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Chapter

Fractal Analysis of Time-Series
Data Sets: Methods and Challenges
Ian Pilgrim and Richard P. Taylor

Abstract

Many methods exist for quantifying the fractal characteristics of a structure via a
fractal dimension. As a traditional example, a fractal dimension of a spatial fractal
structure may be quantified via a box-counting fractal analysis that probes a man-
ner in which the structure fills space. However, such spatial analyses generally are
not well-suited for the analysis of so-called “time-series” fractals, which may
exhibit exact or statistical self-affinity but which inherently lack well-defined spa-
tial characteristics. In this chapter, we introduce and investigate a variety of fractal
analysis techniques directed to time-series structures. We investigate the fidelity of
such techniques by applying each technique to sets of computer-generated time-
series data sets with well-defined fractal characteristics. Additionally, we investi-
gate the inherent challenges in quantifying fractal characteristics (and indeed of
verifying the presence of such fractal characteristics) in time-series traces modeled
to resemble physical data sets.

Keywords: fractal, spatial fractal, time-series fractal, fractal analysis, fractal
dimension, self-similarity, self-affinity, topological dimension, embedding
dimension, similarity dimension, box-counting dimension, covering dimension,
variational box-counting, Hurst exponent, variance method, Dubuc variation
method, adaptive fractal analysis, power-law noise, Brownian motion, fractional
Brownian motion

1. Introduction

In this chapter, we explore a species of fractals known as “time-series” fractals.
Such structures generally may be conceived (and visualized) as functions of inde-
pendent variables whose plots exhibit shapes and patterns that are evocative of the
more familiar spatial fractals. However, lacking well-defined spatial characteris-
tics, time-series fractals call for analytical tools that depart from those of the world
of spatial fractals. To lay the foundation for a discussion of such analytical tools,
we begin with an overview of fractal structures and traditional fractal analysis
techniques. We then introduce time-series fractals and investigate the unique
analytical tools necessitated by such structures. Finally, we investigate the relative
fidelity of these analytical tools, as well as the shortcomings inherent in
performing fractal analysis on time-series fractals of limited length and/or
fine-scale detail.
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2. Motivating the fractal dimension

Mathematician Benoit B. Mandelbrot often is credited with introducing the
notion of a fractional, or fractal, dimension in his 1967 paper, “How long is the coast
of Britain?” [1]. In fact, however, the curious nature of coastline measurements had
been discussed by Lewis Fry Richardson 6 years prior in the General Systems Year-
book [2]. Richardson, a pacifist and mathematician, sought to investigate the
hypothesis that the likelihood that war would erupt between a pair of neighboring
nations is related to the length of the nations’ shared border. As Richardson and
Mandelbrot note, such a hypothesis is difficult to evaluate, since individual records
of the length of Britain’s west coast varied by up to a factor of three. Indeed, as the
precision of such measurements increases—that is, by decreasing the length of the
“ruler” used to trace the profile—the measured total length appears to increase as
well. This quality reflects the fact that the outline of the British coastline is an
example of a “self-similar” structure—that is, a structure that exhibits the same
statistical qualities, or even the exact details, across a wide range of length scales. In
light of this apparent fundamental indeterminacy, Mandelbrot posits that familiar
geometrical metrics such as length are inadequate for describing the complexity
found in nature.

Recognizing Richardson’s prior investigations, Mandelbrot notes that Richard-
son had indeed produced an empirical relation between a measured coast length L

and the smallest unit of measurement G: L Gð Þ ¼ MG1�D, where M is a positive
constant and D≥ 1—but observes that “unfortunately it attracted no attention” [1].
In Ref. [1], building upon Richardson’s observations, Mandelbrot introduces the
formalism of a fractional, or fractal1, dimension to quantify the nature of such
shapes.

Following Mandelbrot’s example, to generalize the concept of a geometrical
dimension, we may begin by examining the scaling behavior of such trivially self-
similar objects as a line, a square, and a cube. For example, consider a line segment
of length L, which can be separated into N non-overlapping subsets of length L=N,
each of which is identical to the whole segment but for a scaling factor r Nð Þ ¼ 1=N.

Analogously, a square with side length L may be decomposed into N2 facsimiles of
side length L=N, each of which is scaled down from the original by a factor

r Nð Þ ¼ N�1=2, and a cube of side length L can be decomposed into N3 facsimiles of

side length L=N with corresponding scaling ratio r Nð Þ ¼ N�1=3; see Figure 1. To
generalize this pattern, we may observe that the scaling ratio r Nð Þ follows the

relationship r Nð Þ ¼ N�1=D. In this relationship, D ¼ � log Nð Þ= log r Nð Þð Þ is known
as the similarity dimension of the structure in question.

Applying the concept of a similarity dimension to less trivial shapes is straight-
forward in the case of exactly self-similar structures, such as structures that are
constructed via iteration of a generating pattern. As an example, consider the Koch
curve, illustrated in Figure 2. The Koch curve is constructed as follows: Beginning
with a line segment of unity length, replace the middle third of the segment with an
equilateral triangle whose base has a length of 1/3 and overlies the original line
segment, then remove this overlapping base segment. The resulting figure thus
consists of four line segments, each of which has a length of 1/3. Iterating this
process for each new line segment yields a sequence of figures that exhibit increas-
ingly fine structure, with the limiting state of this series exhibiting exact self-
similarity, in the sense that a nontrivial subset of the shape is exactly identical to the

1 Though Mandelbrot discusses the concept of fractional dimension in this 1967 paper, he did not

introduce the term “fractal” until 1975 [3].
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whole. This exact self-similarity is illustrated in Figure 2, which shows that the full
Koch curve may be described as being formed from four exact copies of itself, each
scaled down by a factor of 1/3. Thus, we can apply the above relation to find that the
Koch curve has a similarity dimension of D ¼ � log 4ð Þ= log 1=3ð Þ≈ 1:26.

The similarity dimension described above represents but one example of a
plurality of dimensions that can be defined and calculated for a given figure.

Figure 1.
A line, a square, and a cube are examples of trivially self-similar Euclidian shapes. A Euclidian shape in D

dimensions may be said to contain N ¼ L=L0ð Þ�D exact copies of itself scaled by a factor of L=L0. Image
provided by R.D. Montgomery.

