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Chapter

New Aspects of Descartes’ Rule
of Signs
Vladimir Petrov Kostov and Boris Shapiro

Abstract

Below, we summarize some new developments in the area of distribution of
roots and signs of real univariate polynomials pioneered by R. Descartes in the
middle of the seventeenth century.
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1. Introduction

The classical Descartes’ rule of signs claims that the number of positive roots of a
real univariate polynomial is bounded by the number of sign changes in the
sequence of its coefficients and it coincides with the latter number modulo 2. It
was published in French (instead of the usual at that time Latin) as a small portion
of Sur la construction de problèmes solides ou plus que solide which is the third book of
Descartes’ fundamental treatise La Géométrie which, in its turn, is an appendix to
his famous Discours de la méthode. It is in the latter chef d’oeuvre that Descartes
developed his analytic approach to geometric problems leaving practically all proofs
and details to an interested reader. This interested reader turned out to be Frans van
Schooten, a professor of mathematics at Leiden who together with his students
undertook a tedious work of making Descartes’ writings understandable, translat-
ing and publishing them in the proper language, that is, Latin. (For the electronic
version of this book, see [13].) Mathematical achievements of Descartes form a
small fraction of his overall scientific and philosophical legacy, and Descartes’ rule
of signs is a small but important fraction of his mathematical heritage.

Descartes’ rule of signs has been studied and generalized by many authors over
the years; one of the earliest can be found in [7], see also [4, 11]. (For some recent
contributions, see [1, 2, 6, 10, 12, 14], to mention a few.)

In the present survey, we summarize a relatively new development in this area
which, to the best of our knowledge, was initiated only in the 1990s (see [12]).

For simplicity, we consider below only real univariate polynomials with all

nonvanishing coefficients. For a polynomial P≔∑d
j¼0ajx

j with fixed signs of its

coefficients, Descartes’ rule of signs tells us what possible values the number of its
real positive roots can have. For P as above, we define the sequence of � signs of

To René Descartes, a polymath in philosophy and science.
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length dþ 1 which we call the sign pattern (SP for short) of P, namely, we say that a
polynomial P with all nonvanishing coefficients defines the sign pattern σ≔ sdð , sd�1,
…, s0Þ if sj ¼ sgn aj. Since the roots of the polynomials P and �P are the same, we
can, without loss of generality, assume that the first sign of a SP is always a þ.

It is true that for a given SP with c sign changes (and hence with p ¼ d� c sign
preservations), there always exist polynomials P defining this sign pattern and
having exactly pos positive roots, where pos ¼ 0, 2,…, c if c is even and
pos ¼ 1, 3,…, c if c is odd (see, e.g., [1, 3]). (Observe that we do not impose any
restriction on the number of negative roots of these polynomials.)

One can apply Descartes’ rule of signs to the polynomial �1ð ÞdP �xð Þ which has
p sign changes and c sign preservations in the sequence of its coefficients and

whose leading coefficient is positive. The roots of �1ð ÞdP �xð Þ are obtained from
the roots of P xð Þ by changing their sign. Applying the above result of [1] to

�1ð ÞdP �xð Þ, one obtains the existence of polynomials P with exactly neg negative
roots, where neg ¼ 0, 2,…, p if p is even and neg ¼ 1, 3,…, p if p is odd. (Here again
we impose no requirement on the number of positive roots.)

A natural question apparently for the first time raised in [12] is whether one
can freely combine these two results about the numbers of positive and negative
roots. Namely, given a SP σ with c sign changes and p ¼ d� c sign preservations,
we define its admissible pair (AP for short) as pos; negð Þ, where pos ≤ c, neg ≤ p,
and the differences c� pos and p� neg are even. For the SP σ as above, we call
c; pð Þ the Descartes’ pair of σ. The main question under consideration in this
paper is as follows.

Problem 1. Given a couple (SP, AP), does there exist a polynomial of degree d with
this SP and having exactly pos positive and exactly neg negative roots (and hence exactly
d� pos� negð Þ=2 complex conjugate pairs)?

If such a polynomial exists, then we say that it realizes a given couple (SP, AP).
The present paper discusses the current status of knowledge in this realization
problem.

Example 1. For d ¼ 4 and for the sign pattern σ0 ≔ þ;�;�;�;þð Þ, the following
pairs and only them are admissible: 2; 2ð Þ, 2;0ð Þ, 0; 2ð Þ, and 0;0ð Þ. The first of them
is the Descartes’ pair of σ0.

It is clear that if a couple (SP, AP) is realizable, then it can be realized by a
polynomial with all simple roots, because the property of having nonvanishing
coefficients is preserved under small perturbations of the roots.

In this short survey, we present what is currently known about Problem 1. After
the pioneering observations of Grabiner [12] which started this line of research,
important contributions to Problem 1 have been made by Albouy and Fu [1] who, in
particular, described all non-realizable combinations of the numbers of positive and
negative roots and respective sign patterns up to degree 6. Our results on this topic
which we summarize below can be found in [5, 8, 9] and [15–19]. On the other hand,
we find it surprising that such a natural classical question has not deserved any
attention in the past, and we hope that this survey will help to change the situation.
The current status of Problem 1 is not very satisfactory in spite of the complete
results in degrees up to 8 as well as several series of non-realizable cases in all degrees.
There is still no general conjecture describing all non-realizable cases. It might
happen that the answer to Problem 1 in sufficiently high degrees is very complicated.

