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Chapter

Particle-Based Fused Rendering
Koji Koyamada and Naohisa Sakamoto

Abstract

In this chapter, we propose a fused rendering technique that can integrally
handle multiple irregular volumes. Although there is a strong requirement for
understanding large-scale datasets generated from coupled simulation techniques
such as computational structure mechanics (CSM) and computational fluid
dynamics (CFD), there is no fused rendering technique to the best of our knowl-
edge. For this purpose, we can employ the particle-based volume rendering (PBVR)
technique for each irregular volume dataset. Since the current PBVR technique
regards an irregular cell as a planar footprint during depth evaluation, the straight-
forward employment causes some artifacts especially at the cell boundaries. To
solve the problem, we calculate the depth value based on the assumption that the
opacity describes the cumulative distribution function (CDF) of a probability vari-
able, w, which shows a length from the entry point in the fragment interval in the
cell. In our experiments, we applied our method to numerical simulation results in
which two different irregular grid cells are defined in the same space and confirmed
its effectiveness with respect to the image quality.

Keywords: volume rendering, irregular volume, unstructured grid

1. Introduction

Coupled analysis is important to solve complex phenomena. Several computa-
tional schemes such as computational fluid dynamics (CFD), computational struc-
ture mechanics (CSM), and computational electronic magnetics (CEM) are applied
to the same geometrical domain, and high-performance computing (HPC) facility
has been used for the computation. Since, in general, the requirement for the
computational grid is different at each scheme, and the space is composed of
multiple irregular volumes. Thus, a volume rendering technique which can handle
multiple irregular volumes is expected.

Volume rendering can provide useful information because with this technique,
it is possible to grasp the spatial distribution of the related physical quantities. It is a
powerful technique for displaying volume datasets, especially three-dimensional
scalar data fields, which are composed of scalar data values defined in three-
dimensional space. In a CSM, CFD or CEM simulation, the three-dimensional space
is composed of computational cells, the shapes of which are, for example, tetrahe-
dra, prisms, and hexahedra. In a large-scale simulation model for complex physical
phenomena, the number of computational cells may be more than one million.

Current volume rendering techniques require discrete sampling in which the
composition is executed in the visibility order. In the volume rendering calculation,
accumulating the optical depth is time consuming. The optical depth is accumulated
so that we can efficiently calculate the occlusion of the scattered light from various
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lighting positions. Most volume rendering techniques accumulate the optical depth
in order from front to back or from back to front along a viewing ray.

Although this sorted sampling is straightforward in structured grid data, it
becomes more complicated if the computation is conducted in a distributed com-
puting environment. In such an environment, the sub-volume dataset is stored in
each distributed node. In this case, it is difficult for a sub-volume to be sorted along
the viewing ray since the shape of the sub-volume may be concave. On the other
hand, the shape of a computational cell is convex. The whole volume is subdivided
into multiple sub-volumes so that the total data transmission cost is minimized.

To handle the problem, a particle-based rendering technique, which does not
need visibility sorting, has been proposed [1]. In this technique, opaque emissive
particles are employed for realizing sorting-free rendering. There are two
approaches for the implementation, that is, an object-space approach and an image-
space approach (see Figure 1). In the former approach, which we call object-space
particle-based volume rendering (O-PBVR), a particle density function is estimated
from a user-specified transfer function, and a set of opaque particles are generated
at each computational cell. The generated particles are projected onto an image
plane, and the projection is repeated to improve the image quality. Although
O-PBVR shows good scalability for handling large-scale irregular volume [2], the
current drawback of the technique is the generation of low-quality images in which
particles are visible on the boundary surface polygons when viewed closely. More-
over, with O-PBVR, it is necessary to generate a large number of particles to obtain
a high-resolution image.

In the latter approach, we proposed a sorting-free technique by regarding the
brightness equation as the expected value of the luminosity of a sampling point
along a viewing ray [3]. We applied the technique to a projected tetrahedral tech-
nique with pre-integration. We called this image-space particle-based volume ren-
dering (I-PBVR). We conducted a thorough experimental analysis to construct the
performance model [3]. The model suggests that I-PBVR is preferable to O-PBVR

Figure 1.
Overview of PBVR processes that employ the ensemble average.
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when a volume dataset is rendered in a high resolution. In addition, I-PBVR
becomes a feasible choice for rendering irregular volume data when particle gener-
ation becomes frequent.