Figure 2.
The Koch curve is an example of an exact self-similar figure with a non-integer similarity dimension.
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Indeed, the utility of the similarity dimension is limited by the fact that it applies
only to figures that exhibit exact self-similarity; by contrast, the complexity
witnessed in natural systems such as coastlines generally exhibits self-similarity
only in the statistical sense. As an example, Figure 3 illustrates a structure that
exhibits statistical self-similarity. Specifically, Figure 3 illustrates an example of a
modified Koch curve formed by randomizing the orientations of the line segments
as the structure is generated.

As a tool for quantifying the nature of such fractal structures that do not exhibit
exact self-similarity, we now turn to the (roughly self-explanatory) “box-counting
dimension,” also known as the “covering dimension.” Given a structure that
extends in two dimensions2, the box-counting dimension may be determined as
follows: First, superimpose a square grid with individual boxes of size ℓ� ℓ over
the figure in question, and count the number of boxes N ℓð Þ within which some
portion of the figure in question is present (see Figure 4). Next, repeat this proce-
dure while varying the box size ℓ and construct a plot of log N ℓð Þð Þ vs log 1=ℓð Þ; for
a self-similar structure, the data should follow a linear trend with a gradient equal to
the box-counting dimension D. Such a plot is generally known as a scaling plot.

The box-counting method also may be described in more geometrically intuitive
terms. For example, and as shown in Figure 4, one may observe that the set of all
occupied boxes at a given length scale ℓ collectively serves as an approximation of
the total structure as “observed” at the length scale ℓ. Stated differently, the set of
ℓ� ℓ boxes that overlap some portion of the base structure may be seen as
representing a snapshot of the base structure as viewed at a resolution
corresponding to the length ℓ. In general, however, the set of boxes covering the
base structure cannot be expected to represent the geometric details of the structure
at any length scale. For example, as shown in Figure 4, is evident that the incom-
patibility of the straight edges of the square boxes and the jagged boundary of the
Koch curve leads to a markedly crude representation of the structure at all length
scales, as each occupied box will always contain details that cannot be fully
represented by that box.

While the box-counting method of estimating fractal dimension is conceptually
straightforward, some care must be taken to preserve the utility of the method. For
example, one must select an appropriate range of box sizes ℓ over which to examine
the scaling trend, given that any observed fractal scaling trend will not persist over
all possible length scales. That is, for any finite structure, it is possible to encompass
the structure in a box of size L� L, for an appropriate value of L. In such a case,
applying the box-counting method with boxes of size ℓ≥L will always return a

Figure 3.
Introducing randomness into the generating algorithm of the Koch curve produces a statistically self-similar
fractal structure.

2 While the box-counting method is typically applied to structures embedded in two dimensions, it is

straightforward to generalize the technique to higher- or lower-dimensional systems.
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value N ℓð Þ ¼ 1—only one box can be filled when the box size contains the entire
structure—thus resulting in an apparent fractal dimension of zero. As another
example, when considering a range of box sizes ℓ≲L, nearly all such boxes will be
counted as filled, and the box count N ℓð Þ will scale as the square of the inverse box
size 1=ℓ. In this case, the box-counting method will return an apparent fractal
dimension of D ¼ 2, and we may say that the pattern “looks two-dimensional”
when examined at this coarse scale. When dealing with patterns found in nature,
the opposite extreme of possible length scales merits consideration as well. For a
mathematically-generated fractal figure, such as a figure that exhibits structure at
arbitrarily fine length scales, the box-counting method may be applied with arbi-
trarily small box sizes ℓ. However, naturally occurring fractal structures invariably
exhibit a smallest length scale to which a scaling trend may extend. For example,
while the scaling trend certainly must cease at the molecular and atomic scales, such
fractal scaling behavior generally diverges at length scales many times larger than
this. In such cases, applying the box-counting method at length scales ℓ smaller than
a smallest feature size observed in the structure yields a number of filled boxesN ℓð Þ
that scales linearly with the inverse box size 1=ℓ; thus, the figure “looks one-
dimensional” to the box-counting analysis at these scales.

Such conditions necessitate careful determination of the appropriate range of
length scales over which to assess fractal scaling behavior. This determination may

Figure 4.
Applying the box-counting method to the Koch curve. The number of boxes of side length ℓ occupied by some
portion of the curve follows N ℓð Þ∝ℓ

�D, where D is the box-counting dimension of the curve.
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be made empirically, such as by observing the range of length scales over which the
scaling plot is sufficiently linear. Alternatively, this determination may be made by
convention, such as may be based on statistical arguments. In practice, it is gener-
ally not known a priori whether a structure under consideration should even be
expected to be a fractal, and hence whether it should be expected to produce a
scaling plot with a linear trend between cutoffs defined by appropriate physical
and/or measurement limitations. Accordingly, it is preferred to adopt conventions
with some degree of universality and that do not presuppose the existence of the
fractal scaling behavior under investigation. More specifically, it is common to
adopt the following conventions, noting that the ranges may be bounded by phys-
ical and/or measurement limitations. The coarse-scale analysis cutoff generally
corresponds to a limit of the range of length scales measured, which in turn gener-
ally is related to the coarse-scale size of the structure itself. This limit is conven-
tionally set at ℓ ¼ L=5, where L is the side length of the smallest square that may
circumscribe the structure, thus guaranteeing that the grid includes no fewer than
25 boxes. Turning to the fine scale, the physical limit is determined by the smallest
(nontrivial) feature size that is observed in the structure, while the fine-scale
measurement limit is conventionally chosen to satisfy the requirement that each
box contains no fewer than five data points. In practice, the more restrictive of
these two limits is chosen (i.e., the larger of the physical fine-scale limit and the
fine-scale measurement limit).