On the other hand, besides Problem 1 as it is stated, there is a significant number
of related basic questions which can be posed in connection to the latter Problem
and are still waiting for their researchers. (Very few of them are listed in Section 5.)
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One should also add that there is a number of completely different directions
in which mathematicians are trying to extend Descartes’ rule of signs. They
include, for example, rule of signs for other univariate analytic functions inclu-
ding exponential functions, trigonometric functions and orthogonal polyno-
mials, multivariate Descartes’ rule of signs, tropical rule of signs, rule of signs in
the complex domain, etc. (see, e.g., [6, 10, 14]) and references therein. But we
think that Problem 1 is the closest one to the original investigations by Des-
cartes himself.

The structure of this chapter is as follows. In Section 2, we provide the informa-
tion about the solution of Problem 1 in degrees up to 11. In Section 3, we present
several infinite series of non-realizable couples (SP, AP). Finally, in Section 4 we
discuss two generalizations of Problem 1 and their partial solutions.

2. Solution of the realization problem 1 in small degrees

2.1 Natural Z2 � Z2-action and degrees d ¼ 1, 2, and 3

Let us start with the following useful observation.
To shorten the list of cases (SP, AP) under consideration, we can use the

following Z2 � Z2-action whose first generator acts by.

P xð Þ↦ �1ð ÞdP �xð Þ, (1)

and the second one acts by

P xð Þ↦ PR xð Þ ≔ xdP 1=xð Þ=P 0ð Þ: (2)

Obviously, the first generator exchanges the components of the AP. Concerning

the second generator, to obtain the SP defined by the polynomial PR, one has to read

the SP defined by P xð Þ backward. The roots of PR are the reciprocals of these of P
which implies that both polynomials have the same numbers of positive and nega-
tive roots. Therefore, the SPs which they define have the same AP.

Remark 1. A priori the length of an orbit of any Z2 � Z2-action could be 1, 2,
or 4, but for the above action, orbits of length 1 do not exist since the second

components of the SPs defined by the polynomials P xð Þ and �1ð ÞdP �xð Þ are always
different. When an orbit of length 2 occurs and d is even, then both SPs are
symmetric w.r.t. their middle points (hence their last component equal þ).
Similarly, when d is odd, then one of the two SPs is symmetric w.r.t. its middle
(with the last component equal to þ), and the other one is antisymmetric. Thus, its
last components equal �.

It is obvious that all pairs or quadruples (SP, AP) constituting a given orbit are
simultaneously (non-)realizable.

As a warm-up exercise, let us consider degrees d ¼ 1, 2 and 3. In these
cases, the answer to Problem 1 is positive. We give the list of SPs, with the
respective values c and p of their APs and examples of polynomials realizing
the couples (SP, AP). In order to shorten the list, we consider only SPs begin-
ning with two þ signs; the cases when these signs are þ;�ð Þ are realized by the

respective polynomials �1ð ÞdP �xð Þ. All quadratic factors in the table below have
no real roots.
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d SP c p AP P

1 þ;þð Þ 0 1 0; 1ð Þ xþ 1

2 þ;þ;þð Þ 0 2 0; 2ð Þ x2 þ 3xþ 2 ¼ xþ 1ð Þ xþ 2ð Þ
0;0ð Þ x2 þ xþ 1

þ;þ;�ð Þ 1 1 1; 1ð Þ x2 þ x� 2 ¼ x� 1ð Þ xþ 2ð Þ
3 þ;þ;þ;þð Þ 0 3 0; 3ð Þ x3 þ 6x2 þ 11xþ 6 ¼ xþ 1ð Þ xþ 2ð Þ xþ 3ð Þ

0; 1ð Þ x3 þ 3x2 þ 4xþ 2 ¼ xþ 1ð Þ x2 þ 2xþ 2ð Þ
þ;þ;þ;�ð Þ 1 2 1; 2ð Þ x3 þ 2x2 þ x� 6 ¼ x� 1ð Þ xþ 2ð Þ xþ 3ð Þ

1;0ð Þ x3 þ 5x2 þ 4x� 10 ¼ x� 1ð Þ x2 þ 6xþ 10ð Þ
þ;þ;�;þð Þ 2 1 2; 1ð Þ x3 þ x2 � 24xþ 36 ¼ xþ 6ð Þ x� 2ð Þ x� 3ð Þ

0; 1ð Þ x3 þ 2x2 � 19xþ 30 ¼ xþ 6ð Þ x2 � 4xþ 5ð Þ
þ;þ;�;�ð Þ 1 2 1; 2ð Þ x3 þ x2 � 4x� 4 ¼ x� 2ð Þ xþ 1ð Þ xþ 2ð Þ

1;0ð Þ x3 þ 2x2 � 3x� 10 ¼ x� 2ð Þ x2 þ 4xþ 5ð Þ

Example 2. For d ¼ 4, an example of an orbit of length 2 is given by the couples

þ;�;�;�;þð Þ; 2; 2ð Þð Þ and þ;þ;�;þ;þð Þ; 2; 2ð Þð Þ:

Here, both SPs are symmetric w.r.t. its middle.
For d ¼ 5, such an example is given by the couples

þ;�;�;�;�;þð Þ; 2; 3ð Þð Þ and þ;þ;�;þ;�;�ð Þ; 3; 2ð Þð Þ:

The first of the SPs is symmetric, and the second one is antisymmetric w.r.t.
their middles.