To understand the relationships between variables in the irregular volume data,
it is necessary to integrate multiple volumes, into a single volume rendering. In this
chapter, we improve the I-PBVR technique in terms of its extensibility to multiple
volumes and propose a new technique for semi-transparent rendering which can
integrally handle multiple volumes without visibility sorting. I-PBVR regards a
tetrahedral cell as a triangle footprint on the image plane. When a single volume is
rendered, each footprint does not intersect with the other one since the volume is
composed of cells that are not overlapped with others. When multiple volumes are
rendered, the footprints may intersect with others. This intersection causes a prob-
lem in which the cell boundaries are visible when dealing with multiple volumes.
Thus, in this chapter, our research question is “How can we realize a fused volume
rendering technique which is free from artifact?” The hypothesis to the question is
“If we employ an adequate probability process to sample particles along a viewing
in a grid cell, the artifact is not noticeable.” In the early age of volume rendering,
Blinn assumed that the number of particles is distributed in a volume space
according to the Poisson distribution. If we take an interval that is a part of the
viewing ray cut by cell faces, the distance between particles is distributed according
to the exponent distribution.

In the remaining part, we first describe related work and the basic theory of
PBVR and then propose a fused rendering technique using PBVR. Finally, we make
a comparative work to confirm the effectiveness of the proposed technique. To test
the hypothesis, we design the following experiments for the sampling along the
interval:

1. The sampling is made at the entry, exit or middle points along an interval in
the grid cell.

2. The sampling is made at a random position along an interval in the grid cell.

3. The sampling is made according to a probability process, which is determined
based on an opacity along the interval.

2. Related work

In the particle-based modeling of Saturn’s ring, Blinn assumed that the number
of particles follows the Poisson distribution although he did not describe it in detail
[4]. The assumption led to a definition of opacity which was an important keyword
for the volume rendering. Then, volume rendering has been the focus of intensive
study for nearly three decades [5–7]. The volume rendering of unstructured volume
data has received much attention, and several approaches have been proposed.
Extensive literature and surveys on volume rendering are available that address
unstructured volume data [8, 9]. A concern has often been visibility sorting, which
causes a severe bottleneck in the interactive exploration.

To solve the problem recognized by many volume rendering researchers, we
returned to a density emitter model and presented the basic concept for this
approach. The proposed PBVR technique represents the 3D scalar fields as a set of
particles and considers both emission and absorption effects [1, 2]. The particle
density is derived from a user-specified transfer function and is used to estimate the
number of particles to be generated in a given volume dataset. Because the particles
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can be considered fully opaque, no visibility sorting processing is required during
the rendering process, which is advantageous from a distributed processing
perspective.

The development of a fused rendering technique began in the seismic or medical
imaging field. Lu Cai et al. developed a fused volume rendering technique for
multiple seismic attribute volume data by the way of planar slices or horizon slices
and revealed a variety of geological phenomena more effectively and clearly in
order to provide a true three-dimensional perspective view. Their method can
address only regular volume datasets [10].

3. Particle-based volume rendering

3.1 Definition of opacity

In image generation in volume rendering, it is thought that giving a viewing ray
(viewpoint and direction), when there is no other emissive particle between the
particle and the viewpoint, the energy from the particle reaches the viewpoint. Let
us consider a certain section on the viewing ray, where τ particles are distributed on
average. Furthermore, suppose that this section is divided into M equal parts, M
small sections are formed, and particles are present in k small sections. Here, it is
assumed that there is at most one particle in each small section and k is a natural
number in addition to 0. At this time, the probability p that there is a particle in the
small section is as follows:

p ¼
τ

M
(1)

Such a distribution follows a binomial distribution, and its probability is given as
follows:

P X ¼ kð Þ ¼ MCkp
k 1� pð ÞM�k (2)

Here, the number of particles X is set as a random variable. When M is brought
close to infinity while keeping τ = Mp constant, its distribution becomes the Poisson
distribution of the average τ. The probability that there are k particles in the section
is expressed by the following equation:

P N ¼ kð Þ ¼
τke�τ

k!
(3)

Here, e is the Napier’s constant (e = 2.71828 …), and k! is the factorial of k. Thus,
the probability is a positive real number. The Poisson distribution is often employed
in the context of the number of occurrences of events within the interval defined in
the time domain, but in volume rendering, it is considered not in the time domain
but in the space domain. Eq. 3 represents the probability that k particles exist when
the average number of particles is τ. When k = 0, it represents the situation in which
no particle exists in the section on the viewing ray.

