31 ¼ 0

C11 ¼ CBλ
4 � rI þ

CB

CS

rA

� �

ω
2
λ
2 þ

rIrA

CS

ω
2 � rAω2

� �

(26)

C12 ¼ 2rIΩω λ
2 �

rA

CS

ω
2

� �

; C13 ¼ CBT=2ð Þλ3

C31 ¼ C13 � CBT=2ð Þ rA=CSð Þλω2; C33 ¼ CTλ
2 � rJω2

(27)

Optimum Composite Structures176



where λ ¼ nπ=L, ω = circular natural frequency, and n = mode number. For each natural

frequency of the nonrotating shaft, the rotational speed (Ω) develops gyroscopic moments,

which cause the natural frequency to bifurcate into two. The higher of the two increases withΩ

and is associated with forward precession, while the lower one decreases with Ω and is

associated with backward precession. A critical instability occurs when the rotational speed

coincides with the first backward-precision natural frequency, which is termed as the first

critical speed. Two alternatives may be considered regarding the whirling optimization prob-

lem [34]:

(a) Direct maximization of the critical rotational speed

Find the design variables vector X
!
¼ V f ;θ; ĥ

� �

k¼1,2,…NL

, which minimizes the objective func-

tion:

Minimize F ¼ �Ω̂cr

Subject to M̂ � 1 ≤ 0
(28)

τmax

τallow

� �

� 1:0 ≤ 0

Tmax

Tcr,o

� �

� T̂ cr ≤ 0

(29)

(b) Placement of the critical speed

The other alternative of the objective function is defined by:

Minimize F ¼ Ω̂cr � Ω̂
∗

� �2
(30)

The same set of constraints given in Eq. (23) is applied. The notation Ω̂
∗

is a dimensionless

target rotational speed, which should be greater than the maximum permissible rotational

speed by a reasonable margin (e.g., 10–20%). As a case study, a drive shaft with continuous

material grading along the shaft axis is optimized considering the following power-law model:

V f x̂ð Þ ¼ V f 0:5ð Þ þ V f 0ð Þ � V f 0:5ð Þ
� �

1� 2 x̂j jð Þnð Þ
P
, (31)

where Vf (0) is the fiber volume fraction at the right or left end of the drive shaft, while Vf (0.5)

is the fiber volume fraction at the middle of the shaft length. Figure 10 illustrates the level

curves of the normalized critical speed augmented with the mass equality constraint. It is seen

that there are four distinct zones separated by the contour lines Ω̂cr ¼ 1:0. The upper left zone

and lower right zone contain local maximum solutions. The best point (p, ∆f) = (4.53, 0.3),

corresponding to Ω̂cr ¼ 1:045, is located inside the zone where the fiber taper ratio ∆f ¼

V f 0ð Þ=V f 0:5ð Þ is less than one. The upper empty zone contains infeasible solutions that violate

the imposed constraints. Another case study considers the through-thickness grading pattern
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given by Eq. (3). The corresponding design variable vector is defined by X
!
¼ V f 0ð Þ;V f

1
2

� 	

; p; Ĥ
� �

with lower and upper limits XL

!
= (0.3, 0.3, 0, 0.75) and XU

!
= (0.7, 0.7, ∞, 1.25). The attained

optimal design variable vector was calculated to be Xopt

!
¼ 0:7; 0:3; 5:61; 0:955ð Þ at which the

maximum critical speed increased by 14% above that of the baseline design with active mass

constraint.

A last optimization strategy to be addressed here is to combine the two criteria in a single

objective function subject to the mass, strength, and side constraints.

Minimize F ¼ � Ω̂cr þ T̂ cr

� �

Subject to M̂ � 1 ≤ 0

τmax

τallow

� �

� 1:0 ≤ 0

(32)

Eq. (22) assumes that whirling and torsional buckling instabilities are of equal relative impor-

tance. This model resulted in a balanced improvement in both stabilities with active mass

constraint. The attained optimal solution was found to have a uniform distribution of the

fiber volume fraction with its upper limiting value of 70% and wall thickness = 0.935. The

corresponding optimal values of the design objectives were Ω̂cr ¼ 1:135 and T̂ cr ¼ 1:161,

representing optimization gains 13.5 and 16.1%, respectively, as measured from the baseline

design.