Finally, for d ¼ 3, the following four couples (SP, AP)

þ;þ;þ;�ð Þ; 1; 2ð Þð Þ; þ;�;þ;þð Þ; 2; 1ð Þð Þ;
þ;�;�;�ð Þ; 1; 2ð Þð Þ; þ;þ;�;þð Þ; 2; 1ð Þð Þ:

constitute one orbit for d ¼ 3. In this example all admissible pairs are Descartes’
pairs.

2.2 Degrees d ≥ 4

It turns out that for d ≥ 4, it is no longer true that all couples (SP, AP) are
realizable by polynomials of degree d. Namely, the following result can be found
in [12]:

Theorem 1. The only couples (SP, AP) which are non-realizable by univariate
polynomials of degree 4 are

þ;�;�;�;þð Þ; 0; 2ð Þð Þ and þ;þ;�;þ;þð Þ; 2;0ð Þð Þ:

It is clear that these two cases constitute one orbit of the Z2 � Z2-action of
length 2 (the SPs are the same when read the usual way and backward).

Proof. The argument showing non-realizability in Theorem 1 is easy. Namely, if a
polynomial

P ≔ x4 þ a3x
3 þ a2x

2 þ a1xþ a0
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realizes the second of these couples and has two positive roots α, β and no
negative roots, then for any u ∈ α; βð Þ, the values of the monomials x4, a2x2, and a0
are the same at u and �u, while the monomials a3x3 and a1x are positive at u and
negative at �u. Hence, P �uð Þ,P uð Þ,0. As P 0ð Þ.0 and limx!�∞P xð Þ ¼ þ∞, the
polynomial P has two negative roots as well—a contradiction.

For d ¼ 4, realizability of all other couples (SP, AP) can be proven by producing
explicit examples.

Remark 2. In [19] a geometric illustration of the non-realizability of the two
cases mentioned in Theorem 1 is proposed. Namely, one considers the family of
polynomials Q ≔ x4 þ x3 þ ax2 þ bxþ c and the discriminant set

Δ≔ a; b; cð Þ∈R
3 jRes Q ;Q 0ð Þ ¼ 0

� �

,

where Res Q ;Q 0ð Þ is the resultant of the polynomials Q and Q 0. The hypersur-

face Δ ¼ 0 partitions R3 into three open domains, in which the polynomial Q has
0, 1, or 2 complex conjugate pairs of roots, respectively. These domains intersect

the 8 open orthants of R3 defined by the coordinate system a; b; cð Þ, and in each of
these intersections, the polynomial Q has one and the same number of positive,
negative, and complex roots, as well as the same signs of its coefficients. The non-
realizability of the couple þ;þ;�;þ;þð Þ; 2;0ð Þð Þ can be interpreted as the fact that
the corresponding intersection is empty. Pictures of discriminant sets allow to
construct easily the numerical examples mentioned in the proof of Theorem 1.

It remains to be noticed that for α.0 and β.0, the polynomials P xð Þ and
βP αxð Þ have one and the same numbers of positive, negative, and complex roots.
Therefore, it suffices to consider the family of polynomials Q in order to cover all
SPs beginning with þ;þð Þ. The ones beginning with þ;�ð Þ will be covered by the
family Q �xð Þ.

For degrees d ¼ 5 and 6, the following result can be found in [1].
Theorem 2. (1) The only two couples (SP, AP) which are non-realizable by uni-

variate polynomials of degree 5 are:

þ;�;�;�;�;þð Þ; 0; 3ð Þð Þ and þ;þ;�;þ;�;�ð Þ; 3;0ð Þð Þ:

(2) For degree d ¼ 6, up to the above Z2 � Z2-action, the only non-realizable couples
(SP, AP) are:

þ;�;�;�;�;�;þð Þ; 0; 2ð Þð Þ; þ;�;�;�;�;�;þð Þ; 0;4ð Þð Þ;
þ;�;þ;�;�;�;þð Þ; 0; 2ð Þð Þ; þ;þ;�;�;�;�;þð Þ; 0;4ð Þð Þ:

The two cases of Part (1) of Theorem 2 also form an orbit of the Z2 � Z2-action
of length 2. Each of the first two cases of Part (2) defines an orbit of length 2, while
each of the last two cases defines an orbit of length 4.

For d ¼ 7, the following theorem is contained in [8].
Theorem 3. For univariate polynomials of degree 7, among their 1472 possible

couples (SP, AP) (up to the Z2 � Z2-action), exactly the following 6 are non-realizable:

þ;þ;�;�;�;�;�;þð Þ; 0; 5ð Þð Þ; þ;þ;�;�;�;�;þ;þð Þ; 0; 5ð Þð Þ;
þ;�;�;�;�;þ;�;þð Þ; 0; 3ð Þð Þ; þ;þ;þ;�;�;�;�;þð Þ; 0; 5ð Þð Þ;
þ;�;�;�;�;�;�;þð Þ; 0; 3ð Þð Þ; þ;�;�;�;�;�;�;þð Þ; 0; 5ð Þð Þ:

The lengths of the respective orbits in these 6 cases are 4, 2, 4, 4, 2, and 2.
The case d ¼ 8 has been partially solved in [8] and completely in [16]:

5

New Aspects of Descartes’ Rule of Signs
DOI: http://dx.doi.org/10.5772/intechopen.82040



Theorem 4. For degree d ¼ 8, among the 3648 possible couples (SP, AP) (up to the
Z2 � Z2-action), exactly the following 19 are non-realizable:

