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Chapter

Adrenergic Receptors as 
Pharmacological Targets 
for Neuroinflammation and 
Neurodegeneration in Parkinson’s 
Disease
Monika Sharma and Patrick M. Flood

Abstract

Inflammation is a key component of the dopaminergic neurodegeneration seen 
in progressive Parkinson’s disease (PD). The presence of activated glial cells, the 
participation of innate immune system, increased inflammatory molecules such 
as cytokines and chemokines, and increased oxidative stress and reactive oxygen 
species are the main neuroinflammatory characteristics present in progressive 
PD. Therapeutic targets which suppress pro-inflammatory responses by glial cells 
(mainly microglia) have been shown to be effective treatments for slowing or 
eliminating the progressive degeneration of neurons within the substantia nigra. In 
this chapter, we will detail a specific anti-inflammatory therapy using agonists to 
β2-adrenergic receptors that have been shown to be effective treatments for models 
of dopaminergic neurodegeneration and that have had efficacy in patients with 
progressive PD. We will also detail the possible molecular mechanisms of action of 
this therapeutic in stopping or reversing inflammation within the CNS.

Keywords: β2-adrenergic receptor, Parkinson’s disease, microglia, 
neuroinflammation

1. Introduction

There are a number of neurological disorders that fall under the umbrella of 
neurodegeneration, with the major ones including Alzheimer’s disease (AD), 
Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis 
(ALS), frontotemporal dementia (FTD), spinal cord injury (SCI), and others. 
Currently, there are no generally effective treatments available to slow down or 
reverse the debilitating effects of these diseases, and the long-term effects of these 
diseases are the progressive degeneration and death of neurons. A majority of 
the neurodegenerative diseases are linked with inflammation in CNS [1], and the 
presence of activated glial cells, infiltration and activation of adaptive and innate 
immune cells, increased presence of inflammatory molecules such as cytokines 
and chemokines, and increased oxidative stress and reactive oxygen species (ROS) 
are the main neuroinflammatory characteristics present in lesions associated with 
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these neurodegenerative disorders. Recent approaches found to be effective in 
the treatment of Parkinson’s disease involve the use of anti-inflammatory agents 
and cytokines such as agonists to the β2-adrenergic receptors (β2-AR) to inhibit 
neuroinflammation and the progression of dopaminergic neurodegeneration. In 
this chapter, we will address the current understanding of therapeutic approaches 
targeting neuroinflammation linked with PD and the use of β2-AR agonists as an 
effective treatment for PD.

2.  Parkinson’s disease: a chronic neurodegenerative and 
neuroinflammatory disease

Parkinson’s disease (PD) is a progressive neurodegenerative disorder which leads 
to impaired motor skills. The major pathological feature of PD is the degeneration 
of dopaminergic (DA) neurons which project from substantia nigra (SN) to the 
striatum in the midbrain (nigro-striatal pathway) [2]. Another neuropathologi-
cal feature of PD is the cytoplasmic inclusion of misfolded α-synuclein protein in 
degenerating dopaminergic neurons called Lewy bodies [3]. The primary motor 
symptoms of PD, such as tremor, rigidity, and bradykinesia, are caused by inad-
equate formation and neurotransmission of dopamine within the nigro-striatal 
pathway [4, 5]. Dementia is reported in 28% of PD cases with the prevalence rising 
to 65% in those aged 85 years and above. Patients with PD also show non-motor-
related symptoms such as olfactory deficits, depression, cognitive deficits, sleep 
disorders, and autonomic dysfunction [6]. The majority of PD cases are idiopathic 
Parkinson’s, and the disease mechanism that ultimately causes idiopathic PD is 
largely unknown. In the remainder of the cases of PD, about 10–15% of patients do 
have a family history and those patients are referred to as having the familial form 
of PD. For these patients, their PD appears to be caused by a mutation in one of a 
few selected genes (such as SNCA, Parkin, LRRK2, DJ-1, etc.) [7, 8]. Although the 
etiology of the idiopathic form of the disease remains elusive, there are some risk 
factors associated with the development of the disease. These risk factors include 
exposure to environmental toxins, severe cranial trauma, systemic or localized 
infections, and inherited genetic risk factors. These genetic and nongenetic risk 
factors have the potential to initiate neurodegeneration and subsequent chronic 
inflammation in the brain which eventually contributes to the pathophysiology of 
PD [9]. In addition, several cellular and molecular pathways such as oxidative stress 
[10], proteosomal dysfunction [11], excitotoxicity [12], and mitochondrial dysfunc-
tion [13] have also been identified which contributes to neuronal death.

The presence of activated glial cells, increased inflammatory molecules such 
as cytokines/chemokines, and increased oxidative stress and ROS are the main 
neuroinflammatory characteristics present in PD [14]. PD is now not only charac-
terized as loss of DA-neurons and motor impairment, but also recognized to have 
an inflammatory component which plays a crucial role in the progression of the dis-
ease. Several inflammatory mediators such as TNF-α, IL-1β, ROS, and nitric oxide 
(NO), released from nonneuronal cells exacerbate the disease pathology [3, 15]. 
It has been suggested that α-synuclein released from dying neurons also activate 
the microglia via TLR2 activation [16]. Furthermore, the elevated levels of inflam-
matory cytokines such as TNF-α, IL-1β, and IL-6 have been reported in serum, 
cerebrospinal fluid (CSF), and striatum of PD patients [17]. The influx of periph-
eral macrophages has been reported in brains of patients with PD, but the role of 
these cells in disease pathology remains to be tested [18]. Additionally, activation 
and increased number of glial cells and infiltrating peripheral lymphocytes such as 
cytotoxic CD4+ and CD8+ cells in SN also support the role of adaptive immunity in 
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the etiology of the disease [8]. Overall, these studies and others suggest the contri-
bution of the immune system in the pathophysiology of PD.