Figure 10. Normalized critical speed Ω̂cr augmented with the mass constraint (M̂ ¼ 1:0) in (p-∆f) design space.
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5. Optimization of FGM wings against divergence

The use of the in-plane grading in aeroelastic design was first exploited by Librescu and

Maalawi [6], who introduced the underlying concepts of using material grading in optimizing

subsonic rectangular wings against torsional instability. Exact mathematical models were

developed allowing the material physical and mechanical properties to change in the wing

spanwise direction, where both continuous and piecewise structural models were successfully

implemented. In this section, analytical solutions are developed for slender tapered composite

wings through optimal grading of the material volume fraction in the spanwise direction. The

enhancement of the wing torsional stability is measured by maximization of the critical flight

speed at which aeroelastic divergence occurs. The total structural mass is maintained at a value

equals to that of a known baseline design in order not to violate other performance require-

ments. Figure 11 depicts a slender wing constructed from Np panels with trapezoidal plan-

form and known airfoil cross section. The wing is considered to be made of unidirectional

fiber-reinforced composites with variable fiber volume fraction in the spanwise direction. The

flow is taken to be steady and incompressible, and the aspect ratio is assumed to be sufficiently

large so that the classical engineering theory of torsion can be applicable and the state of

deformation described in terms of one space coordinate.

The chord distribution is assumed to have the form:

C xð Þ ¼ Cr 1� βcx
� 	

, βc ¼ 1� Δcð Þ (33)

The symbol Δc denotes the chord taper ratio (= tip chord Ct/root chord Cr) and x (= x1/L)

denotes the dimensionless spanwise coordinate. The equivalent shear modulus G of a

unidirectional reinforced composite, thin-walled cross section can be determined from the

relation [35]:

G ¼ f 1 G12 (34)

where f1 is a function that depends on the geometry and thickness ratio of the cross section (h/

C) and the ratio (G12/ G13), where G12 and G13 are the in-plane and out-of-plane shear moduli,

Figure 11. Trapezoidal wing planform and cross section geometry. (a) Multipanel, piecewise wing model, (b) airfoil

section and applied airloads.
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respectively (refer to Table 1). C is the chord length and h is the maximum thickness of the

cross section. For many types of fibrous composites that are commonly utilized in aerospace

industry [23], such as carbon/epoxy and graphite epoxy, both moduli are approximately equal,

G12 ≈ G13.

Using the classical elasticity and aerodynamic strip theories, the governing differential equa-

tion of torsional stability in dimensionless form is [35]:

ĜĴα0
� �0

þ V̂
2
α xð Þ ¼ 0 (35)

The associated boundary conditions of the elastic angle of attack, α, are α(0) = 0 and α0 1ð Þ ¼ 0.

The symbol Ĝ ¼ G12=G12,o denotes the dimensionless shear modulus, Ĵ ¼ J=Jr denotes the

dimensionless torsion constant, and the prime denotes differentiation with respect to the dimen-

sionless coordinate x = x1/L. The dimensionless flight speed is defined by V̂ ¼ VCrb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rae=2GJr
p

,

where (GJ)r is the torsional stiffness of the baseline design at root. The shear modulus G12,0 of the

baseline design can be calculated by taking Vfo = 50%.

Considering the K-th panel of the wing as shown in Figure 11a, and using the transformation

y = (1-βx), Eq. (25) takes the form:

zα00 þ 3α0 þ a2kα ¼ 0, 1-βxkþ1

� 	

≤ y ≤ 1� βxk
� 	

(36)

where ak ¼ V̂=β

ffiffiffiffiffiffiffiffiffiffiffiffi

ĥkĜk

q

, ĥk and Ĝk are the normalized wall thickness and shear modulus of

the kth wing panel, respectively. The general solution of Eq. (26) is:

α yð Þ ¼ A1

J2 2
ffiffiffiffiffiffiffi

aky
p� 	

y
� A2

Y2 2
ffiffiffiffiffiffiffi

aky
p� 	

y
(37)

where J2 and Y2 are Bessel’s function of the first and second kind with order 2, respectively