þ;þ;�;�;�;�;�;þ;þð Þ; 0; 6ð Þð Þ; þ;þ;�;�;�;�;�;�;þð Þ; 0; 6ð Þð Þ;
þ;þ;þ;�;�;�;�;�;þð Þ; 0; 6ð Þð Þ; þ;þ;þ;þ;�;�;�;�;þð Þ; 0; 6ð Þð Þ;
þ;�;þ;�;�;�;þ;�;þð Þ; 0; 2ð Þð Þ; þ;�;þ;�;þ;�;�;�;þð Þ; 0; 2ð Þð Þ;
þ;�;þ;�;�;�;�;�;þð Þ; 0; 2ð Þð Þ; þ;�;þ;�;�;�;�;�;þð Þ; 0;4ð Þð Þ;

ð þ;�;�;�;þ;�;�;�;þð Þ, 0; 2ð Þ; þ;�;�;�;þ;�;�;�;þð Þ; 0;4ð Þð Þ;
þ;�;�;�;�;�;�;�;þð Þ; 0; 2ð Þð Þ; ð þ;�;�;�;�;�;�;�;þð Þ, 0;4ð Þ;
þ;�;�;�;�;�;�;�;þð Þ; 0; 6ð Þð Þ; þ;þ;þ;�;�;�;�;þ;þð Þ; 0; 6ð Þð Þ;
þ;�;�;�;�;þ;�;�;þð Þ; 0;4ð Þð Þ; þ;�;�;�;�;�;�;þ;þð Þ; 0;4ð Þð Þ;
þ;�;þ;þ;�;�;�;�;þð Þ; 0;4ð Þð Þ; þ;�;þ;�;�;�;�;þ;þð Þ; 0;4ð Þð Þ;
þ;�;�;�;�;þ;�;þ;þð Þ; 0;4ð Þð Þ:

The lengths of the respective orbits are 2, 4, 4, 4, 2, 4, 4, 4, 2, 2, 2, 2, 2, 4, 4, 4, 4,
4, and 4.

Remark 3. As we see above, for d ¼ 4, 5, 6, 7, and 8, up to the Z2 � Z2-action,
the numbers of non-realizable cases are 1, 1, 4, 6, and 19, respectively. The fact that
these numbers increase more when d ¼ 5 and d ¼ 7 than when d ¼ 4 and d ¼ 6
could be related to the fact that the maximal possible number of complex conjugate
pairs of roots of a real univariate degree d polynomial is d=2½ �. This number
increases w.r.t. d� 1ð Þ=2½ � when d is even and does not increase when d is odd.

Observe that for d ≤ 8, all examples of couples (SP, AP) which are non-
realizable are with APs of the form ν;0ð Þ or 0; νð Þ and ν∈N. Initially, we thought
that this is always the case. However, recently it was proven that, for higher
degrees, this fact is no longer true (see [17]):

Theorem 5. For d ¼ 11, the following couple (SP, AP)

þ;�;�;�;�;�;þ;þ;þ;þ;þ;�ð Þ; 1; 8ð Þð Þ

is non-realizable. The Descartes’ pair in this case equals 3; 8ð Þ.
There is a strong evidence that for d ¼ 9, the similar couple (SP, AP)

þ;�;�;�;�;þ;þ;þ;þ;�ð Þ; 1; 6ð Þð Þ

is also non-realizable. (Its Descartes’ pair equals 3; 6ð Þ.) If this were true,
then 9 would be the smallest degree with an example of a non-realizable couple
(SP, AP) for which both components of the AP are nonzero. When studying the
cases d ¼ 8 and d ¼ 11 (see [16] and [17]), discriminant sets have been consid-
ered (see Remark 2).

Summarizing the above, we have to admit that the information in low degrees
available at the moment does not allow us to formulate a consistent conjecture
describing all non-realizable couples in an arbitrary degree which we could consider
as sufficiently well motivated.

3. Series of examples of (non-)realizable couples (SP, AP)

In this section we present a series of couples (non-)realizable for infinitely many
degrees. We decided to include those proofs of the statements formulated below
which are short and instructive.

6
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3.1 Some examples of realizability and a concatenation lemma

Our first examples of realizability deal with polynomials with the minimal pos-
sible number of real roots:

Proposition 1. For d even, any SP whose last component is a þ (resp. is a �) is
realizable with the AP 0;0ð Þ (resp. 1; 1ð Þ). For d odd, any SP whose last component is
a þ (resp. is a �) is realizable with the AP 0; 1ð Þ (resp. 1;0ð Þ).

Proof. Indeed, for any given SP, it suffices to choose any polynomial defining this
SP and to increase (resp. decrease) its constant term sufficiently much if the latter is
positive (resp. negative). The resulting polynomial will have the required number
of real roots. □

Our next example deals with hyperbolic polynomials, that is, real polynomials
with all real roots. Several topics concerning hyperbolic polynomials are developed
in [18].

Proposition 2. Any SP is realizable with its Descartes’ pair.
Proposition 2 will follow from the following concatenation lemma whose proof

can be found in [8].
Lemma 1. Suppose that monic polynomials P1 and P2, of degrees d1 and d2 resp.,

realize the SPs þ; σ̂1ð Þ and þ; σ̂2ð Þ, where σ̂ j are the SPs defined by Pj in which the firstþ
is deleted. Then:

1. If the last position of σ̂1 is a þ, then for any ε.0 small enough, the polynomial

εd2P1 xð ÞP2 x=εð Þ realizes the SP þ; σ̂1; σ̂2ð Þ and the AP pos1 þ pos2; neg1 þ neg2
� �

.