As a further consideration in optimizing the performance of the box-counting
method, one must select the position and orientation of the box grid relative to the
structure in question. To the extent that the box-counting method seeks to probe an
inherent quality of a structure, the observed fractal dimension should not be
affected by a spatial translation or rotation of the grid with respect to the structure,
since the structure itself has no preferred orientation. However, consider the case
shown in Figure 5, in which the box-counting method is applied to a fractal profile.
In the box-counting scheme discussed above, all boxes that contain any portion of
the structure under examination are counted toward the total; applying this to the
structure of Figure 5, we find that 35 boxes are filled using this box size ℓ. Suppose,
however, that one is able to reposition the boxes semi-independently of one
another, by translating a set of adjacent ℓ� ℓ boxes within each column of width ℓ.
Doing so, we find that a careful repositioning of the boxes within these columns

Figure 5.
An example of applying the variational box-counting method. When the boxes are constrained in a grid (left),
we find a box count N ℓð Þ ¼ 50; however, when the ℓ� ℓ boxes are allowed to shift vertically within columns
of width ℓ (right), the measured box count N ℓð Þ drops to 47.
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results in the box count N ℓð Þ dropping to 29. This apparent inconsistency serves to
motivate a refinement of the box-counting analysis as described above. Specifically,
the “variational box-counting method” includes shifting the boxes in columns as
described above so as to minimize the number of ℓ� ℓ boxes needed to entirely
cover the figure in question. The variational box-counting method thus serves to
eliminate some of the apparent ambiguity of the traditional box-counting method.
Of course, some ambiguity still remains in this amended method, given that the
rotational orientation of the columns relative to the examined structure remains
arbitrary. To eliminate this residual ambiguity, one may repeat the above-described
variational method at a variety of rotational orientations of the grid with respect to
the figure and choose the angle that minimizes N ℓð Þ for each value of ℓ. However,
in practical applications, incorporating this additional variation does not signifi-
cantly affect the measured dimensions.

3. Time-series fractal structures

The fractal structures discussed above generally represent examples of spatial
fractal structures—that is, structures with spatial extent and whose fractal charac-
teristics are embodied in their spatial form. However, many observable structures
and phenomena exhibit fractal behavior while lacking spatial form. Another impor-
tant class of structures to which fractal analysis may be directed is that of “time-
series” structures—that is, structures that may be represented as a single-valued
function of a single independent variable. As suggested by their name, a time-series
structure may refer to some variable quantity—say, stock market prices, or atmo-
spheric pressure—that fluctuates in time, but for the purposes of this work we
intend for the term to refer to any data set or plot consisting of a dependent variable
that may be represented as a single-valued function of an independent variable.

As with the spatial structures considered above, a time-series structure may
exhibit fractal scaling properties in either a statistical or an exact sense, which may
be quantified using the formalism of fractal dimensions. Unfortunately, the box-
counting methods described above for measuring a fractal dimension are ill-suited
to time-series structures. Simply put, this limitation arises from the fact that box-
counting methods assess the fractal dimension of shapes that extend in space, while
the spatial “shape” of a time-series structure is inherently undefined. That is, since
the two axes of a plot representing a time-series data set generally represent vari-
ables with distinct units, the geometric aspect ratio of such a plot is fundamentally
undefined.

As an example, consider the data set displayed in Figure 6, which plots the daily
closing price of a certain technology stock over a period of roughly 16 years. Spe-
cifically, Figure 6 illustrates three representations of the same data set, with the
respective y-axis of each illustration scaled by a distinct factor. In qualitative terms,
one may be tempted to conclude that the data in the top panel appear the most
linear and that the data in the bottom panel appear the most space-filling. Accord-
ingly, given that a box-counting fractal analysis technique essentially assesses the
space-filling properties of a structure, applying a box-counting analysis to each plot
would yield distinct results for each plot.

The difficulty here lies in the fact that a box-counting fractal analysis necessarily
treats a figure as a spatial entity whose orthogonal dimensions have the same units.
By contrast, a time-series trace such as the one displayed in Figure 6 lacks this
property, but may still exhibit fractal characteristics in the form of either statistical
or exact self-affinity. As discussed above, exact and statistical self-similarity
describe structures whose precise details or statistical properties (respectively) are
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repeated as its orthogonal dimensions are rescaled by a similar factor. By contrast,
exact and statistical self-affinity refer to structures whose precise details or statisti-
cal properties (respectively) are repeated as its two orthogonal dimensions are
resized by independent quantities [4].

Due to the incommensurability of the orthogonal axes defining a time-series
trace, such structures cannot exhibit self-similarity, only self-affinity. As an exam-
ple, Figure 7 displays the data set shown in Figure 6 alongside a subset of the data
set. When this subset is appropriately rescaled in each of the x- and y-axis, the
resulting plot shares the general statistical properties of the original trace, and hence
exhibits statistical self-affinity.

It also is possible, albeit less common, for a time-series trace to exhibit exact self-
affinity. As an example, Figure 8 illustrates three experimentally measured data
sets in which rescaling the x- and y-axes of the traces by carefully chosen factors
produces structures that share the characteristics of the original traces [5].

4. Fractal analysis of time-series traces: beyond box-counting

As discussed above, when applying a box-counting method to a time-series
structure, the measured scaling properties of the structure will depend on the aspect
ratio with which the data are presented, which is in turn an arbitrary choice.
Accordingly, applying a box-counting method to a time-series trace will return a
fractal dimension that is essentially arbitrary. Thus, it is necessary to develop fractal
analysis techniques that are insensitive to such artificial geometric parameters. In
the following, we survey a sampling of such techniques proposed in the literature.

Returning to the example of Figure 5, above, this figure in fact illustrates the
variational box-counting method as applied to fractal profile in the form of a time-
series fractal. Indeed, fractal analyses of such time-series fractal structures have
traditionally been performed using the variational box-counting method [6, 7],
which does offer performance improvements over the traditional fixed-grid box-
counting method. Nonetheless, the variational box-counting method still suffers
from a fatal flaw. To see why this is so, consider the plots shown in Figure 9.

Figure 9 illustrates the stock price data of Figures 6 and 7 represented in two
plots with the price axes respectively scaled by two different factors, as well as a
visualization of a variational box-count method applied at a “length” scale ℓ ¼ 200

Figure 6.
Daily closing prices for a single stock from December 1980 to October 1996. Each of the three plots displays the
same data, but the y-axis of each plot is scaled by a distinct factor. A box-counting fractal analysis would return
unique results for each plot, despite each plot representing the same data set.
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trading days. When the prices shown range from 0–100 USD (top of Figure 9), we
find that a minimum of 37 boxes are needed to entirely cover the trace. However,
when the price range is expanded to 0–1000 USD (effectively increasing the
domain: range aspect ratio of the data; bottom of Figure 9), the number of boxes
needed to cover the trace falls to 20. Indeed, the number of boxes N ℓð Þ needed to
cover the “compressed” plot will be proportional to 1=ℓ for all values of ℓ such that
the boxes are “taller” than the range of values found within any of its L=ℓ columns.
That is, as long as each box is “taller” than the vertical extent of the trace within
each column, the trace will “look” one-dimensional.