[35], and A1 and A2 are the constants of integration. The dimensionless internal torsional

moment, T, can be obtained by differentiating Eq. (27) and multiplying by the dimensionless

shear rigidity. Applying the boundary conditions at stations (k) and (k + 1), the constants A1

and A2 can be expressed in terms of the state variables at station (k), which can be related to

those at station (k + 1) by the transfer matrix relation:

αkþ1

Tkþ1

( )

¼ E kð Þ
h i αk

Tk

( )

(38)

It is now possible to compute the state variables progressively along the wing span by apply-

ing continuity requirements of the variables (α, T) among the interconnecting boundaries of

the various wing panels. The divergence speed can be calculated by applying the boundary

conditions and considering the nontrivial solution of the resulting equations (similar to the

procedure outlined in Section 3.1.3). The associated optimization problem may be cast in the

following:
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Minimize� V̂ div

Subject to M̂s � 1:0 ≤ 0

0:25; 0:5; 0:0ð Þ ≤ V f ; ĥ; b̂
� �

k¼1,2, ::Np
≤ 0:75; 1:25; 1:0ð Þ

P

b̂k ¼ 1:0

(39)

The preassigned parameters that do not change during the optimization process include the

wing semispan (b), the chord taper ration (∆c), airfoil type and geometry, and fiber and resin

material types. This model has been applied to obtain wing designs with improved torsional

stability by maximizing the divergence speed (Vdiv) without weight penalty. The selected

material is carbon-AS4/epoxy-3501-6 composite (see Table 2), which has favorable characteris-

tics and is highly desirable in manufacturing aircraft structures. The baseline design has

uniform mass and stiffness distributions and is made of uniform unidirectional fibrous com-

posite with equal volume fraction of the matrix and fiber materials, that is, Vfo = 50%.

Figures 12 and 13 show the developed level curves of constant divergence speed (also named

isodiverts) for two-panel wings with chord tapering ratio, ∆c = 0.5. Actually, these curves

represent the dimensionless critical speed, augmented with the equality mass constraint.

Examining Figure 12, it is seen that the Vdiv function is well behaved and continuous every-

where in the selected design space except in the empty regions to the upper left and right

regions, where the equality mass constraint is violated. The feasible domain is bounded from

Figure 12. Isodivert in (Vf1- b1) design space for a two-panel wing model (h1 = h2 = 1.0, Δc = 0.5, M̂s ¼ 1).
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above by the two curved lines representing the upper and lower limiting constraints imposed

on the volume fraction of the outboard blade panel. The contours inside the feasible domain

are not allowed to penetrate these borderlines and obliged to turn sharply to be asymptotes

to them, in order not to violate the mass constraint. The final attained optimal solutions are

summarized in Table 4. It can be observed that good wing patterns shall have the lower limit

of the fiber volume fraction at the tip and the upper limit at root. Using material and wall

thickness grading together results in a considerable enhancement of the wing torsional

stability.

Figure 13. Isodivert in (Vf1- b1) design space for a two-panel wing model (h2 = 0.5, Vf2 = 0.3, Δc = 0.5, M̂s ¼ 1).

Np Type of grading X
!

opt ¼ V f ; ĥ; b̂
� �

k¼1,2, ::Np

V̂ div,max
Optimization gain %

2 Material (0.5906, 1.0, 0.6594)1
(0.2500, 1.0, 0.3406)2

2.0523 3.93%

Material and thickness (0.75, 1.0625, 0.7)1
(0.25, 0.5250, 0.3)2

3.2275 63.44%

3 Material (0.6000, 1.0, 0.5750)1
(0.4125, 1.0, 0.1375)2
(0.2500, 1.0, 0.2875)3

2.05625 4.13%

Material and thickness (0.75, 1.10, 0.65)1
(0.30, 0.65, 0.05)2
(0.25, 0.50, 0.3)3

3.3475 69.52%

Table 4. Optimal piecewise wing designs with chord taper = 0.5 (baseline value = 1.9747).
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6. Optimization of composite thin-walled pipes conveying fluid