2. If the last position of σ̂1 is a �, then for any ε.0 small enough, the polynomial

εd2P1 xð ÞP2 x=εð Þ realizes the SP þ; σ̂1;�σ̂2ð Þ and the AP pos1 þ pos2; neg1 þ neg2
� �

:

(Here �σ̂2 is the SP obtained from σ̂2 by changing each þ by a � and vice versa.)

The concatenation lemma allows to deduce the realizability of couples (SP, AP)
with higher values of d from that of couples with smaller d in which cases explicit
constructions are usually easier to obtain. On the other hand, non-realizability of
special cases cannot be concluded using this lemma.

Example 3. Denote by τ the last entry of the SP σ̂1. We consider the cases

P2 xð Þ ¼ x� 1, xþ 1, x2 þ 2xþ 2, x2 � 2xþ 2 with

pos2; neg2
� �

¼ 1;0ð Þ, 0; 1ð Þ, 0;0ð Þ, 0;0ð Þ resp:

When τ ¼ þ, then one has, respectively,

σ̂2 ¼ �ð Þ, þð Þ, þ;þð Þ, �;þð Þ,

and the SP of εd2P1 xð ÞP2 x=εð Þ equals

þ; σ̂1;�ð Þ, þ; σ̂1;þð Þ, þ; σ̂1;þ;þð Þ, þ; σ̂1;�;þð Þ:

When τ ¼ �, then one has, respectively,

σ̂2 ¼ þð Þ, �ð Þ, �;�ð Þ, þ;�ð Þ,

and the SP of εd2P1 xð ÞP2 x=εð Þ equals

þ; σ̂1;þð Þ, þ; σ̂1;�ð Þ, þ; σ̂1;�;�ð Þ, þ; σ̂1;þ;�ð Þ:
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Proof of Proposition 2. We will use induction on the degree d of the polynomial.
For d ¼ 1, the SP þ;�ð Þ (resp. þ;þð Þ) is realizable with the AP 1;0ð Þ (resp. 0; 1ð Þ)
by the polynomial x� 1 (resp. xþ 1).

For d ¼ 2, we apply Lemma 1. Set P1 ≔ xþ 1 and P2 ≔ x� 1. Then, for ε.0
small enough, the polynomials

εP1 xð ÞP2 x=εð Þ ¼ xþ 1ð Þ x� εð Þ ¼ x2 þ 1� εð Þx� ε and

εP2 xð ÞP1 x=εð Þ ¼ x� 1ð Þ xþ εð Þ ¼ x2 þ �1þ εð Þx� ε

define the SPs þ;þ;�ð Þ and þ;�;�ð Þ, respectively, and realize themwith the AP
1; 1ð Þ. In the sameway, one can concatenate P1 (resp. P2) with itself to realize the SP
þ;þ;þð Þwith the AP 0; 2ð Þ (resp. the SP þ;�;þð Þwith theAP 2;0ð Þ). These are all
possible cases ofmonic hyperbolic degree 2 polynomialswithnonvanishing coefficients.

For d ≥ 2, in order to realize a SP σ with its Descartes’ pair c; pð Þ, we represent σ
in the form σ†; u; vð Þ, where u and v are the last two components of σ and σ† is the SP
obtained from σ by deleting u and v. Then, we choose P1 to be a monic polynomial
realizing the SP σ†; uð Þ:

i. With the AP c� 1; pð Þ, and we set P2 ≔ x� 1, if u ¼ �v.

ii. With the AP c; p� 1ð Þ, and we set P2 ≔ xþ 1, if u ¼ v. □

Our next result discusses (non-)realizability for polynomials with only two sign
changes (see [8, 9]).

Proposition 3. Consider a sign pattern σ with 2 sign changes, consisting of m consec-
utive pluses followed by n consecutive minuses and then by q consecutive pluses, where
mþ nþ q ¼ dþ 1: Then:

i. For the pair 0; d� 2ð Þ, this sign pattern is not realizable if

κ≔
d�m� 1

m
� d� q� 1

q
≥ 4; (3)

ii. The sign pattern σ is realizable with any pair of the form 2; vð Þ, except in the case
when d and m are even, n ¼ 1 (hence q is even), and v ¼ 0.

Certain results about realizability are formulated in terms of the ratios between
the quantities pos, neg, and d. The following proposition is proven in [8].

Proposition 4. For a given couple (SP, AP), if min pos; negð Þ. d� 4ð Þ=3½ �, then
this couple is realizable.

3.2 The even and the odd series

Suppose that the degree d is even. Then, the following result holds (see Proposi-
tion 4 in [8]):

Proposition 5. Consider the SPs satisfying the following three conditions:

i. Their last entry (i.e., the sign of the constant term) is a þ.

ii. The signs of all odd monomials are þ.

iii. Among the remaining signs of even monomials, there are exactly ℓ ≥ 1 signs �
(at arbitrary positions).
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Then, for any such SP, the APs 2;0ð Þ, 4;0ð Þ,…, 2ℓ;0ð Þ, and only they, are non-
realizable.

Suppose now that the degree d ≥ 5 is odd. For 1 ≤ k ≤ d� 3ð Þ=2, denote by σk
the SP beginning with two pluses followed by k pairs �;þð Þ and then by d� 2k� 1
minuses. Its Descartes’ pair of σk equals 2kþ 1; d� 2k� 1ð Þ. The following propo-
sition is proven in [19].