Of course, the fundamental issue is that the concept of an ℓ� ℓ “box” on a
time-series trace is meaningless, since the enclosed “area” has units of (in this
case) days times dollars. While it is entirely reasonable to overlay a spatial
figure with boxes of a well-defined area in the case of a box-counting analysis

Figure 7.
Statistical self-affinity in a fractal time-series trace. Choosing a subset of the stock price data shown in Figure 6
and rescaling the x- and y-axes yields a trace that shares statistical properties with the original.

Figure 8.
Magnetoresistance fluctuations (MCF) recorded in an electron billiard device can represent examples of exact
self-affinity in time-series structures. Each of the three columns in this figure represents a single MCF observed at
a coarse scale (bottom) and a fine scale (top). From [5].
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of a spatial fractal, the concept of a square drawn on a plot with incompatible
and independently scalable axes is ill-defined. In some cases, this inadequacy is
resolved by adopting conventions that eliminate such ambiguity. For example, a
time-series trace may be normalized in its x- and y-axes such that the domain
and range of the plot each run from 0 to 1, and the structure may be analyzed
via a box-counting analysis that utilizes a square grid that just circumscribes the
trace. While such a normalization convention may provide a consistent method
for investigating the relative scaling properties among a set of related time-
series traces, the absolute values of the dimensions produced by such analyses
would remain essentially arbitrary.

Developing a fractal analysis technique that is appropriate for time-series struc-
tures generally amounts to taking one of two approaches: (1) to treat the time-series
structure as a geometric figure without a well-defined aspect ratio, or (2) to treat
the time-series structure as an ordered record of a process that exhibits a quantifi-
able degree of randomness. Following the latter approach, Harold Edwin Hurst

Figure 9.
Visualizing a variational box-counting method applied to the stock price data of Figures 6 and 7 with a
“resolution” of ℓ ¼ 200 trading days. Displaying the data with a price range of 0–100 USD yields a box count
of 37. Displaying the data with a price range of 0–1000 USD yields a box count of 20.

Figure 10.
Examples of time-series traces characterized by Hurst exponents of (bottom to top) H ¼ 0.25, 0.50, and 0.75.
A trace with H ¼ 0.5 represents purely random process, whereas traces with H ¼ 0.25 and H ¼ 0.75 represent
processes whose subsequent increments are negatively and positively correlated, respectively.
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introduced a formalism for quantifying the nature of self-affine time-series struc-
tures in a 1951 paper on the long-term storage capacity of water reservoirs [8].

In Ref. [8], Hurst introduces the concept of the “Hurst exponent” H, which may
be understood as quantifying the character of the randomness exhibited in a time-
series structure via an autocorrelation measurement. Specifically, a Hurst exponent
ofH ¼ 0:5 describes a process that is purely random, such that the value of the trace
at time ti is entirely independent of the value at time tj, i 6¼ j. By contrast, Hurst
exponents in the range 0:5 <H < 1 represent traces exhibiting positive autocorrela-
tions, while Hurst exponents in the range 0 <H <0:5 represent traces exhibiting
negative autocorrelations. Intuitively speaking, a positive autocorrelation may be
understood as representing a trace in which a “high” value (say, relative to the
mean) is more likely than not to be followed by additional “high” values, while a
negative autocorrelation may be understood as representing a trace in which “high”
and “low” values alternate at short time scales; see Figure 10.

The Hurst exponent of a data set may be calculated by examining the scaling
properties of a “rescaled range” of the data, as follows. Consider a data set
xtf g t ¼ 1; 2; 3;…;Tð Þ, and let xi; xiþ1;…; xiþτf g, τ≤T, i ¼ 1, 2, 3,…, T � τ represent

any sequence of τ þ 1 points within the data set. The rescaled range (R/S) statistic is
then defined as:

R

S

� �

τ

¼
1

sτ
sup

i≤ t≤ iþτ

∑
t

k¼i

xk � xi, τð Þ � inf
i≤ t≤ iþτ

∑
t

k¼i

xk � xi, τð Þ

" #

, (1)

where

xi, τ ¼ 1=τð Þ∑
τ

t¼i
xt (2)

is the sample mean and

si, τ ¼ 1=τð Þ∑
τ

t¼i
xt � xi, τð Þ2

� �1=2

(3)

is the sample standard deviation. The quantity

R

S

� �

τ

� �

i

(4)

is then proportional to τH, such that the gradient of a plot of

log R=Sð Þτ
� 	

i


 �

vs log τð Þ is equal to the Hurst exponent H.

The Hurst exponent also may be described as a measure of long-range correla-
tions within a data set, such that measuring these correlations as a function of
interval width may provide another measurement of the Hurst exponent. As an
example of such an analysis, the “variance method”3 calculates the scaling proper-
ties of the trace’s autocorrelation as a function of time interval4 via calculation of
the quantity

3 Not to be confused with the variational box-counting method.
4 In all discussions of time-series traces, we refer to the independent variable as “time” as a matter of

convention unless otherwise specified. Additionally, as a matter of convention, we refer to an interval of

the independent variable as a “length” unless otherwise specified.
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V Δtð Þ ¼ xtþΔt � xt½ �2
D E

t
(5)

for a range of values of Δt. This quantity is then related to the Hurst exponent as
V Δtð Þ∝Δt2H such that a plot of log V Δtð Þð Þ vs log Δtð Þ is expected to be linear
(within an appropriate range of values of Δt) with slope. 2H. In practice, however,
the variance method is found to produce a poor estimate of Hurst exponent.