P N ¼ 0ð Þ ¼ e�τ (4)

If there are many particles, the rate at which energy reaches the viewpoint
becomes small, and it is easier to define the passing distance of light by the number
of particles rather than the actual distance. Therefore, the average particle number τ
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is also called the optical thickness. Additionally, a negative sign is given to this
optical thickness, and an index is taken, that is, Eq. 4 is called transparency (t), and
it shows the ease of light transmission. The opacity α is obtained by subtracting this
transparency from 1 and represents the probability that one or more particles exist
in the section.

3.2 Volume rendering

In traditional computer graphics, it is assumed that all light is radiated from the
outside, the particles constituting the object are treated as reflectors, and the light
scattering and absorption are repeated inside the object. On the other hand, in the
volume rendering technique proposed by Sabella in 1988, the internal structure of
the volume data can be known by treating the particle as a radiator in addition to a
reflector (particle emission model) for the purpose of visualizing the scalar volume.

In Blinn’s model and Kajiya’s model, the radiant energy is only reflected from the
light source and energy emission (luminescence) by the particles themselves has not
been considered. However, in the model of Sabella, from the standpoint of visual-
izing the volume data, we assume that the particles themselves emit light.

To accurately simulate the light scattering phenomenon inside the object, com-
plicated analysis using radiation theory becomes necessary, and it is necessary to
solve the scattering equation derived from that theory. In the particle emission
model, focusing only on the viewing ray direction, we use a simple equation
describing the transmission of optical energy with volume data. This equation can
be formulated as follows by considering the difference in radiant intensity (lumi-
nance value) B in a cylindrical tube of minute length.

dB tð ÞA ¼ �absorbedþ emitted

¼ �B tð Þ þ c tð Þð Þ � πr2ρ tð ÞAdt

dB tð Þ

dt
¼ �B tð Þ þ c tð Þð Þ � πr2ρ tð Þ

(5)

Here, ρ tð Þ is the particle density (the number of particles per unit volume), r is
the particle radius, and c (t) is the light emission amount per unit area.

B0 ¼ B t0ð Þ ¼

ð

t0

tn

c tð Þ � πr2ρ tð Þ � exp �

ð

t0

t

πr2ρ λð Þdλ

0

@

1

Adt (6)

Eq. 6 is integrated in the interval in which the parameters t0and tn represent the
nearest and the farthest points, respectively, from the viewpoint among the inter-
section points of the volume data and the viewing ray.

This is called the brightness equation. Generally, the brightness value B and the
light emission amount c (t) are composed of three components of red, green, and
blue. Eq. 6 shows that energy emitted from a point on the viewing ray reaches the
viewpoint by receiving attenuation represented by an exponential term. Note that
the exponent term represents the optical thickness τ, so it is equal to the transpar-
ency calculated by assuming a Poisson distribution.

In the particle emission model in volume rendering, from the viewpoint of
visualization of scalar data, scalar values interpolated in particle positions are
converted into color data (composed of three components of red, green, and blue).
This conversion table is called a transfer function together with a conversion table
to opacity described below.

5

Particle-Based Fused Rendering
DOI: http://dx.doi.org/10.5772/intechopen.81191



In volume rendering, by performing shading processing, it is possible to effec-
tively express shading on the isosurface inherent in the scalar volume. Particularly
in the case of three-dimensional medical images, it is necessary to visualize compli-
cated structures such as bones, muscles, blood vessels, etc. as isosurfaces, and
shading processing becomes important. In shading processing targeting the scalar
volume data, luminance value calculation using the gradient vector obtained by
interpolation calculation inside the grid cell is performed.

To numerically calculate the brightness equation represented by Eq. 6, an inte-
gration area defined on the viewing ray is divided by a step width in which particle
emission can be regarded as constant.

At this time, the k-th light emission amount c (t) is regarded as a constant and is
set as ck. In the calculation of integration, the integral of the exponent part is
divided into the integral section and others. For those that are divided outside the
integration interval, sections corresponding to the division sections are divided and
expressed with product signs. Each element of the product symbol is an index
obtained by attaching a minus sign to the optical thickness and represents the
transparency described above.