3. Microglial activation and neuroinflammation in PD

Microglia originate from erythromyeloid progenitors in the yolk sac which 
migrate and differentiate during development to form the central nervous system 
(CNS). Fully differentiated microglial cells are also considered to be the resident 
macrophages of the CNS [19], although some phenotypic and functional differ-
ences between microglia and macrophages have been found [20]. Growing evidence 
suggests that the activation of microglia in CNS plays an important role in the 
pathogenesis of PD. It is not well understood how microglia activation is either 
beneficial or detrimental to the neuron or how microglial activity is regulated. It 
has been found that microglial activation is required for neuronal survival by the 
removal of toxic substances through innate immunity [21]. On the other hand, it 
has been found that over-activated microglial cells are detrimental and neurotoxic 
[22]. Research studies of post-mortem brain tissue from patients with PD and 
related parkinsonian syndromes suggest the presence of activated microglia around 
degenerating DA-neurons in the SN [23] and these activated microglia are not only 
limited to the SN but also present in extended brain areas such as hippocampus, 
putamen, trans-entorhinal cortex, cingulate cortex, and temporal cortex [24]. 
Imaging of activated microglia in the striatum could be used as a biomarker for 
detecting neuroinflammation in neurodegenerative parkinsonian disorders [25]. 
The resting microglia switches to an activated microglia phenotype in response 
to pathogen invasion or release of toxic or inflammatory mediators and thereby pro-
motes an inflammatory response [1]. Once activated, microglial cells produce a wide 
range of inflammatory mediators which serve to initiate an innate immune response 
or glial cell-propagated inflammation termed as neuroinflammation [26]. Also, the 
degenerating DA-neurons release many toxic factors that activate microglia and 
these degenerating neurons are vulnerable to inflammatory insult. Degenerating 
neurons will co-localize or attract an even larger population of microglia in the SN 
[27]. Collectively, these activated microglia and damaged neurons form a repetitive 
and vicious cycle that leads to chronic inflammation and continued extensive DA 
neurodegeneration over time, leading to the progression of PD [27]. These findings 
confirm neuroinflammation as a pivotal process in the progression of neurodegen-
erative disorders and the central role of microglia in this process [22]. Targeting 
neuroinflammatory pathways within microglia could be a significant step in the 
development of new therapeutics for neurodegenerative diseases, including PD.

4. Therapies targeting neurodegeneration/neuroinflammation in PD

Treatment for PD normally involves medications such as Levodopa to enhance 
the dopamine levels and deal with movement symptoms [28]. While none of our 
current treatments are able to stop the disease, medication and surgery can be 
helpful for managing the symptoms [29]. These treatments work well in patients 
initially, but they are also associated with unwanted side-effects and reduced 
efficacy over time [30]. On the other hand, many studies suggest that inflammatory 
mediators such as TNF, PGE2, NO, free radicals, and other immune mediators play 
role in the pathogenesis of PD and degeneration of dopamine-producing neurons 
and that targeting these mediators can be an effective treatment for PD. This opens 
up the potential of using anti-inflammatory drugs as an effective and long-term 
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treatment in PD. These anti-inflammatory drugs can act by arresting the disease 
onset (primary prevention) or by interrupting or even reversing the disease 
progression (secondary prevention). Epidemiological and observational studies 
suggest that the use of anti-inflammatory drugs lower the risk of developing PD 
[31]. Observations which demonstrated that inflammation in SN plays a role in PD 
have led many investigators to initially consider the potential use of both steroidal 
and nonsteroidal anti-inflammatory drugs for the treatment of PD. Steroidal 
anti-inflammatory drugs (SAIDs), such as dexamethasone, have shown neuro-
protective effects in LPS-induced neurotoxicity in the SN in LPS models of PD 
[32]. Nonsteroidal anti-inflammatory drugs (NSAIDs) have also been used as 
analgesics and antipyretics to suppress the adverse effects of inflammation [33]. 
The neuroprotective effects of Ibuprofen have been studied in PD pathogenesis and 
these studies demonstrate the protective effect on dopaminergic neurons against 
glutamate toxicity in vitro [34, 35]. Previously, we have established several therapies 
targeting neuroinflammation and neurodegeneration in an animal model of PD and 
these therapies include D-morphinan-related compounds [36], anti-inflammatory 
cytokines such as TGF-β (transforming growth factor-beta) [37] and IL-10 [38, 39], 
IKK (inhibitor of kappa B (IκB) kinase) inhibitors [40], NADPH (nicotinamide 
adenine dinucleotide phosphate) oxidase inhibitors [41], and β2-AR (beta 2- 
adrenergic receptor) agonists [42, 43].