As another means of quantifying the fractal properties of time-series traces,
we now turn our attention to a method proposed by Benoit Dubuc in a 1989
paper [9] on the fractal dimension of profiles. Dubuc’s proposed “variation
method”5 is conceptually similar to the variational box-counting method
described above, but improves upon this method by resolving the fundamental
arbitrariness of drawings boxes on a time-series trace. In short, Dubuc’s variation
method probes the “space-filling” characteristics of a time-series trace through
measurement of the scaling behavior of the amplitude of the trace within an ϵ

neighborhood as ϵ is varied.
In practical terms, Dubuc’s variation method may be implemented is as follows:

Consider a time-series data set xtf g t ¼ 1; 2; 3;…;Tð Þ. For a given value of ϵ, define
the functions uϵ tð Þ and bϵ tð Þ as follows:

uϵ tð Þ ¼ sup
t0∈Rϵ tð Þ

xt0 ,

bϵ tð Þ ¼ inf
t0∈Rϵ tð Þ

xt0 ,
(6)

where

Rϵ tð Þ ¼ s : jt� sj≤ ϵ and s∈ 1;T½ �f g: (7)

That is, for a given value of ϵ and for each point ti in the trace, examine the set of
points xt0f g within ϵ data points of ti, and let uϵ tið Þ and bϵ tið Þ be (respectively) the
maximum and minimum values of xt0 found in this range. Thus, uϵ tð Þ and bϵ tð Þ may
be understood as traces that represent (respectively) the upper and lower envelopes
of oscillation of a trace at a particular scale set by ϵ. At large values of ϵ, the traces
uϵ tð Þ and bϵ tð Þ will be slowly varying relative to the variation present in the original
data set; reducing the value of ϵ will produce traces uϵ tð Þ and bϵ tð Þ that each
resemble the original data set with increasing fidelity (see Figure 11).

Having constructed the traces uϵ tð Þ and bϵ tð Þ, we then define vϵ tð Þ ¼ uϵ tð Þ � bϵ tð Þ
and calculate

V ϵð Þ ¼
1

ϵ2
∑
t
vϵ tð Þ: (8)

Conceptually, V ϵð Þ may be regarded as representing the (crucially, not neces-
sarily integer) number of ϵ� ϵ “boxes” whose total “area” would be equal to that of
the envelope bounded by uϵ tð Þ and bϵ tð Þ. Of course, the concept of “area” is ill-
defined in this context, but this is of no concern, given that we have not implied a
geometrical relationship between the x and y dimensions. In continued analogy with
spatial box-counting analyses, the fractal dimension of the trace is then determined

via the relationship V ϵð Þ∝ 1=ϵð ÞD, such that a plot of log V ϵð Þð Þ vs log 1=ϵð Þ is
expected to follow a linear trend (within an appropriate range of values of ϵ) with a
slope corresponding to the fractal dimension D.

5 Not to be confused with the variational box-counting method or the variance method.
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As a final means of quantifying the fractal properties of time-series traces, we
consider a technique known as “adaptive fractal analysis” (AFA) [10]. Similar to
Dubuc’s variation method, AFA may be broadly described as investigating the
geometrical properties of a time-series trace (in contrast to the aforementioned
analyses that are best understood as probing numerical correlations). For example,
and as discussed above, Dubuc’s variation method may be described as quantifying
the generalized “area” needed to cover a time-series trace as analyzed at different
characteristic time scales; in the case of AFA, approximations to the time-series
trace are generated at varying resolutions, and the fidelity of such approximations is
recorded as the resolution is varied. The AFA algorithm may be executed as follows:
Again, consider a time-series data set x tð Þ t ¼ 1; 2; 3;…;Tð Þ. Next, choose a window
with a width equal to an odd integer w ¼ 2nþ 1, w <T, and partition the data set
into overlapping subsets of length w such that each pair of adjacent subsets overlap
by nþ 1 data points. Within each window, the linear best-fit line to the data within
that window is calculated, resulting in a series of disconnected straight lines. That is,
the series of disconnected best-fit lines overlap in pairs such that each index in the
domain of the original data set is matched with respective points on each of two
subset fit lines (with the exception of the n data points at either end of the trace).
Next, these best-fit lines are “stitched” together to form a single, smoothly contin-
uous curve in the following manner: Label the windows that span the trace with
consecutive integers, and label the windows’ corresponding best-fit lines as

y jð Þ lð Þ l ¼ 1; 2;…; nþ 1ð Þ. Then, within each window j, construct the curve

y wð Þ lð Þ ¼ w1y
jð Þ lþ nð Þ þ w2y

jþ1ð Þ lð Þ, (9)

l ¼ 1, 2,…, nþ 1, where w1 ¼ 1� l� 1ð Þ=nð Þ and w2 ¼ l� 1ð Þ=n. Conceptually,

each value y wð Þ lð Þ may be thought of as representing the weighted average of the
values of the two best-fit lines with values at that index, weighted so as to be
inversely proportional to the distance between that index and the midpoint of the

window. Repeating this procedure across all windows produces a trace y wð Þ tð Þ that is
continuous and differentiable, and that may be understood as representing an
approximation to the trace x tð Þ at a length scale, or “resolution,” defined by w
(see Figure 12).

Figure 11.
Visualizing the application of Dubuc’s variation method at two distinct values of ϵ. The trace under
consideration is a fractional Brownian motion (fBm), whose properties are discussed below.
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As w is decreased, y wð Þ tð Þ becomes a better approximation to x tð Þ; the scaling
behavior of this fidelity as w is varied is used to determine the Hurst exponent.
Specifically,

F wð Þ ¼
1

T
∑
T

i¼1
y wð Þ tið Þ � x tið Þ


 �2
� �1=2

∝wH, (10)

such that a plot of log F wð Þð Þ vs log wð Þ will be linear (over an appropriate
range) with slope H.

5. Evaluating fractal analysis techniques

Each of the fractal analysis techniques discussed above is best understood as
providing an estimate of the fractal dimension or Hurst exponent that characterizes
a given time-series data set. The sections that follow present a method for evaluat-
ing the fidelity of these estimates that was developed and applied by the authors to
the fractal analysis techniques under consideration. To objectively and quantifiably
evaluate the fidelity of each of these techniques, it is desirable to investigate the
accuracy of each technique when applied to traces with known Hurst exponents/
fractal dimensions. To introduce a method for producing such “control” traces, we
begin with a general discussion of noise traces.

A noise trace, as an example of a time-series structure, may be described as a
single-valued function of a single independent variable. A variety of methods exist
for quantifying the statistical properties of noise traces. For example, in addition to
the aforementioned measurements of space-filling characteristics and long-range
correlations, a spectral analysis of a noise trace may offer a natural quantification of
the trace’s statistical properties.