Theorem 6. (1) The SP σk is not realizable with any of the pairs 3;0ð Þ, 5;0ð Þ,…,
2kþ 1;0ð Þ; (2) The SP σk is realizable with the pair 1;0ð Þ; (3) The SP σk is realizable
with any of the APs 2ℓþ 1; 2rð Þ, ℓ ¼ 0, 1,…, k, and r ¼ 1, 2,…, d� 2k� 1ð Þ=2.

One can observe that Cases (1), (2), and (3) exhaust all possible APs pos; negð Þ.

4. Similar realization problems

In this section, we consider realization problems similar or motivated by Prob-
lem 1. A priori it is hard to tell which of these or similar problems might have a
reasonable answer.

4.1 D-Sequences

Consider a real polynomial P of degree d and its derivative. By Rolle’s theorem, if
P has exactly r real roots (counted with multiplicity), then the derivative P0 has
r� 1þ 2ℓ real roots (counted with multiplicity), where ℓ∈N ∪ 0. It is possible that
P0 has more real roots than P. For example, for d ¼ 2 and P ¼ x2 þ 1, one gets

P
0 ¼ 2x which has a real root at 0, while P has no real roots at all. For d ¼ 3, the

polynomial P ¼ x3 þ 3x2 � 8xþ 10 ¼ xþ 5ð Þð x� 1ð Þ2 þ 1Þ has one negative root
and one complex conjugate pair, while its derivative P0 ¼ 3x2 þ 6x� 8 has one
positive and one negative root.

Now, for j ¼ 0, …, and d� 1, denote by rj and cj the numbers of real roots and

complex conjugate pairs of roots of the polynomial P jð Þ (both counted with multi-
plicity). These numbers satisfy the conditions

rj ≤ rjþ1 þ 1, rj þ 2cj ¼ d� j: (4)

Definition 1. A sequence r0; 2c0ð Þ, r1; 2c1ð Þ,…,ð rd�1; 2cd�1ð ÞÞ satisfying condi-
tions (4) will be called a D-sequence of length d. We say that a given D-sequence of
length d is realizable if there exists a real polynomial P of degree d with this D-

sequence, where for j ¼ 0,…, d� 1, all roots of P jð Þ are distinct.
Example 4. One has rd�1 ¼ 1 and cd�1 ¼ 0. Clearly, one has either rd�2 ¼ 2,

cd�2 ¼ 0 or rd�2 ¼ 0, cd�2 ¼ 1. For small values of d, one has the following D-
sequences and respective polynomials realizing them:

d ¼ 1 1;0ð Þ x

d ¼ 2 2;0ð Þ; 1;0ð Þð Þ x2 � 1

0; 2ð Þ; 1;0ð Þð Þ x2 þ 1

d ¼ 3 3;0ð Þ; 2;0ð Þ; 1;0ð Þð Þ x3 � x

1; 2ð Þ; 0; 2ð Þ; 1;0ð Þð Þ x3 þ x

1; 2ð Þ; 2;0ð Þ; 1;0ð Þð Þ x3 þ 10x2 þ 26x:

The following question where a positive answer to which can be found in [15]
seems very natural.

Problem 2. Is it true that for any d∈N, any D-sequence is realizable?

9

New Aspects of Descartes’ Rule of Signs
DOI: http://dx.doi.org/10.5772/intechopen.82040



4.2 Sequences of admissible pairs

Now, we are going to formulate a problem which is a refinement of both
Problems 1 and 2.

Recall that for a real polynomial P of degree d, the signs of its coefficients aj
define the sign patterns σ0, σ1,…, σd�1 corresponding to P and to all its deriva-
tives of order ≤ d� 1 since the SP σj is obtained from σj�1 by deleting the last

component. We denote by ck; pk
� �

and posk; negk
� �

the Descartes’ and admissible
pairs for the SPs σk, k ¼ 0,…, d� 1. The following restrictions follow from
Rolle’s theorem:

poskþ1 ≥ posk � 1 , negkþ1 ≥ negk � 1

and poskþ1 þ negkþ1 ≥ posk þ negk � 1:
(5)

It is always true that

poskþ1 þ negkþ1 þ 3� posk � negk ∈ 2N: (6)

Definition 2. Given a sign pattern σ0 of length dþ 1, suppose that for
k ¼ 0,…, d� 1, the pair posk; negk

� �

satisfies the conditions

posk ≤ ck, ck � posk ∈ 2Z,

negk ≤ pk, pk � negk ∈ 2Z,

and sgn ak ¼ �1ð Þposk :
(7)

as well as the inequalities (5)–(6). Then, we say that

pos0; neg0
� �

;…; posd�1; negd�1

� �� �

(8)

is a sequence of admissible pairs (SAPs). In other words, it is a sequence of pairs
admissible for the sign pattern σ0 in the sense of these conditions. We say that a
given couple (SP, SAP) is realizable if there exists a polynomial P whose coefficients

have signs given by the SP σ0, and such that for k ¼ 0,…, d� 1, the polynomial P kð Þ

has exactly posk positive and negk negative roots, all of them being simple. Complex
roots are also supposed to be distinct.