The subject of vibration and stability of thin pipes conveying flowing fluids is of a considerable

practical interest. An advanced textbook by Paїdoussis [36] gives an excellent review of the

several developments made in this research area. Practical models for enhancing static and

dynamic stability characteristics of pipelines constructed from uniform modules were

addressed by Maalawi et al. [37, 38], where the relevant design variables were selected to be

the mean diameter, wall thickness, and length of each module composing the pipeline. The

general case of an elastically supported pipe, covering a variety of boundary conditions, was

also investigated. Distinct domains of the flutter instability boundaries were presented for

different ratios of the fluid-to-pipe mass, and the variation of the critical flow velocity with

support flexibility was examined and discussed. Concerning pipelines made of advanced

FGMs, this section presents a mathematical model for enhancing the overall system stability

against flutter and/or divergence under mass constraint. Figure 14 shows a FGM pipe convey-

ing flowing fluid with the coordinate system chosen such that the x-axis coincides with the

longitudinal centroidal axis in its undeformed position, while the y- and z-axes coincide with

the cross section principal axes. The pipe model consists of rigidly connected thin-walled

circular tubes made of unidirectional fibrous composite material. Each pipe module has differ-

ent material properties, wall thickness, and length. Such a configuration results in a piecewise

axial grading of either the material of construction or the wall thickness in the direction of the

pipe axis. Assuming no voids are present, the distributions of the mass density (r) and

modulus of elasticity (E) can be determined using the formulas of Table 1.

The associated eigenvalue problem is described by the fourth-order ordinary differential

equation [39]:

EIð ÞkV
0 0 0 0

þU
2
V

0 0

þ 2iωU
ffiffiffiffiffi

β
o

q

V
0 �mkω

2
V ¼ 0 (40)

where V(x) is the dimensionless mode shape satisfying boundary conditions, and ω is the

corresponding dimensionless frequency of oscillation, which will be, in general, a complex

number to be determined by the requirement of nontrivial solutions, V(x) 6¼ 0. More details for

Figure 14. Multimodule composite pipe conveying flowing fluid.
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the definition of the various parameters and dimensionless design variables are given in Ref. [39].

Both static and dynamic instability phenomena can be involved for the physical model described

by Eq. (30), depending on the type of boundary conditions at the pipe ends. The notation ()0

means total spatial derivative. The general solution can be obtained using standard power series

methods:

V xð Þ ¼
X

4

j¼1

Aje
ipjx (41)

pj, j = 1,…4 are the four roots of the fourth-order polynomial:

p4 � αkU
2

� 	

p2 � 2ωU
ffiffiffiffiffi

βo

q

αk

� �

p�mkω
2αk ¼ 0 ,αk ¼ 1= Ekhkð Þ (42)

An efficient method [38] is successfully implemented to find the complex roots of Eq. (32) by

formulating a special companion matrix and finding the associated eigenvalues for any

desired values of the variables αk, βo, ω, and U. The transfer matrix [Tk] of the kth pipe module

can be obtained by performing the matrix multiplications

Tk½ � ¼ P kð Þ
h i

E kð Þ
h i

P kð Þ
h i�1

(43)

p kð Þ
h i

¼

1 1

�ip1 �ip2

1 1

�ip3 �ip4
Ehð Þkp

2
1 Ehð Þkp

2
2

i Ehð Þkp
3
1 i Ehð Þkp

3
2

Ehð Þkp
2
3 Ehð Þkp

2
4

i Ehð Þkp
3
3 i Ehð Þkp

3
4

2

6

6

6

6

4

3

7

7

7

7

5

(44)

and [E] is a diagonal matrix with elements:

E
kð Þ
jj ¼ e

ip
kð Þ

j
Lk (45)

Applying the appropriate boundary conditions and considering only the nontrivial solution,

the resulting characteristic equation can be solved numerically for the frequency and the

critical flow velocity. The system is stable or unstable according to whether the imaginary

component of the frequency, ω, is positive or negative, respectively. In case of neutral stability,

ω is wholly real. As the flow velocity increases, the system may become unstable in one or

more of its normal modes. The critical flow velocity is the greatest velocity for which the

system is stable in all its modes. The characteristic equation for cantilevered pipe is:

T33T44 � T34T43 ¼ 0, (46)

where Tij are the elements of the overall transfer matrix. For a specific mode number, the proper

starting frequency is determined by solving a subsidiary eigenvalue problem corresponding to

the case of stationary fluid inside the vibrating pipe. A globally convergent optimization algo-

rithm, known as Levenberg-Marquardt algorithm [38], has been applied to solve the resulting
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nonlinear equations derived from the consideration of nontrivial solution of characteristic equa-

tion. The effect of flow for small velocity is to damp the system in all modes. At higher velocities,

some of the modes become less damped and the corresponding branches cross the Re(ω)-axis,

indicating the existence of unstable oscillations of the system. If a branch passes through the

origin, that i, ω = 0, the case of static instability (called divergence) is reached.