Power-law noise represents a significant and broad class of noise traces. Specif-

ically, a power-law noise trace has a power spectral density given by P fð Þ∝ 1=f β. A
noise trace characterized by β ¼ 0 thus represents noise whose spectral power

Figure 12.
Examples of applying the procedure of AFA at several values of N (corresponding to the window width w
discussed in the text). The light blue trace (bottom) is a 16,384-point fractal trace with H ¼ 0:375, while the
red (top), green (second from top), and purple (third from top) traces represent approximations produced by
the AFA technique at N ¼ 1000, N ¼ 500, and N ¼ 50, respectively. Traces are vertically offset for clarity.
Note that smaller values of N yield approximations that are increasingly similar to the trace under
consideration.
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density is a constant across all frequencies, while β ¼ 1 corresponds to the “1=f
noise” that characterizes many natural systems, and β ¼ 2 is known as “brown
noise.” In principle, β can assume any value; however, we begin our investigation
by considering the β ¼ 2 case.

A “brown noise” trace characterized by β ¼ 2 is so termed owing to its relation to
Brownianmotion, which describes the net motion of a particle whose individual steps
are random and independent. Brownian motion generally may refer to a process
extending in any number of dimensions; however, we restrict our attention to brown
noises that may be understood as a time-dependent plot of the position of a particle
undergoing Brownian motion along one dimension. (As used herein, “Brownian
motion” and “brown noise” will be used interchangeably to describe a Brownian
motion in one dimension.) Given that a Brownian motion may be described as the
cumulative sum of a series of random, independent steps, it is straightforward to
generate a Brownian motion trace as a cumulative integral of a white noise trace. For
our purposes, we define a white noise trace as a series of values with zero mean taken
from a normal distribution (i.e., a Gaussian noise trace; see Figure 13). As a result, a
brown noise trace is characterized by a Hurst exponent of H ¼ 0:5.

Relaxing the restriction that the Gaussian noise trace consists of statistically
independent increments permits consecutive increments to be positively or nega-
tively correlated, such that the plot formed by the cumulative sum of the noise trace
may be characterized by a Hurst exponent that deviates from H ¼ 0:5. Such a trace
is termed a “fractional Brownian motion” (fBm). Mandelbrot and Van Ness [11]
provide a formalism for quantifying the properties of such structures as follows:
Consider a conventional Brownian motion trace B t;ωð Þ, where t denotes time and ω

represents the particular realization of the random function that generated the
specific Brownian motion. The data set B t;ωð Þ is thus a function whose increments
B t2;ωð Þ � B t1;ωð Þ have a mean of zero and a variance of ∣t2 � t1∣, and whose non-
overlapping increments B t2;ωð Þ � B t1;ωð Þ and B t4;ωð Þ � B t3;ωð Þ are statistically
independent. A “reduced fractional Brownian motion” BH t;ωð Þ, then, is further
characterized by the parameter H, 0 <H < 1, and satisfies

BH 0;ωð Þ ¼ b0,

BH t;ωð Þ � BH 0;ωð Þ ¼
1

Γ H þ
1

2

� �

(

ð0

�∞
t� sð ÞH�1=2 � �sð ÞH�1=2

h i

dB s;ωð Þ

þ

ðt

0
t� sð ÞH�1=2dBðsωÞ

�

: (11)

A fractional Brownian motion trace is thus self-affine in the sense that

BH t0 þ τ;ωð Þ � BH t0;ωð Þf g≜ h�H BH t0 þ hτ;ωð Þ � BH t0;ωð Þ½ �
 �

, (12)

where

X t;ωð Þf g≜ Y t;ωð Þf g (13)

denotes that the two random functions X t;ωð Þ and Y t;ωð Þ have identical finite
joint distribution functions [11]. Thus, on average, when an interval on an fBm
trace is expanded by a factor of h, the difference of the values at the endpoints of

the interval BH t0 þ hτ;ωð Þ � BH t0;ωð Þ increases by a factor of hH. This property
represents an example of statistical self-affinity, in which the observed statistical
properties within the intervals are preserved when the x and y axes are scaled by

distinct factors (specifically, h and hH, respectively).
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Quantifying self-affinity using the formalism of the Hurst exponent motivates
drawing a parallel between the Hurst exponent and the fractal dimension, as fol-
lows. Following the argument of Ref. [4], consider an fBm trace VH tð Þ that extends
over a total time span Δt ¼ 1 and a total vertical range ΔVH ¼ 1. Dividing the time
span into n increments of width 1=n, we expect the vertical range of the portion of
the trace within each interval to scale as ΔtH ¼ 1=nH (see Figure 14). Accordingly,
on average, the portion of VH tð Þ present in a given interval may be covered by
ΔVH=Δt ¼ 1=nH

� �

= 1=nð Þ ¼ n=nH square boxes of side length 1=n. Thus, the total
number of square boxes of side length 1=n needed in order to cover the entire trace

is expected to be n n=nH
� �

¼ n2�H. If we recall that the spatial box-counting method

Figure 13.
The cumulative sum of Gaussian white noise results in Brownian motion.

Figure 14.
Deriving a relationship between the Hurst exponent and fractal dimension. A Brownian motion trace VH tð Þ
(H ¼ 0:5) is normalized in both dimensions to be circumscribed inside a unit square, and subsequently is
divided into n intervals of width 1/n. The self-affinity of an fBm trace leads to an estimation of the number of
square boxes needed to cover the trace at a given length scale, motivating a relationship between H and DF. See
text for details.
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relates number of square boxes of side length ℓ needed to cover a trace to the fractal

dimension of the trace as N ℓð Þ∝ 1=ℓð ÞDF , we may conclude that6 DF ¼ 2�H.
The relationship DF ¼ 2�H is appealing in its simplicity, and indeed is fre-

quently found in the literature; however, Ref. [4] is quick to acknowledge the inher-
ent difficulty in assigning a fractal dimension to a self-affine structure, given that
such a construction is predicated upon assigning an arbitrary rescaling relationship
between incompatible coordinates. Mandelbrot, too, notes the apparent relation
DF ¼ 2�H [12] and clarifies that this relation holds in the fine-scale limit. This
disparity serves to highlight a general distinction between the Hurst exponent and the
fractal dimension as descriptors of a time-series trace. Specifically, the Hurst expo-
nent may be understood as a descriptor of global correlations, while the fractal
dimension may be understood as describing a trace’s local fine-scale structure [13].