Remark 4. If one only knows the SAP 8ð Þ, the SP σ0 can be restituted by the
formula

σ0 ¼ þ; �1ð Þposd�1 ; �1ð Þposd�2 ;…; �1ð Þpos0ð Þ:

Nevertheless, in order to make comparisons with Problem 1 more easily, we
consider couples (SP, SAP) instead of just SAPs. But for a given SP, there are, in
general, several possible SAPs which is illustrated by the following example.

Example 5. Consider the SP of length dþ 1 with all pluses. For d ¼ 2 and 3, there
are, respectively, two and three possible SAPs:

0; 2ð Þ; 0; 1ð Þð Þ , 0;0ð Þ; 0; 1ð Þð Þ , for d ¼ 2

and

0; 3ð Þ; 0; 2ð Þ; 0; 1ð Þð Þ , 0; 1ð Þ; 0; 2ð Þ; 0; 1ð Þð Þ , 0; 1ð Þ; 0;0ð Þ; 0; 1ð Þð Þ for d ¼ 3:
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For d ¼ 4; 5; 6; 7; 8; 9; 10, the numbers A dð Þ of SAPs compatible with the SP of
length dþ 1 having all pluses are

7, 12, 30, 55, 143, 273, and 728,

respectively. One can show that A dð Þ ≥ 2A d� 1ð Þ, if d ≥ 2 is even, and
A dð Þ ≥ 3A d� 1ð Þ=2, if d ≥ 3 is odd (see [5]).

Example 6. There are two couples (SP, SAP) corresponding to the couple (SP,
AP) C≔ þ;þ;�;þ;þð Þð , 0; 2ð ÞÞ; we also say that the couple C can be extended into
these couples (SP, SAP). These are

ð þ;þ;�;þ;þð Þ , 0; 2ð Þ , 2; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ and

ð þ;þ;�;þ;þð Þ , 0; 2ð Þ , 0; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ :

Indeed, by Rolle’s theorem, the derivative of a polynomial realizing the couple C
has at least one negative root. By conditions (7), this derivative (whose degree
equals 3) has an even number of positive roots. This yields just two possibilities for
pos1; neg1
� �

, namely, 2; 1ð Þ and 0; 1ð Þ. The second derivative is a quadratic polyno-
mial with positive leading coefficient and negative constant term. Hence, it has a
positive and a negative root. The realizability of the above two couples (SP, SAP) is
proven in [5].

Our final realization problem is as follows:
Problem 3. For a given degree d, which couples (SP, SAP) are realizable?
Remarks 1. (1) This problem is a refinement of Problem 1, because one con-

siders the APs of the derivatives of all orders and not just the one of the polynomial
itself (see Remark 4). Therefore, if a given couple (SP, AP) is non-realizable, then
all couples (SP, SAP) corresponding to it in the sense of Example 6 are automati-
cally non-realizable.

(2) Obviously, Problem 3 is a refinement of Problem 2—in the latter case, one
does not take into account the signs of the real roots of the polynomial and its
derivatives.

(3) When we deal with couples (SP, SAP), we can use the Z2-action defined by
(1). Therefore, it suffices to consider the cases of SPs beginning with þ;þð Þ. The
generator (2.2) of the Z2 � Z2-action cannot be used, because when the derivatives
of a polynomial are involved, the polynomial loses its last coefficients. Due to this
circumstance, the two ends of the SP cannot be treated equally.

The following proposition is proven in [5]:
Proposition 6. For any given SP of length dþ 1 and d ≥ 1, there exists a unique

SAP such that pos0 þ neg0 ¼ d. This SAP is realizable. For the given SP, this pair

pos0; neg0
� �

is its Descartes’ pair.

Example 7. For even d, consider the SP with all pluses. Any hyperbolic polyno-
mial with all negative and distinct roots realizes this SP with SAP

0; dð Þ; 0; d� 1ð Þ;…; 0; 1ð Þð Þ:

One can choose such a polynomial P with all d� 1 distinct critical values. Hence,
in the family of polynomials Pþ t and t.0, one encounters polynomials realizing
this SP with any of the SAPs

0; d� 2ℓð Þ; 0; d� 1ð Þ; 0; d� 2ð Þ;…; 0; 1ð Þð Þ, ℓ ¼ 0, 1, … d=2:

In the same way, for odd d, the SP þ;þ;…;þ;�ð Þ is realizable with the SAP
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1; d� 1ð Þ; 0; d� 1ð Þ; 0; d� 2ð Þ; …; 0; 1ð Þð Þ

by some hyperbolic polynomial Rwith all distinct roots and critical values. In the
family of polynomials R� s and s.0, one encounters polynomials realizing this SP
with any of the SAPs

1; d� 1� 2ℓð Þ; 0; d� 1ð Þ; 0; d� 2ð Þ; …; 0; 1ð Þð Þ, ℓ ¼ 0, 1, … d� 1ð Þ=2:

For d ≤ 5, the following exhaustive answer to Problem 3 is given in [5]:

A. For d ¼ 1, 2, and 3, all couples (SP, SAP) are realizable.

B. For d ¼ 4, the couple (SP, SAP)

þ;þ;�;þ;þð Þ; 2;0ð Þ; 2; 1ð Þ; 1; 1ð Þ; 0; 1ð Þð Þ,

and only it (up to the Z2-action), is non-realizable. Its non-realizability follows

from one of the couples (SP, AP) C† ≔ þ;þ;�;þ;þð Þ; 2;0ð Þð Þ (see Theorem 1).