As a result, it can be seen that a term of the same form as the exponent term of
the divided section outside the integral section and the transparency are included.
Transparency takes values from 0 to 1 by definition. The value obtained by
subtracting this transparency from 1 is called opacity, as mentioned above, and may
be a target of transfer function, and opacity is used in volume rendering in many
cases. That is, in the k-th integral interval, the opacity αk is defined as follows.

αk ¼ 1� exp �

ð

tk�1

tk

πr2ρ λð Þdλ

0

B

@

1

C

A
¼ 1� exp �πr2ρkΔt

� �

(7)

where Δt is the length of the integration interval, and ρk is the average particle
density in the integral interval k. By introducing this opacity, Eq. 6 is as follows:

Bk ¼ ckαk
Y

k�2

j¼0

1� αjþ1

� �

¼ ckαk
Y

k�1

j¼1

1� αj
� �

(8)

By adding all the terms described by Eq. 8, the brightness is as follows:

B ¼ ∑
n

k¼1

ck � αk

Y

k�1

j¼1

1� αj
� �

" #

(9)

Normally, this opacity is converted from the scalar value S in the transfer
function specified by the user. That is, the opacity is a function of the scalar value S.

α ¼ α S x; y; zð Þð Þ (10)

If the length of the integration interval is a value Δt‘ different from the
predetermined Δt, it is necessary to make the following correction.

αk ¼ 1� exp �πr2ρkΔtð Þ

α0k ¼ 1� exp �πr2ρkΔt
0ð Þ

∴ α0k ¼ 1� 1� αkð Þ
Δt0

Δt

(11)
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In volume rendering, the user should have a large opacity (maximum value is
1.0) for the scalar value to be emphasized and a small opacity (minimum value of
0.0 for the less important scalar value) to set the transfer function. By doing so, the
relationship between the scalar value and the opacity can be defined, and according
to Eq. 11, the following particle density is defined in the three-dimensional region in
which the volume data are defined.

ρk ¼
log 1� αkð Þ

πr2Δt
(12)

Eq. 12 defines the opacity when a transfer function is set in the three-
dimensional region, and the particle density is determined when the particle diam-
eter is determined; thus, particles can be generated using an appropriate method. By
allocating colors to particles and projecting them on the image plane, volume ren-
dering can be realized.

During the exploration phase, the opacity is often modified in order to change an
emphasized region. If we keep the particle radius as defined in the first place, we
need to re-generate particles which requires a significant computational time. To
avoid the additional particle generation process, we need to change the particle
radius on the condition that the particle density stays the same. If we change the
opacity from αk to α0k, the new radius r0 becomes as follows:

r0 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log 1� αkð Þ

log 1� α0k

� �

s

(13)

3.3 O-PBVR

O-PBVR is comprised of three processes: particle generation, particle projection,
and the ensemble average [1]. The first process constructs a density field and
generates particles consistent with the density function. The density is derived from
a user-specified transfer function that converts a scalar to an opacity data value, and
it describes the probability that a particle is present at a given point in space. The
second process projects particles onto an image plane, and the corresponding parti-
cle buffer stores the particles. Each pixel on the image plane contains sub-pixels
(i.e., divided pixels), and the number of division is called the sub-pixel level. This
sub-pixel processing is equivalent to an ensemble average which repeats the first
and second processes in sequence, N times, and calculates the resulting brightness
values by averaging the accumulating color values.

3.3.1 Particle generation

The particle model considers three particle attributes: shape, size, and density.
The particle shape is assumed to be spherical, as in the density emitter model. The
size of the sphere is characterized by its diameter, which is the same as a side length
of a sub-pixel. The particle density ρ can be estimated from the user-specified
transfer function. To generate a rendering image equivalent in quality to the volume
ray-casting result, the above relation must estimate the particle density function.
The number of particles N in a volume cell is calculated as

N ¼

ð

Cell
ρdv (14)
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The particles are generated cell-by-cell. In each cell, particle locations are calcu-
lated stochastically in the local coordinate system, which may be one of a variety of
types (e.g., barycentric coordinate). Because this technique generates particles with
uniform sampling in each cell, blocky noise occurs in the rendering result. To solve
this problem, Metropolis sampling for O-PBVR is presented [1]. Metropolis sam-
pling, which uses a ratio of density at the current position to that at the candidate
position, is widely used as an efficient Monte Carlo technique in chemistry and
physics.