We have conducted a number of experiments using different classes of anti-
inflammatory compounds to determine their efficacy in preventing dopaminergic 
neurotoxicity by activated microglial cells both in vitro and in vivo. First, it was 
found that morphinan compounds and their stereoisomers (L-morphine and its D 
stereo enantiomers) can inhibit microglial activation and LPS- or MPP+-induced 
neurotoxicity in rat primary mesencephalic cultures. We and others observed that 
several dextrorotatory isomers of morphine compounds, including D-morphine, 
dextromethorphan, and sinomenine, showed neuroprotective effects against LPS 
and MPP+ (1-methyl-4-phenylpyridinium) which were mediated through the 
inhibition of microglial PHOX activity [36, 44, 45]. Furthermore, these studies 
also suggest that these morphinan compounds bind to the catalytic subunit of 
PHOX, inhibit its activity, and reduce the production of superoxide and other 
pro- inflammatory cytokines [44]. In another set of studies using a different 
anti-inflammatory approach, a specific inhibitor of IKK-β (IkappaB kinase-beta) 
protects dopaminergic neurons against LPS-induced neurotoxicity both in vitro and 
in vivo through inhibition of NF-κB activation, resulting in the decreased produc-
tion of ROS and inflammatory cytokines [40]. We have also developed therapies 
targeting neuroinflammation in PD models by using anti-inflammatory cytokines 
such as IL-10 and TGF-β1, and found that treatment with IL-10 on rat mesence-
phalic neuron-glia culture protects against LPS-induced neurotoxicity via suppres-
sion of pro-inflammatory mediators and superoxide production [38]. Similarly, 
the neuroprotective effect of TGFβ1 is primarily due to its ability to inhibit ERK 
phosphorylation, the serine phosphorylation on p47phox, and the production of ROS 
from microglia during activation by LPS [37].

5. Adrenergic receptors

One of the most potent and successful therapeutic treatments for inflammation-
mediated dopaminergic neurotoxicity is the use of long-acting agonists to the 
β2-AR. Adrenergic receptors (AR) are seven-transmembrane proteins that serve as 
adrenoreceptors for catecholamines such as norepinephrine and epinephrine on multiple 
cell types, and cells within the CNS that express AR include neurons, immune cells, and 



5

Adrenergic Receptors as Pharmacological Targets for Neuroinflammation and Neurodegeneration…
DOI: http://dx.doi.org/10.5772/intechopen.81343

astrocytes. Pharmacological classification of the adrenergic receptor was first introduced 
in 1948 and broadly classified as α and β adrenergic receptors [46] by Ahlquist. The 
classification was based on the order of potency and specificity of natural and synthetic 
agonist and blocking agents. The α-AR response corresponds to mainly excitatory 
response, while β-AR responses were correlated mainly with the inhibitory response. 
The α-AR response showed the order of potency: norepinephrine > epinephrine > 
isoproterenol and β-AR-mediated response exhibited order of potency: isoproterenol 
> epinephrine > norepinephrine [47, 48]. After the discovery of new drugs which have 
a high affinity to adrenergic receptors, these receptors were sub-classified. α-AR were 
subdivided into α1 and α2 adrenergic receptors [49]. Further studies subdivided β-AR 
into β1 and β2 which are normally present on immune cells, cardiac muscles, and airway 
smooth muscles, respectively [50]. A third β-AR, now called as β3-AR was identified on 
adipose tissues [51]. Tissue distribution, physiological effects, mechanism of action, and 
the major agonists/antagonists of ARs are summarized in Table 1. Pharmacological com-
pounds that serve as short, long, and ultra-long-acting agonists for these receptors have 
now been developed, and they are normally thought to stimulate adrenergic receptors by 
four different mechanisms: (1) by direct receptor binding, the most common mechanism 
where drugs activate peripheral adrenergic receptors via direct binding to receptor and 
mimic the actions of endogenous agonists (NE, epinephrine), (2) by ameliorating NE 
release, where drugs act on sympathetic nerve terminals and results into NE release, 
(3) by inhibition of NE reuptake, where these drugs can cause NE to accumulate within 
synaptic gaps at sympathetic nerve terminals, (4) by blockade of NE inactivation where 
drugs inhibit the activity of monoamine oxidase (MAO) which inhibits the activity of 
monoamines such as NE and dopamine [52].

6.  General properties of β2-adrenergic receptors: a G-protein-coupled 
receptor

6.1 Structure

The β2-ARs belong to a diverse superfamily of human cell surface seven trans-
membrane receptors for hormones and neurotransmitters called G-protein-coupled 

Table 1. 
Characteristics of adrenergic receptors.
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receptors (GPCRs). GPCRs are divided into six classes on basis of sequence 
homology: class A (Rhodopsin-like), class B (Secretin receptor family), class C 
(Metabotropic glutamate), class D (Fungal mating pheromone receptor), class E 
(Cyclic AMP receptor), and class F (Frizzled/smoothened) [53]. GPCRs are one of 
the most extensively studied proteins for the development of pharmaceutical drugs 
and target for approximately 50% of the marketed pharmaceutical drugs [54]. The 
adrenergic receptor family belongs to the rhodopsin-like subfamily, the largest class 
of the GPCR. The β2-AR is an intron-less gene is present on the long arm of chro-
mosome 5 (5q31) and encodes for 413 amino acid polypeptide of 46kD [55]. Similar 
to all GPCRs, β2-AR is composed of seven transmembrane spanning α-helices 
with an intracellular C-terminus and an extracellular N-terminus. The β2-AR was 
the first GPCR to be cloned [56] and the first GPCR structure to be solved [57]. 
The β2-AR has been studied extensively and also serves as a model system for 
investigating the regulation and signal transduction of GPCRs. The study of the 3D 
protein structure of this family of GPCRs took a giant leap forward when rhodopsin 
was first crystallized in 2000 and this crystalline structure has been used as an 
important template for modeling other GPCRs in this family [58]. The crystalline 
structure of human β2-AR was not solved until 2007, when a nonactive structure of 
β2-AR was identified [57]. Post-translational modifications such as glycosylation, 
pamitoylation, disulfide bond formation, and phosphorylation have now been 
found to affect receptor functions. Interestingly, β2-AR is glycosylated at amino 
acid 6, 15, and 187 which is important for the trafficking of the β2-AR from the 
endoplasmic reticulum to the plasma membrane [59]. Mutation in these sites also 
results in reduced expression of receptor on the cell membrane, suggesting a role 
for glycosylation in cell surface expression [60]. Conversely, the cysteine amino acid 
in the cytoplasmic tail at position 341 is palmitoylated, and is now found to be an 
important residue for the adequate coupling of the receptor to the Gs-protein [61]. 
Finally, β2-ARs have disulfide bonds which are essential for agonist binding and also 
for maintaining their tertiary structure [62].