One can observe that the couple C† can be uniquely extended into a couple (SP,
SAP). Indeed, the first derivative has a positive constant term hence an even
number of positive roots. This number is positive by Rolle’s theorem. Hence, the AP
of the first derivative is 2; 1ð Þ. In the same way, one obtains the APs 1; 1ð Þ and 0; 1ð Þ
for the second and third derivatives, respectively.

C. For d ¼ 5, the following couples (SP, SAP), and only they, are non-realizable:

ð þ;þ;�;þ;þ;þð Þ , 2; 1ð Þ , 2;0ð Þ , 2; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ,
ð þ;þ;�;þ;þ;þð Þ , 0; 1ð Þ , 2;0ð Þ , 2; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ,
ð þ;þ;�;þ;þ;�ð Þ , 3;0ð Þ , 2;0ð Þ , 2; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ,
ð þ;þ;�;þ;þ;�ð Þ , 1;0ð Þ , 2;0ð Þ , 2; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ,
ð þ;þ;�;þ;�;�ð Þ , 3;0ð Þ , 3; 1ð Þ , 2; 1ð Þ , 1; 1ð Þ , 0; 1ð Þ Þ:

The non-realizability of the first four of them follows from that of the couple C†.
The last one is implied by part (1) of Theorem 2; it is true that the couple (SP, AP)
þ;þ;�;þ;�;�ð Þ; 3;0ð Þð Þ extends in a unique way into a couple (SP, SAP), and this

is the fifth of the five such couples cited above.
One of the methods used in the study of couples (SP, AP) or (SP, SAP) is the

explicit construction of polynomials with multiple roots which define a given SP.
Such constructions are not difficult to carry out because one has to use families of
polynomials with fewer parameters. Once a polynomial with multiple roots is
constructed, one has to justify the possibility to deform it continuously into a nearby
polynomial with all distinct roots. Multiple roots can give rise to complex conjugate
pairs of roots. An example of such a construction is the following lemma from [5].

Lemma 2. Consider the polynomials S≔ xþ 1ð Þ3 x� að Þ2 and T≔ xþ að Þ2 x� 1ð Þ3
and a.0. Their coefficients of x4 are positive if and only if, respectively, a, 3=2 and
a. 3=2. The coefficients of the polynomial S define the SP

þ;þ;þ;þ;�;þð Þ for a∈ 0; 3�
ffiffiffi

6
p� �

=3
� �

,

þ;þ;þ;�;�;þð Þ for a∈ 3�
ffiffiffi

6
p� �

=3; 3�
ffiffiffi

6
p� �

,

þ;þ;�;�;�;þð Þ for a∈ 3�
ffiffiffi

6
p

; 2=3
� �

and

þ;þ;�;�;þ;þð Þ for a∈ 2=3; 3=2ð Þ :
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The coefficients of T define the SP

þ;þ;�;þ;þ;�ð Þ for a∈ 3=2; 3þ
ffiffiffi

6
p� �

=3
� �

,

þ;þ;�;�;þ;�ð Þ for a∈ 3þ
ffiffiffi

6
p� �

=3; 3þ
ffiffiffi

6
p� �

and

þ;þ;þ;�;þ;�ð Þ for a. 3þ
ffiffiffi

6
p

:

5. Outlook

1. Our first open question deals with the limit of the ratio between the quantities
R dð Þ of all realizable and A dð Þ of all possible cases of couples (SP, AP) as
d ! ∞. In principle, one does not have to take into account the Z2 � Z2-action
in order not to face the problem of the two different possible lengths of orbits
(2 and 4).

A priori, for d ≥ 4, one has R dð Þ=A dð Þ∈ 0; 1ð Þ. It would be interesting to
find out whether this ratio has a limit as d ! ∞ and, if “yes,” whether this
limit is 0 and 1 or belongs to 0; 1ð Þ. In the latter case, it would be interesting
to find the exact value.

A less ambitious open problem is to find an interval α; β½ �⊂ 0; 1ð Þ to which
this ratio belongs for any d∈N, d ≥ 4, or at least for d sufficiently large.

2. A related problem would be to find sufficient conditions for realizability based
on the ratios between the quantities pos, neg, and d. On the one hand, when the
ratios pos=d and neg=d are both large enough, one has realizability (see
Proposition 4). On the other hand, in all examples of non-realizability known
up to now, one of the quantities pos and neg is either 0 or is very small
compared to the other one. Thus, it would be interesting to understand the
role of these ratios for the (non)-realizability of the couples (SP, AP).

3.Our third open question is about the realizability of couples (SP, SAP). For
d ≤ 5, the non-realizability of all non-realizable couples (SP, SAP) results from
the non-realizability of the corresponding couples (SP, AP). In principle, one
could imagine a situation in which there exists a couple (SP, AP) extending
into several couples (SP, SAP) some of which are realizable and the remaining
are not. Whether, for d ≥ 6, such couples (SP, AP) exist or not is unknown at
present.

4.Our final natural and important question deals with the topology of
intersections of the set of real univariant polynomials with a given number of
real roots with orthants in the coefficient space (which means fixing the signs
of the coefficients). It is well known that the set of monic univariate
polynomials of a given degree and with a given number of real roots is
contractible. When we cut this set with the union of coordinate hyperplanes
(coordinates being the coefficients of polynomials), then it splits into a number
of connected components. In each such connected component, the number of
positive and negative roots is fixed. But, in principle, it can happen that
different connected components correspond to the same pair (pos, neg). Could
this really happen? Are all such connected components contractible, or they
can have some nontrivial topology?
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