3.3.2 Particle projection

Using the aforementioned particle generation method, we can generate particles
in a volume space according to the density function ρ xð Þ. By projecting these
particles onto the image plane, we calculate the brightness values of the
corresponding pixels. We also perform particle occlusion with the Z-buffer algo-
rithm during this projection stage. This incorporates the effects of particle collision,
which prevents some particles from reaching the image plane.

In the present method, we assume that the particles are completely opaque.
Thus, neither alpha blending nor visibility ordering is required. However, when the
number of projected particles is small, for instance one per pixel, it becomes diffi-
cult to produce a semi-transparent appearance. This problem can be solved by an
ensemble average, that is, by accumulating a pixel value for particles generated
multiple times and averaging their brightness values within the pixel.

3.4 I-PBVR

I-PBVR is comprised of three processes: cell projection, stochastic rasterization,
and ensemble average. The first process decomposes a cell into several tetrahedral
cells and splits each of the tetrahedral cells into a set of triangles on the projection
plane. The second process renders the fragments of the triangles with a probability
equal to the opacity value at each ray segment along a viewing ray. It projects
particles onto the image plane, and the corresponding particle buffer stores the
particles’ colors and depths. The third process repeats the first and second processes
in sequence, N times, and calculates the resulting brightness values by averaging the
accumulating color values.

3.4.1 Cell projection

Projected tetrahedra (PT) is a technique for rendering a tetrahedral volume
dataset using polygonal approximation, which regards a tetrahedral cell as triangles.
In this technique, first the tetrahedral cells are sorted in the order of distance from a
viewing point. Second, each tetrahedral cell is projected onto an image plane and
subdivided into three or four PT triangles. In the original PT technique, the color
and opacity are evaluated at the vertices and rasterizing of the PT triangle generates
the fragments on the image plane. Finally, the colors are accumulated to calculate
the pixel value using the back-to-front algorithm. In I-PBVR, although the particle
radius is not explicitly specified, it actually becomes a pixel scale on the image
plane.

To improve the accuracy of the pixel value, a pre-integration technique, pro-
posed by Engel [11], is often employed in the rendering stage. The technique
calculates the color and opacity in the ray segment in a more precise way than the
conventional technique which just samples a scalar value at the middle point of the
ray segment. If the color or the opacity changes drastically in the ray segment, this
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sampling may miss the important feature. The pre-integration assumes that the scalar
is linearly distributed in the ray segment. In this assumption, the integrand can be
transformed from a function of the distance to that of the scalar. The pre-integration
computes the lookup tables mapping three integration parameters (scalar value at the
front triangle face sf, back one sb, and length of the segment l in Eq. 18) to the pre-
integrated color C and opacity α. By considering many combinations of scalar and
distance values, the pre-integration table is stored as 3D texture in GPU.

3.4.2 Stochastic rasterization

From Eq. 9, we can regard a brightness calculation model as an expected value
calculation in which there are n ray segments along a viewing ray, and the k-th
particle occurs at the probability of αk. Thus, the brightness can be regarded as the
expected value of the luminosity from the ray segment:

B ¼ ∑
n

k¼1

Pkck (15)

where the possibility that the k-th luminosity ck is equal to the brightness value
can be described as follows by using the opacity value αk:

Pk ¼ αk

Y

k�1

j¼1

1� αj
� �

(16)

This represents an event in which there is no particle from the first to the (k-1)-th
ray segment, and there is more than one particle in the k-th ray segment. In this case,
the brightness B becomes ck since opaque and emissive particles are used. Please note
that the brightness is not contributed to by the ray segments from the k-th to the last
segments since the (k-1)-th particle completely occludes these segments.

3.5 Ensemble average

In both O-PBVR and I-PBVR, a stochastic approach is employed to generate
particles that are projected onto an image plane. The generation is repeated to make
the average of the pixel values, which can be viewed as an ensemble average. An
ensemble is an imaginary collection of notionally identical experiments. In the
ensemble average, the total brightness is calculated by averaging the pixel values in
all of the repetitions. We confirmed the fluctuation of the total brightness follows a
large number and evaluated the minimum repetition, 65,536, that makes the total
variance become within half of the minimum discretized brightness in the worst
case [12]. This result suggests that little improvement can be expected in the
brightness value when the repetition number exceeds 65,536 in most cases. When
we interact the volume rendering image with some transformation such as transla-
tion, rotation, or scaling, we think much of the interaction by reducing the repeti-
tion number at the cost of the image quality. When we intend to improve the image
quality, we stay still without any interaction.