6.2 Localization

Adrenergic receptors are widely distributed on human body organs and regulate 
physiologic functions such as bronchodilation [63], vasodilation, glycogenolysis in 
the liver, and relaxation of uterine and bladder muscles [64]. The human β2-AR are 
widely expressed not only on airway smooth muscles, but also on the wide variety 
of cells such as epithelial cells, endothelial cells, brain cells, and immune cells 
including mast cells, macrophages, adaptive immune cells, and eosinophils [65]. 
The expressions of β1- and β2-AR have also been found on microglial cells, suggest-
ing that microglia, the brain’s resident immune cell, is predominantly regulated by 
NE since NE is the predominant catecholamine in the CNS. Conversely, peripheral 
immune cells such as macrophages and T cells, which also express high levels of β1 
and β-2 AR, are thought to be regulated primarily by epinephrine [66].

6.3 β2-AR activation and signaling pathways in inflammation

Activation of adrenergic receptors could result into both pro- and anti- 
inflammatory actions, depending on certain parameters such as the type of cell, 
duration of ligand exposure to the receptor, and type of the adrenergic receptor 
[67]. It is the diversity of the β2-AR that leads to the complexity of signaling mecha-
nisms and to this duality of function. Activation of β2-AR by receptor agonists initi-
ate intracellular signaling pathways that function either via G-proteins or through 
β-arrestins. Like other GPCR, β2-AR can activate either canonical (traditional) 



7

Adrenergic Receptors as Pharmacological Targets for Neuroinflammation and Neurodegeneration…
DOI: http://dx.doi.org/10.5772/intechopen.81343

or noncanonical (nontraditional) signal transduction pathway. In the canonical 
pathway, similar to a typical GPCR the β2-AR signals via a heterotrimeric G-protein 
complex, and when the receptor is coupled to inactive GDP-bound G-protein, it 
appears to have high affinity to the agonist or ligand. After ligand binding, the 
transmembrane domains of the receptor undergo conformational change with the 
exchange of GDP to GTP. Further, this conformational change reduces the affinity 
of the ligand to its receptor, increasing the possibility of retraction of ligand from 
the receptor, thereby preventing the over-activation of G-protein. This provides 
evidence that β2-AR appear to oscillate between an active and inactive form under 
normal conditions. After the exchange of GDP to GTP, the Gα-subunit dissoci-
ates from Gβγ-subunit which remains associated with plasma membrane and the 
Gα-subunit activates effector proteins. The downstream signaling of this process 
normally results in the production of intracellular second messengers which further 
activates the cAMP-PKA-mediated intracellular signaling pathway. The activated 
β2-AR binds with the α-subunit of the G-protein together with a guanosine triphos-
phate (GTP) molecule. Further, the receptor coupled with adenylate cyclase (AC) 
which catalyzes the conversion of ATP into cAMP (a second messenger for β2-AR) 
by hydrolysis of GTP into GDP. The cAMP activates and regulates protein kinase A 
(PKA) which further mediates the transcription of genes and degradation of cAMP 
by phosphodiesterase (PDE) leading to termination of signaling [68].

Earlier it was determined that β2-AR exhibits their inhibitory signals in immune 
cells via the canonical (PKA) signaling pathway. It has now been found that GPCR 
can also signal through a noncanonical pathway in addition to their classical 
signaling pathway [69]. Activation through the noncanonical signaling pathway is 
cell type dependent and G-protein independent, but rather the G-protein-coupled 
receptor kinases (GRKs) and β-arrestins are involved in activation of this nonca-
nonical signaling pathway. Various types of GRKs phosphorylate specifically serine 
and threonine at C-terminal of the β2-AR which further determines whether recep-
tors undergo desensitization or initiate noncanonical signaling [70]. For example, 
phosphorylation of receptor by GRK5/6 initiates β-arrestin-mediated noncanonical 
signaling, while phosphorylation by GRK2 leads to β-arrestin-mediated desensitiza-
tion of the receptor [71]. During noncanonical signaling, β-arrestin2 couples β2-AR 
to MAPK signaling pathways which induces activation of transcription factors and 
allows their nuclear translocation. Activation of β2-AR with high agonist concentra-
tion can lead to sustained activation of ERK1/2 via β-arrestin2. This explains why 
β2-AR activation can either enhance or suppress the proliferation of immune cells 
and cytokine production particularly at a high concentration of agonists [67, 72]. 
Studies suggest that during inflammatory conditions immune cells can switch from 
canonical to the noncanonical pathway [67, 68]. Engagement of β2-AR receptors 
by agonists can result in immunomodulatory actions. Depending on the type of 
immune stimuli and timing of β2-AR activation relative to immune activation, 
β2-AR stimulation can positively or negatively regulate the response of immune 
activator [67, 73]. The initial data obtained in animal models of dopaminergic 
neurotoxicity suggests that the primary immunomodulatory mechanism of β2-AR 
activation that regulates CNS inflammation in microglial cells occurs through the 
noncanonical β-arrestin2 pathway of activation.