6. Relationship between fractal dimension and spectral exponent

We may continue this exercise of comparing our various statistical parameters
by considering the spectral exponent β as a means of quantifying the nature of a
fractal trace. In practice, it is impractical to utilize a spectral analysis to evaluate the
fractal properties of a time-series structure, due to the imprecision (relative to the
aforementioned fractal analysis techniques) of applying a power law best-fit curve
to characterize a spectral decomposition of a trace. Nevertheless, we may investi-
gate the relationship that exists between the spectral exponent β, the fractal dimen-
sion DF, and the Hurst exponent H, so long as we recognize the imprecisions of
these comparisons. In particular, the spectral exponent β typically is said to relate to
the Hurst exponent as β ¼ 2H þ 1, implying the relationship DF ¼ 5� βð Þ=2. This
relationship may be derived by observing that the two-point autocorrelation
function

GV τð Þ ¼ V tð ÞV tþ τð Þh i � V tð Þh i2 ∝ τβ�1 (14)

for a trace V tð Þ is related to the quantity V tτð Þ � V tð Þj j2
D E

as

V tτð Þ � V tð Þj j2
D E

¼ 2 V2
� 	

� GV τð Þ
� �

; (15)

comparing this result to the aforementioned relationship

V tþ τð Þ � V tð Þj j2
D E

∝ τ2H (16)

leads to the expression β � 1 ¼ 2H [14]. However, systematic study [15] dem-
onstrates that such a relationship is generally not very robust. Indeed, it is straight-
forward to test this robustness: In analogy to the investigation performed in Ref.
[15], we investigated the relationship between spectral exponent and fractal
dimension by generating a set of 20 noise traces, each with a length of 16,384 points
and with a β value between 0 and 2. Applying each of the previously discussed time-
series fractal analysis techniques to each of these traces produced a corresponding
set of fractal dimensions (for the variational box-counting analysis and Dubuc’s
variation analysis) or Hurst exponents (for the variance analysis); these data are
shown in Figure 15, with the Hurst exponents “converted” to fractal dimensions via

6 Note that this relation only applies to time-series fractals, since the notion of a Hurst exponent is

undefined for spatial fractals.
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DF ¼ 2�H. Plotting these measured parameters as a function of the well-defined
spectral exponent used to generate each trace, we see that the relationship
DF ¼ 5� βð Þ=2 breaks down for DF close to 1 or 2.

7. Generating fractional Brownian motions and characterizing fractal
analysis techniques

The framework of the investigation summarized in Figure 15 may be applied
to a more thorough investigation of the fidelity of each fractal analysis tech-
nique discussed above. That is, if we generate a fBm trace with a well-defined
Hurst exponent and subject such a trace to the analysis techniques under con-
sideration, we may evaluate the robustness of each analysis technique. In so
doing, we may evaluate not only the fidelity of each analysis method, but also
may explore how the analysis methods (individually and/or collectively)
respond to less-idealized data sets. That is, by generating fBm traces with well-
defined Hurst exponents and modifying the traces to better resemble real-world
data sets, we may gain insight into how best to interpret our analytical results
of experimentally derived data. Specifically, in addition to testing these analysis
techniques on “full-size” 16,384-point fBm traces (with 16,384 arbitrarily cho-
sen as a “sufficiently large” number), we additionally tested these analyses on
traces of reduced length and/or reduced spectral content, which may better
represent experimentally measured data sets.

A variety of methods exist for generating a fractional Brownian motion trace
that exhibits a well-defined predetermined Hurst exponent. Examples of such
methods include random midpoint displacement, Fourier filtering of white noise
traces, and the summation of independent jumps [14]. This chapter considers
randomly generated fBm traces that were created using a MATLAB program that
generates a fractional Gaussian noise trace with the desired Hurst exponent via a

Figure 15.
Measured fractal dimensions of colored noise traces generated with well-defined power spectral densities β. Each
data point represents the average value of DF measured with the respective fractal analysis method for the set of
20 traces at the corresponding value of β. Each error bar represents one standard deviation from the mean value
of DF recorded for each set of 20 traces. Lines connecting the data points are provided as a guide to the eye. The
dashed line corresponds to the relationship DF ¼ 5� βð Þ=2.
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Fourier transform and subsequently computes the cumulative sum of the noise
trace to yield a fractional Brownian motion trace with a specified well-defined
Hurst exponent.

While such computer-generated fBm traces are accurately described as
exhibiting a well-defined Hurst exponent, the inherently finite nature of these
traces precludes the traces from being fully “fractal.” That is, as with any natural
structure with finite extent, the generated fBm traces necessarily exhibit a fine-scale
resolution limit (owing to the point-wise granularity of the traces) as well as a
coarse-scale size limit (owing to the finite total length of the traces). With this in
mind, we must be content to forge ahead with the simplifying assumption that the
effects of these particular limitations on our estimates of the underlying fractal
scaling properties are negligible when considering a computer-generated fBm trace
whose total length exceeds its step increment by several orders of magnitude.
Accordingly, for the purposes of this analysis, we assume that an fBm trace gener-
ated with a predetermined Hurst exponent “Hin” and with a total length well in
excess of its resolution limit is a suitable representative of a pure fractal structure
characterized by Hin. Thus, we assume that such a trace may fairly be used as a
control against which the fidelity of the above-mentioned analysis techniques may
be evaluated.

The procedure for evaluating each of these analysis techniques is thus as
follows: We first generated a set of 50 16,384-point fBm traces as well as 50 512-
point fBm traces at each of 39 input Hurst exponents Hin between 0.025 and 0.975.
In this manner, we sought to evaluate not only the fidelity of each fractal analysis
technique in returning the expected results for the longer 16,384-point traces, but
also the effect of performing the same analyses on data sets of limited length.
Next, we applied each analysis technique under consideration to each of these
traces, returning either a measured Hurst exponent Hout or a measured fractal
dimension Dout. In the case of the Dubuc variation analysis, which returns a
measured fractal dimension, this value was “converted”7 to a Hurst exponent via
the relation Hout ¼ 2�Dout. Having extracted these values of Hout for each sample
fBm trace and for each analysis technique, we produced a plot of Hout vs Hin

representing all fBm traces analyzed with each analysis technique; these results
are displayed in Figures 16 and 17 for randomly-generated fBm traces with
lengths of 16,384 points and 512 points, respectively. In each of Figures 16 and 17,
each data point represents the average Hout value measured via the corresponding
analysis method. Each corresponding logarithmic scaling plot was fit to a straight
line between a fine-scale cutoff of five data points and a coarse-scale cutoff of 1/5
of the full length of the trace. Each error bar represents one standard deviation in
the measured values averaged to yield the corresponding data point. The dashed
black line represents the ideal relationship Hout ¼ Hin; that is, data points
representing traces whose measured Hout values exactly match their generating
Hin values would fall on this line.