4. Particle-based fused rendering

In I-PBVR, we generate a particle in an interval of a tetrahedral cell by regarding
the opacity as a cumulative distribution function as shown in Figure 2. The opacity
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can be represented as a function of a length from the entry point in the interval.
Thus, the depth, which is the length from the entry point, can be regarded as a
probability variable which follows a probability density function that is a derivative
of the cumulative distribution function (CDF).

When we consider the definition of the opacity, we find that it describes the
CDF of a probability variable, w, which shows a length from the entry point in the
fragment interval. The probability density function, that is, its derivative, describes
an exponential distribution, which matches the theorem that the number of parti-
cles follows the Poisson distribution since the exponential distribution describes the
distance between particles in a Poisson process.

The opacity in Eq. 7 can be used to express the CDF α (w) of the random variable
w as follows:

α wð Þ ¼ 1� exp �

ðtk�1

tk�1�wl
τ λð Þdλ

� �

(17)

Let l be the width of the section where the viewing ray is cut by the cell. This
equation represents the opacity calculated between the entry point and the position
where the particles are located in the entry. This interval can be expressed as wl
using the random variable w (see Figure 2). Furthermore, the theorem that the
probability density function is represented by an exponential function is consistent
with theorem that “when the number of particles in a certain section follows the
Poisson distribution, the particle spacing follows the exponential distribution.”

In the pre-integration method, the opacity in the section is described as follows.

α sf ; sb; l
� �

¼ 1� exp �
l

sb � sf
T sbð Þ � T sf

� �� �

 !

(18)

Here, sf and sb are scalar data values interpolated and computed at the entry and

exit points of the section, respectively, and l represents the width of the section as
described above. T(s) represents an integral expression for calculating the number
of particles generated in the interval.

Figure 2.
Cumulative distribution function defined as the opacity between the entry point and the particle in the section
where the viewing ray is cut into a tetrahedral cell.
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T sð Þ ¼

ðs

0
τ λð Þdλ (19)

In the proposed method, it is assumed that the scalar data value is linearly
interpolated in the interval, and it is expressed as s (w) at the point expressed using
the random variable w. This assumption arises from the linear distribution of scalar
data in line segments defined in tetrahedrons when interpolation calculations using
scalar data and volume coordinates defined at each vertex are performed in the
tetrahedrons.

s wð Þ ¼ 1� wð Þsf þ wsb (20)

Therefore, in the case of sf 6¼ sb, the opacity function α (w) expressed by Eq. 17 is

expressed as follows.

α wð Þ ¼ α sf ; s wð Þ;wl
� �

¼ 1� exp �
l

sb � sf
T s wð Þð Þ � T sf

� �� �

 !

(21)

In the case of sf ¼ sb, the opacity function α (w) expressed by Eq. 17 is expressed

as follows:

α wð Þ ¼ 1� exp �τ sf
� �

�wl
� �

(22)

Here, reference is made to the following derivation process.

α sf ; sb; l
� �

¼ lim
sf!sb

α sf ; sb; l
� �

¼ lim
sf!sb

1� exp �
l

sb � sf
T sbð Þ � T sf

� �� �

 ! !

¼ 1� exp �T0 sf
� �

� l
� �

¼ 1� exp �τ sf
� �

� l
� �

(23)

4.1 Calculation of depth value by inverse function method

In this method, particles are placed at a position wl away from the start point of
the section. At this time, assuming that the random variable w follows the proba-
bility density function such that the cumulative distribution function is the opacity
α(w), this variable w can be generated using the inverse function method. In the
inverse function method, when the random number R exists in the range of the
interval [0, α sf ; sb; l

� �

], the variable w is calculated using Eqs. 24 or 25. Eqs. 24 and

25 are derived from Eqs. 21 and 22 when sf 6¼ sb and sf ¼ sb, respectively.

w ¼ α�1 Rð Þ

¼
1

sb � sf
T�1 �

sb � sf
l

log 1� Rð Þ þ T sf
� �

� �

� sf

� � (24)

w ¼ α�1 Rð Þ

¼ �
log 1� Rð Þ

τ sf
� �

� l

(25)
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Using Eqs. 24 and 25, we can calculate the depth value of the particle.

D wð Þ ¼ 1� wð Þ �Df þw �Db (26)

Here, Df and Db represent the depth values at the start and end points of the

section. Similarly, scalar data values at particle positions can be interpolated and
color values can be calculated using the transfer function.