7. β2-agonists

β-agonists are a group of pharmaceutical compounds or sympathomimetic 
drugs that mimic the effects of endogenous catecholamines such as epinephrine, 
norepinephrine, and dopamine. These drugs do not comprise a similar structure to 
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catecholamines but still directly or indirectly activate the β2-adrenergic receptor. 
The first β-agonist was used around 5000 years ago in Chinese medicine where an 
ephedrine containing plant, Ma-huang, was used to treat respiratory problems [74]. 
Further research in the twentieth century has led to increased use of β-agonists for 
the treatment of respiratory diseases. The first β2-AR selective agonist, Salbutamol 
was synthesized by Glaxo in 1968 [75]. Later, the same team at Glaxo modified 
Salbutamol into Salmeterol with long-lasting effects and reduced side effects. 
Recently, they have synthesized β2-agonists with ultra-long-lasting effects such as 
Indacaterol [76]. After successful trials, these β2-agonists were approved by the US 
Food and Drug Administration (FDA) for the treatment of respiratory diseases such 
as asthma and chronic obstructive pulmonary disease (COPD). Since 1968, a num-
ber of companies have labored to develop β2-AR agonists, and some have now been 
commercialized for use in the treatment of COPD. A list of some of these agonists is 
given below and in Table 1.

7.1 Classification of β2-agonists

A pharmacogenetic study of β2-agonists has summarized the relationship 
between polymorphisms in the β2-adrenoreceptor (ADRB2) gene and the effects 
of select β2-agonists [77]. Two hypotheses aim to account for the differences in 
functioning and in vivo half-lives of these compounds: exosite/exoreceptor or 
plasmalemma diffusion microkinetics. Briefly, the exosite hypothesis focuses 
on the ability of the side-chain of these compounds to interact with a distinct 
site on the receptor such that it allows the active component to “swing back-
and-forth” to activate the receptor. The plasmalemma diffusion microkinetic 
hypothesis suggests that high concentrations of agonists are achieved in close 
proximity to the receptor and allows for a longer duration of action [78]. Both of 
these hypotheses require further investigation and need to be studied within the 
CNS. Depending upon their mechanism and duration of action, all β2-agonists 
are grouped into three major classes: short-acting, long-acting, and ultra-long-
acting β2-agonists.

7.1.1 Short-acting β-agonists (SABA)

These drugs are mostly hydrophilic in nature, access the active site of β-AR 
directly from the aqueous extracellular area and show the fast onset of action [79]. 
These SABAs bind to the receptor for short time; therefore, their duration of 
action is short. Some of the more common SABAs include Salbutamol (Ventolin), 
Albuterol (AccuNeb), Pirbuterol (Maxair), and Levalbuterol (Xopenex).

7.1.2 Long-acting β-agonists (LABA)

These drugs are a frontline treatment for COPD, and usually prescribed alone 
or in combination with inhaled corticosteroids. LABAs are lipophilic in nature and 
taken up by cell membrane as a reservoir, progressively seep out and interact with 
the active site of the receptor [79]. They diffuse in the plasma membrane, where 
they interact with the active site of the β2-AR which allows for the close proximity 
with the receptor and longer duration of action. The onset of action of these drugs 
is slower as compared to SABAs, but the duration of action is prolonged thereby, 
called as LABAs. The duration of action is also dependent on the concentration of 
the agonist. Salmeterol, Salmeterol with an inhaled corticosteroid, Formoterol, and 
Formoterol with an inhaled corticosteroid are commercially available LABAs and 
used in medication for asthma and COPD [80].
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7.1.3 Ultra-long-acting β-agonists

These agonists are also lipophilic in nature and onset of action is similar to 
LABAs, but the duration of action lasts longer than LABAs. Vilanterol with an 
inhaled corticosteroid and Indacaterol are ultra-LABAs, approved by FDA for the 
treatment of COPD [81].

8. β2-adrenergic receptors agonists in neuroprotection

The majority of adrenergic neurons are present in brainstem locus coeruleus (LC) 
nuclei, which is a predominant site for the production of norepinephrine (NE) in the 
brain. LC neurons play a key role in the regulation of cognitive behavior such as atten-
tion, mood, and arousal [82]. These neurons also play role in the development of the 
brain, mainly the neocortex [83]. The degeneration of LC-neurons has been identified in 
patients with PD and AD [84]. Also, the classical “monoamine hypothesis of depression” 
says that the deficiency of NE is a culprit for the cognitive impairment [85]. NE/noradren-
aline, the primary neurotransmitter released by the LC neurons targets the adrenergic 
receptors present on the microglia and astrocytes in the brain [86]. NE-activated ARs on 
glial cells stimulate the second messenger system and maintain the homeostasis in the 
brain. Activation of AR on glial cells elicits anti-inflammatory actions, inhibits neuroin-
flammation, and thereby limits the degeneration of neurons [87]. Moreover, drugs that 
stimulate the release of NE/NA have potential to reduced inflammation and amyloid 
pathology in a mouse model of AD [88]. According to Braak’s hypothesis, early stage of 
progression starts in LC before it spreads to SN [89]. Overall, these and many other stud-
ies suggest the role of the adrenergic signaling in neurodegeneration. Therefore, enhanc-
ing NE/NA signaling, transplanting noradrenergic neurons, or use of drugs that mimic 
the activity of NA/NE on glial cells have great potential to reverse or halt the progressive 
degeneration of neurons [90]. The endogenous agonist/ligand for β2-AR is norepi-
nephrine which acts as a neurotrophic factor and can influence protein/DNA synthesis 
in developing adult brain [91, 92]. NE protects cholinergic and dopaminergic cultured 
neurons against oxidative stress and catechol moiety of NE plays role in neuroprotection 
[93, 94]. It suggests that a compound containing catechol moiety, such as β-agonists, can 
mimic the neuroprotective effects of NE. Treatment with NE stimulates the synthesis of 
BDNF in astrocytes and neuron in vitro and in vivo [95, 96] and these neuroprotective 
effects were reversed by the antagonist of α1, β1, and β2-AR [97].