6.1. Flutter solutions

To verify the developed formulation, the classical problem dealing with one-module

cantilevered pipe is considered first. The dimensionless wall thickness and length of the pipe

are assigned at a value of 1.0, while the volume fraction at 50%. Figure 15 depicts variation of

the critical flutter velocity and frequency with the mass density ratio MRo, covering a wide

range of pipe and fluid mass densities. It is seen that there are four subdomains with the

associated flutter modes defined in the specified intervals of the mass ratio. The upper and

lower bounds determine the critical values of the mass ratios at which some of the frequency

branches cross each other at the same value of the flutter velocity. The overall flutter mode

may be regarded as composed of different quasimodes separated at the shown “jumps” in the

Uf-MRo curve. The calculated mass density ratios at the three indicated frequency jumps are

0.4225, 2.29, and 12.33, respectively. They correspond to multiple points of neutral stability,

where for a finite incremental increase in the flow velocity, the system becomes unstable, then

regains stability, and then once again becomes unstable with a noticeable abrupt increase in the

flutter frequency. Next, we consider a baseline design made of carbon/epoxy composites (see

Table 2) with mass ratio MRo = 2.0. The calculated values of the dimensionless flutter velocity

and frequency are found to be Uf = 10.78 and ωf = 26, respectively. Keeping the total dimen-

sionless mass constant at the value corresponding to the baseline design, the best solution

having the greatest flutter velocity was found to be (Vf, h1) = (0.70, 0.9345), which corresponds

to Uf = 12.517 and ωf = 31.8615.

Figure 15. Variation of flutter speed and frequency with mass ratio for a uniform one-module cantilevered pipe (Vf1 = 50%,

h1 = 1, L1 = 1).
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6.1.1. Solutions for cantilevered two-module pipe with uniform thickness (h1 = h2 = 1.0)

Considering the case of two-module pipe, a direct and fast way for checking out system

stability for any desired set of the dimensionless design variables (Vf1, L)k = 1,2 is given here.

Lower and upper bounds are imposed on the design variables in order not to violate other

strength and manufacturing requirements. The fiber volume fraction is constrained to be

within the range 30% up to 70%, while the dimensionless length is between 0.0 and 1.0. The

mass ratio MRo is taken to be 2.0.

Dimensionless flutter velocity and flutter frequency are obtained from the frequency and

velocity branches at the four modes. The lowest frequency and velocity among the four modes

at which Imag(ω) = 0.0 are considered the flutter velocity and frequency. These computed

values at different conditions are employed in constructing the flutter velocity and frequency

contours as shown in Figure 16. The white regions shown in both figures indicate that the fiber

Figure 16. Contour plots of flutter velocity and frequency in (Vf1-L1) design space.

Design variables: (Vf, L)k = 1,2 Dimensionless Uflutter Stability improvement %

(0.30, 0.20), (0.55, 0.80)

(0.30, 0.50), (0.70, 0.50)

13.15

12.07

21.99

11.97

(0.35, 0.25), (0.55, 0.75)

(0.35, 0.40), (0.60, 0.60)

13.04

13.31

20.96

23.47 (max.)