This method was implemented using OpenGL and the GPU shader described in
GLSL. For the implementation of pre-integration, we used two-dimensional pre-
integration to perform error correction [13] with perspective transformation, so we
implemented the function T described in Eq. 19 as a two-dimensional texture in the
GPU [14]. To determine the random variable w described in Eq. 20, an inverse
function of T is required, but in order to realize efficient computation, the function
value was calculated in advance and this was also implemented in the GPU as a two-
dimensional texture.

5. Result and discussion

Experiments were conducted to evaluate the effectiveness of this method. The
experiment used CPU: Intel Core i7 3.3GHz, MEM: 16GB, and GPU: Intel Iris
Graphics 550.

To confirm the appropriateness of the depth value in this method, experiments
were conducted on two irregular volume data consisting of a single tetrahedral cell.
Figure 3 visualizes each irregular volume data using a red/blue monochrome color
map that increases the color value according to the data value.

As a comparative experiment, as in the conventional method, the depth value in
the tetrahedral cell is visualized by fixing the relative position in the section like the
entry point, the middle point, and the exit point. It turns out that the proposed
method realizes satisfactory visualization at the intersection of the two tetrahedral
lattices. According to the result of the conventional method, a change in unnatural
color value can be visually confirmed.

Figure 3.
Application example of proposed method for intersecting tetrahedral cell (red and blue color maps were used for
each tetrahedral cell).
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Experiments were conducted using two irregular volume data of appropriate
size. These are obtained as a result of computational fluid dynamics calculation and
are called “Tank.” This calculation relates to a physical phenomenon when a pipe-
like valve installed in a gas tank filled with a high-pressure state is instantly opened.
Therefore, the important variables are pressure data and velocity absolute value
data (both are scalar data). Pressure data and velocity absolute data were calculated
using 9827 and 516 tetrahedral cells, respectively. Figure 5 shows the volume
rendering display of the fused mixed irregular volume data with different cells. In
this experiment, red color is assigned to pressure data, and blue color is assigned to
velocity absolute value data (Figure 4).

In Figure 5, we compare the proposed method (a), the previous methods (b),
(c), and (d) in which the relative position in the section is fixed as the entry point,
the middle point, and the exit point for the depth values in the tetrahedral cells and
a method in which a random position is located between the entry and exit points
(e). In the five figures, in addition to presenting the overall visualization result (grid
line presence/absence) and the local visualization result (grid line presence/

Figure 5.
Comparison of application example to “Tank” data by the proposed method and conventional methods.

Figure 4.
Example of application to “Tank” data. (a) Velocity data defined by 516 cells, (b) pressure data defined by
9827 cells, (c) (a)+(b) fused visualization.
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absence), the time required for the visualization result is described. Obviously, with
the conventional method, it can be understood that artifacts due to improper setting
of the depth value are visible in the visualization results. In particular, the trend is
noticeable in the visualization results (b–d) where the depth value is set at the fixed
point of the section. Even with the random position, it is more noticeable than that
of the proposed method (e). Additionally, it can be seen that there is almost no
difference in the calculation time required for the visualization.

6. Conclusion

In this chapter, we proposed a volume rendering algorithm method for multiple
irregular volume data. In this method, the tetrahedral grid constituting the volume
data is projected on the image plane, and the opacity is used to control the presence/
absence of drawing at pixel expansion. To efficiently perform volume rendering of
multiple irregular volume data, we developed a method for stochastically arranging
particles in the section where the viewing ray is cut off by tetrahedrons. In this
arrangement method, the particle position is calculated by inverse function method,
considering the particle position as a random variable and the cumulative distribu-
tion function as opacity.

In the experiments for confirming the effectiveness of this method, we prepared
two types of irregular volume data with different cells and confirmed the effective-
ness of the proposed method in terms of the presence/absence of artifacts and
calculation time at the intersection of the cells.

Although this time we concerned the proposal of the visualization method itself,
we would like to use this method to elucidate the causal relationship between vari-
ables in important physical phenomena. For example, in order to clarify the influ-
ence of coherent vortices on heat transport in thermal fluid phenomena, it is
necessary to combine scalar data representing a second invariant representing a
vortex region and scalar data representing a heat flux absolute value related to heat
transport. By using this method for the visualization of two kinds of time series
irregular volume data, we would like to figure out a visual correlation between the
multiple variables.
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