The use of β2-agonists as an adjunct therapy to L-DOPA in PD was first described in 
1994 [98]. Chai et al. showed that the β2-AR activation enhances hippocampal neu-
rogenesis, ameliorates memory deficits, and increases dendritic branching and spine 
density in a mouse model of Alzheimer’s disease [99]. Recently, Mittal et al. have found 
that β2-AR activation regulates the gene expression of α-synuclein in various animal 
and in vitro models of PD. Salbutamol, a blood-brain-barrier-permeable β2-agonist, 
reduces expression of SNCA gene via histone-3-lysine-27 acetylation of its promoter 
and enhancer. They also analyzed the pharmacological history of 4 million Norwegians 
over 11 years and found that Salbutamol was also associated with reduced risk of 
developing PD [100]. In a mouse model of Down syndrome, Formoterol, a long-acting 
β2-AR agonist, causes significant improvement in synaptic density and cognitive func-
tions [101]. Salmeterol (Sal) is an inhaled long-acting highly selective β2-AR agonist 
which is currently being used as the active ingredient in Advair@ as a bronchodilator. 
Our previous studies and others have shown that Salmeterol has anti-inflammatory and 
DA-neuroprotective activities, even at very low doses. Pre-treatment with Salmeterol 
protects DA neurons against LPS- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)-induced toxicity in both in vitro and in vivo animal models of PD [42, 102]. The 
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mechanism how Salmeterol regulates the activation of microglia is described in  
Figure 1. Collectively, these studies suggest that β2-AR agonists not only protect neu-
rons against degeneration, but also have anti-inflammatory effects, and therefore, hold 
significant promise for the treatments of a wide variety of neurodegenerative condi-
tions including PD [43]. The clinical efficacy of β2-AR agonists have been examined in 
various neurological disorders and few of them are summarized in Table 2.

Disease Condition Design Doses Drug References

Spinal Cord Injury Randomized 

controlled

4mg twice/day 

for 1st week then 

8mg twice/day 

for 15 weeks

Albuterol [129]

Alzheimer’s Disease Randomized 

controlled

20mg/2ml for 12 

months

Formoterol [130]

Multiple Sclerosis Blinded 

controlled

4mg/day Albuterol [131]

Neuropathic pain Controlled, 

double 

blinded

5mg twice/day 

for 28 days

Terbutaline [132]

Memory and Cognition Randomized 

controlled

4mg, single oral 

administration

Salbutamol [133]

SMA Uncontrolled 3-8mg/day for 6 

months

Albuterol [134]

ALS Uncontrolled 60ug/day for 6 

months

Clenbuterol [135]

SBMA Uncontrolled 20ug/day for 

2days, then 

40ug/day

Clenbuterol [136]

SMA: Spinal Muscular Atrophy, SBMA: Spinal and Bulbar Muscular Atrophy, ALS: Amyotrophic Lateral Sclerosis.

Table 2. 
Clinical trials using β2-agonist in neurological conditions.

Figure 1. 
Schematic of microglia-mediated neurotoxicity and inhibitory effects of Salmeterol on microglial activation.
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9. β2-adrenergic receptors and neuroinflammation

Extensive previous investigations into the etiology of PD demonstrate a central 
role for the inflammatory microglial cell in the progression of PD. Thus, targeting 
neuroinflammation mediated by microglia may serve as a potential therapeutic 
benefit in the treatment of PD. Since traditional treatment for PD is aimed only at 
controlling the disease symptoms, the search for more effective neuroprotective 
therapies which target the cause of the disease is now receiving significant atten-
tion. Studies targeting neuroinflammation are aimed to promote the development 
of a novel therapeutic approach and aid in the drug discovery for neurodegenerative 
conditions such as PD.