(0.40, 0.50), (0.60, 0.50)

(0.40, 0.60), (0.65, 0.40)

12.70

12.77

17.81

18.46

(0.45, 0.50), (0.55, 0.50)

(0.45, 0.75), (0.65, 0.25)

12.82

11.73

18.92

8.81

(0.50, 0.50), (0.50, 0.50) 10.78 0.00 (baseline)

Table 5. Standard solutions for a cantilevered two-module pipeline with uniform thickness (h1 = h2 = 1.0, M = 1.0).
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volume fraction of the material of the second segment does not fall in range between 0.3 and

0.7. The maximum flutter velocity (Uf) and its corresponding flutter frequency (ωf) occur in the

region colored with dark brown L1 = 0.36 and Vf1 = 0.3. The maximumUf and its corresponding

ωf are 13.67 and 58.4, respectively. Table 5 gives several standard optimal solutions for the

two-module case study. The global optimum design point is seen to be (Vf, L)k = 1,2 = (0.35, 0.40),

(0.60, 0.60), at which the normalized flutter velocity reached a value of 13.31 corresponding to

23.47% optimization gain.

7. Conclusions

As a major concern in producing efficient structures with enhanced properties and tailored

response, this chapter presents appropriate design optimization models for improving perfor-

mance and operational efficiency of different types of composite structural members. The con-

cept of material grading has been successfully applied by incorporating the distribution of the

volume fractions of the composite material constituents in the mathematical model formulation.

Various scenarios in modeling the spatial variation of material properties of functionally graded

structures are addressed. The associated optimization strategies include frequency maximization

of thin-walled composite beams, optimization of drive shafts against torsional buckling and

whirling instability, and maximization of the critical flight speed of subsonic aircraft wings.

Design variables encompass the distribution of volume fraction, ply angle, and wall thickness

as well. Detailed optimization models have been formulated and presented for improving the

dynamic performance and increasing the overall stiffness-to-mass level of thin-walled composite

beams. The objective functions have been measured by maximizing the natural frequencies and

place them far away from the excitation frequencies, while maintaining the total structural mass

at a constant value. For discrete models, the optimized beams can be constructed from any

arbitrary number of uniform segments where the length of each segment has shown to be an

important variable in the optimization process. It has also been proved that expressing all

parameters in dimensionless forms results in naturally scaled design variables, constraints, and

objective functions, which are favored by a variety of optimization algorithms. The attained

optimal solutions using continuous grading depend entirely upon the prescribed power-law

expression, which represents additional constraint on the optimization problem. Results show

that material grading in the spanwise direction is much more better than grading through the

wall thickness of the cross section. Regarding optimization of FGM drive shafts, it was shown

that the best model is to combine torsional buckling and whirling in a single objective function

subject to mass constraint. This has produced a balanced improvement in both stabilities with

active mass constraint at the attained optimal design point.

In the context of aeroelastic stability of aircraft structures, an analytical model has been

formulated to optimize subsonic trapezoidal wings against divergence. It was shown that by

using material and thickness grading simultaneously, the aeroelastic stability boundary can be

broaden by more than 50% above that of a known baseline design having the same total

structural mass. Other stability problems concerning fluid-structure interaction have also been

addressed. Both flutter and divergence optimization have been considered, and several design
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charts that are useful for direct determination of the optimal values of the design variables are

given. It has been confirmed that the segment length is the most significant design variable in

the whole optimization process. Some investigators who apply finite elements have not recog-

nized that the length of each element can be taken as a main design variable in the whole set of

optimization variables. The results from the present approach reveal that piecewise grading of

the material can be promising in producing truly efficient structural designs with enhanced

stability, dynamic, and aeroelastic performance. It is the author’s wish that the results

presented in this chapter will be compared and validated through other optimization tech-

niques such as genetic algorithms or any appropriate global optimization algorithm.

Actually, the most economic structural design that will perform its intended function with

adequate safety and durability requires much more than the procedures that have been

described in this chapter. Further optimization studies must depend on a more accurate analysis

of constructional cost. This combined with probability studies of load applications and materials

variations should contribute to further efficiency achievement. Much improved and economical

designs for the main structural components may be obtained by considering multidisciplinary

design optimization, which allows designers to incorporate all relevant design objectives simul-

taneously. Finally, it is important to mention that, while FGM may serve as an excellent optimi-

zation and material tailoring tool, the ability to incorporate optimization techniques and

solutions in practical design depend on the capacity to manufacture these materials to required

specifications. Conventional techniques are often incapable of adequately addressing this issue.

In conclusion, FGMs represent a rapidly developing area of science and engineering with

numerous practical applications. The research needs in this area are uniquely numerous and

diverse, but FGMs promise significant potential benefits that fully justify the necessary effort.
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