One such anti-inflammatory approach that has been found to be effective in 
protection against dopaminergic neurodegeneration is accomplished by natural 
and therapeutic compounds that activate the β2-AR. Brain cells including neurons, 
microglia, and astrocytes as well as immune cells express a high density of β2-AR on 
their surface [66, 103]. Catecholamines such as epinephrine (adrenaline), norepi-
nephrine (noradrenaline), and dopamine are the most abundant catecholamines 
found in the nervous system. As evidenced by many unrelated studies, catechol-
amines can modulate the immune response [87, 104]. Further studies have found 
that the endogenous agonist of β2-AR, norepinephrine (NE), controls microglial 
motility and functions during pathogenic conditions [105]. NE also protects cortical 
neurons against microglia-mediated inflammation, while decreased levels of NE 
enhance microglial activation [106]. One study showed that β2-AR negatively 
regulates NF-κB activation and stabilizes the NF-κB/IκBα complex via β-arrestin 
2 in LPS activated murine macrophages [107]. Interestingly, activation of β2-AR in 
astrocytes modulates TNF-α-induced inflammatory gene expression in vitro and 
in vivo. In addition, an in vivo study demonstrated increased expression of β2-AR 
in glial cells in response to neuronal injury. This suggests that β2-AR may provide 
a therapeutic target for regulation of glial cell functioning and the inflammatory 
response in the brain [108]. Activation of β2-AR on astrocytes stimulates the release 
of trophic factors such as BDNF, bFGF, NGF-1, and TGF-β1 via canonical signaling, 
showing anti-apoptotic and neuroprotective effects in animal models of cerebral 
ischemia and excitotoxicity [109, 110]. It has also been shown that noradrenaline 
acting on β2-AR enhances the expression of anti-inflammatory and neurotrophic 
cytokine IL-10 in the brain. This suggests an endogenous ligand of β2-AR is neu-
roprotective during inflammatory conditions in CNS disease pathology [108, 111]. 
Both canonical and noncanonical signaling of β2-AR can selectively regulate 
the adaptive immune response [67], since β2-AR are expressed by naïve CD4+ T 
(T-helper (Th0)) and Th1 cells but absent on Th2 cells [112, 113]. Naïve CD4+ T-cell 
treated with a β2-AR agonist or NE suppresses the production of interferon (IFN)-γ 
and IL-2 and affects their differentiation [114]. Collectively, these studies and 
several others suggest the role of β2-AR in the regulation of immune response.

10.  Molecular mechanism of inflammation in PD or molecular mediators 
of inflammation in PD

10.1 Effect of β2-AR agonists on NF-κB pathway

We have characterized and examined the effects of β2-AR agonists including 
Salbutamol, Salmeterol, Indacaterol, and Vilanterol on neuroinflammation in 
models of PD in vitro and in vivo. However, the short-acting agonists were neuropro-
tective and able to reduce inflammation in vitro at higher doses, but the long-acting 
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agonist showed beneficial effects at low concentration (10−9 M) in neurotoxicity 
and inflammatory models of PD. Salmeterol, a β2-AR agonist, can effectively serve 
as a therapeutic treatment for PD by inhibiting microglia-mediated inflamma-
tory responses in vivo. We have found that Salmeterol functions to inhibit innate 
pro-inflammatory response in both murine macrophages and microglia through its 
inhibition of the NF-κB signaling pathways [42]. We have also investigated whether 
Salmeterol is specific to neuroinflammation in PD or if it can be used as a universal 
anti-inflammatory drug against other chronic inflammatory diseases. To test this, 
we used murine macrophages stimulated with LPS from Porphyromonas gingivalis 
(PgLPS), an oral pathogen as an in vitro model for the periodontal disease. We have 
found that Salmeterol shows similar anti-inflammatory effects on PgLPS-stimulated 
macrophages [115]. Additionally, Feng et al. have also shown neuroprotective effects 
of β-arrestin2 via endogenous opioid arrest in inflammatory microglial cells [116].

10.2 Effect of β2-AR agonists on MAPK pathway

The agonist-activated β2-AR stimulates MAPK signaling pathway via noncanonical 
and G-protein independent pathway. Agonist-activated β2-AR reduces phosphoryla-
tion of ERK1/2 and p38 MAPK in macrophages stimulated with LPS. In contrast, 
β2-AR activation stimulates MAPK signaling and TNF-α, IL-12, and NO production 
in murine macrophages treated with PMA (phorbol 12-myristate-13-acetate) [73]. 
Similarly, our previous studies have shown that activation of β2-AR with the high con-
centration of agonist (up to 10−5 M) leads to sustained phosphorylation of ERK1/2 and 
enhanced production inflammatory mediators in murine microglia and macrophages 
[117]. High-dose treatment of β2-AR agonists on mixed neuroglia culture enhances 
neurotoxicity via NADPH oxidase activity in the ERK-dependent manner [118]. Like 
others, we have found that the low-doses of the β2-AR agonist Salmeterol reduces the 
MAPK activity, NF-κB activation and production of TNF-α in LPS-activated primary 
microglia [42]. We have also found that low-dose Salmeterol inhibits the phosphoryla-
tion of TAK1 (TGF-β-activated kinase1) which is an upstream regulator of NF-κB 
signaling in LPS-stimulated microglia. We have also found that Salmeterol increases 
the expression of β-arrestin2 and enhances the interaction between β-arrestin2 and 
TAB1 (TAK1-binding protein), reduced TAK1/TAB1 mediated activation of NFκB and 
expression of pro-inflammatory genes. Furthermore, silencing of β-arrestin2 abro-
gates the anti-inflammatory effects of Salmeterol in LPS-stimulated BV2 cells [119]. 
These studies suggest that the anti-inflammatory effects of Salmeterol work through 
the inhibition of pro-inflammatory pathways in microglial cells.

10.3 The β-arrestin-mediated biased effects of β2-AR agonist

Previous findings show that high dose Salmeterol enhances the expression of 
IL-1β and IL-6 mRNA and protein in unstimulated human monocytes and murine 
macrophages. These effects were β-arrestin2-dependent but PKA and NF-κB 
independent, while treatment with ERK1/2 and p38 MAPK inhibitor could reverse 
this effect [117]. This finding and several others suggest Salmeterol or other long-
acting agonist have β-arrestin “biased” signaling of β2-AR. These agonists activate 
receptors via β-arrestin signaling with a much greater extent than their effect on 
G-protein-dependent signaling [120]. Our studies suggest that a very low concen-
tration of Salmeterol does not enhance cAMP signaling and its downstream media-
tors, while it activates the β-arrestin2-mediated signaling events [42]. β-arrestin2 
has been shown as a novel regulator of IκB stability via the direct interaction of 
β-arrestin2 and IκB in HEK293 cells [121]. In addition, β-arrestin2 negatively regu-
lates the activation of NF-κB via direct binding with IκBα [122]. One study showed 
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that overexpression of β-arrestin2 significantly reduces L-DOPA-induced dyski-
nesia in animal models of PD [123]. Collectively, these studies suggest that β2-AR 
agonists can be used therapeutically not only to inhibit chronic inflammation and 
progressive degeneration of neurons, but also to treat some of the most debilitating 
neurologic symptoms in PD.

10.4 cAMP/PKA/CREB pathway induced by β2-AR

After binding with an agonist or endogenous ligand, β2-AR normally activates 
the classical cAMP-dependent signaling pathway. The downstream effect of the 
cAMP/PKA pathway is the phosphorylation and nuclear translocation of the CREB 
transcription factor which further enhances the expression of cAMP-inducible 
genes [79]. Activation of CREB via this pathway regulates the synthesis of proteins 
which are mandatory for neuronal homeostasis [124]. The classical signaling of 
β2-AR also increases the activity of PGC-1α (Peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha), which is a key regulator of mitochondrial 
biogenesis and ROS metabolism [125]. Activation of β2-AR also elevated the release 
of neurotrophic factors via cAMP/PKA/CREB pathway and provides neuroprotec-
tive benefits against degeneration [126]. An endogenous agonist of β2-AR (NE) 
affects immune cell functions, production of cytokines, and antibody secretion 
[112]. β2-AR agonists have anti-inflammatory activity and inhibit release of pro-
inflammatory mediators via cAMP/PKA/CREB pathway and also by alternate 
cAMP-dependent pathway (cAMP/Epac1/2) [42, 127, 128]. We have also found that 
pro-inflammatory effects of high-dose of Salmeterol are through cAMP/Epac path-
way, while the anti-inflammatory effects of low-dose of Salmeterol are independent 
on cAMP and Epac activation [42, 118].

11. From bench to bedside: challenges in translation to the clinic

The β2-AR agonists discussed above are FDA-approved for the treatment of 
respiratory diseases such as asthma and COPD, but none of these β2-AR agonists 
are specifically developed for PD. Although, Mittal et al. have found in a Norwegian 
population that using Salbutamol, a SABA, lower the risk of developing PD whereas 
the use of Propranolol, a β2-AR antagonist (commonly used to treat hypertension 
and certain other forms of heart disease) was associated with increased risk of PD 
[100]. Furthermore, this risk of developing PD was dependent on the duration of 
Salbutamol intake in those patients. In the patient population who used Salbutamol 
for at least 6 months, it was expected that 43 would develop PD, but only 23 patients 
were ultimately diagnosed with the disease (rate ratio 0.66). On the other hand, in 
the cohort who used Salbutamol for 2 months or less, there was no decreased risk 
of developing PD in this population [100]. In contrast, patients on Propranolol 
(which is also used as therapeutic for tremors in PD) for at least 1 year showed a 
significantly increased risk of developing PD compared to patients not on propranolol 
(rate ratio 2.2). Therefore, it is clear that patients on long-term Salbutamol (a β2-AR 
agonist) had significantly decreased the risk of developing PD, while patients on 
long-term propranolol (a β2-AR antagonist) therapy had significantly higher rates 
of PD, suggesting that β2-AR inhibition is a highly significant risk factor in develop-
ing PD. When we compared the effectiveness of Salbutamol to Salmeterol (a more 
lipophilic drug) in animal models of PD, Salmeterol was much more effective both in 
vitro and in vivo in dopaminergic neuroprotection [42]. More importantly, we found 
that animals given Salmeterol treatment well before the appearance of symptoms in 
a long-term model of PD showed little evidence of dopaminergic neurodegeneration 
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compared to untreated animals. Taken together, this data suggests that administration 
of β2-AR agonists may have a profound preventative effect on the development of 
PD. Since the blood-brain-barrier penetration is a major obstacle in the development 
of therapeutics targeting CNS disorders, it will be important to consider the impor-
tance of lipophilic properties, concentration within the CNS, as well as the specific-
ity, half-life and safety in using β2-AR agonists in older patients before and after 
the initial appearance of symptoms associated with PD. Consequently, these drugs 
require further investigation in a large cohort study to assess their utility as a potential 
therapeutic for PD and other neurodegenerative diseases.

12. Conclusion

Natural or synthetic activation or inhibition of the β2-AR can have profound effects 
on the development and progression of Parkinson’s disease, a chronic neurodegenera-
tive disorder which involves both neuroinflammatory and cellular mechanisms in 
dopaminergic neurotoxicity. It is now clear that the therapeutic use of β2-AR agonists 
can both inhibit the cause of neurodegeneration and activate a mechanism that can 
enhance recovery of patients with this disease, and serves as an important new thera-
peutic approach to the treatment of chronic neurodegenerative disorders.
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