In the ideal case of a perfectly fractal fBm trace subjected to an analysis tech-
nique that produces a precise and accurate value of the Hurst exponent, a plot of
Hout vs. Hin is expected to be linear with unity slope. Based on the results of the
analyses summarized in Figures 16 and 17, our results may be summarized as
follows: the variational box-counting method tends to over-estimate H except in the
case of high H values; the variance analysis tends to under-estimate H; the Dubuc

7 As discussed above, such a conversion is at best an approximation. Nonetheless, utilizing this

conversion serves as a self-consistent means of evaluating the response of this analysis technique when

applied to fBm traces of a known Hurst exponent, as well as deviations from this behavior.
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Figure 16.
Plotting Hout vs. Hin for randomly-generated-16,384-point fBm traces as measured by the variational box-
counting method (yellow), adaptive fractal analysis (green), Dubuc’s variation analysis (red), and the
variance analysis (blue).

Figure 17.
Plotting Hout vs. Hin for randomly-generated 512-point fBm traces as measured by the variational box-
counting method (yellow), adaptive fractal analysis (green), Dubuc’s variation analysis (red), and the
variance analysis (blue).

Figure 18.
Comparison of a 512-point fBm trace with Hin ¼ 0:5 before (red) and after (blue) Fourier filtering to a
minimum feature size of 10 points.
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variation analysis performs well only for H � 0:5; and AFA provides an accurate
estimate of H throughout the range of H values. In the case of the shorter, 512-point
traces, the deviations from the ideal relationship Hout vs. Hin are more pronounced.
Additionally, the precision of the estimated H values for these shorter traces suffers
as well, as seen in the relatively large error bars on the data points corresponding to
the shorter traces.

We also investigated the effect on the measured H values resulting from another
common deviation from ideal fractal behavior. Specifically, in experimentally mea-
sured time-series data sets, the smallest-scale measured features often are signifi-
cantly larger than the resolution limit of the trace. Such is very often the case for
experimentally measured data sets that are asserted to represent fractal behavior, in
which the finest-scale features may exhibit a characteristic scale that is well over an
order of magnitude larger than the point-wise resolution of the trace. To probe the
effect of this limitation on a fractal analysis of such a trace, we repeated the above
technique on a set of randomly-generated 512-point fBm traces that had been

Figure 19.
Summarizing the fidelity of four fractal analysis methods in measuring the H value for randomly-generated
512-point fBm traces with a minimum feature size of 10 points. The scaling properties were observed over 1.01
orders of magnitude in length scale.

Figure 20.
Summarizing the fidelity of four fractal analysis methods in measuring the H value for randomly-generated
512-point fBm traces with a minimum feature size of 10 points. The scaling properties were observed over 0.71
orders of magnitude in length scale.
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spectrally filtered via Fourier transforms to exhibit a well-defined minimum feature
size (i.e., a well-defined maximum frequency component). Specifically, each trace
was subjected to a Fourier filter that eliminates all frequency components
corresponding to periods shorter than 10 data points, such that the resultant traces
have a minimum feature size of 10 points. Figure 22 illustrates a characteristic
result of this filtering procedure by comparing the original and Fourier filtered
versions of an fBm trace with Hin ¼ 0:5.

Performing a fractal analysis of time-series traces with limited spectral content
requires a reassessment of the length scales over which one expects to observe the
fractal scaling properties. Whereas our analysis of fBm traces whose spectral con-
tent extended to the resolution limit of the traces examined scaling properties to a
minimum length scale of five data points, we now cannot expect to see such scaling
properties at length scales smaller than our minimum feature size of 10 data points.
Given this well-defined minimum feature size, it may be tempting to set our fine-
scale analysis cutoff at 10 data points and expect to observe the desired scaling
properties at all length scales greater than this. In practice, however, the effect of

Figure 22.
Comparison of scaling plots produced by the variance method applied to a 512-point fBm trace with Hin ¼ 0:5
before (red) and after (blue) Fourier filtering to a minimum feature size of 10 points.

Figure 21.
Comparison of scaling plots produced by the variational box-counting method applied to a 512-point fBm trace
with Hin ¼ 0:5 before (red) and after (blue) Fourier filtering to a minimum feature size of 10 points.
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such spectral filtering is manifest in a fractal analysis even at length scales signifi-
cantly greater than that of the minimum feature size.

The results of passing the 512-point Fourier filtered fBm traces through the
fractal analysis techniques under consideration are displayed in Figures 19 and 20,
which illustrate the results obtained when applying fine-scale cutoffs of 10 data
points (i.e., the traces’ minimum feature size) and 20 data points, respectively. In
each of Figures 19 and 20, each data point represents the average Hout value
measured via the corresponding analysis technique using the aforementioned cut-
offs at the fine scale limit and 1/5 of the entire trace as the coarse scale cutoff limit.
Each error bar represents one standard deviation in the measured values that were
averaged to yield the corresponding data point. The dashed black line represents the
ideal relation Hout ¼ Hin, as discussed above.

Examples of the logarithmic scaling plots that yielded the data summarized in
Figures 16–17 and 19–20 are provided in Figures 21–24. For purposes of

Figure 23.
Comparison of scaling plots produced by the Dubuc variation method applied to a 512-point fBm trace with
Hin ¼ 0:5 before (red) and after (blue) Fourier filtering to a minimum feature size of 10 points.

Figure 24.
Comparison of scaling plots produced by the adaptive fractal analysis method applied to a 512-point fBm trace
with Hin ¼ 0:5 before (red) and after (blue) Fourier filtering to a minimum feature size of 10 points.
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illustration, each of these figures shows the logarithmic scaling plots produced by
applying the corresponding fractal analysis technique to the specific pair of fBm
traces illustrated in Figure 18. That is, each fractal analysis technique under con-
sideration quantifies the fractal characteristic of the input trace by determining the
slope of a best-fit line to a log–log scaling plot; Figures 21–24 provide examples of
these logarithmic scaling plots.

In each of Figures 21–24, the vertical dashed lines indicate the cutoffs
between which the scaling plot is fitted with a straight line whose slope is
measured to determine Hout. For both traces in each of these figures, the coarse-
scale analysis cutoff corresponds to the location of the line labeled “1/5 of
trace.” The fine-scale analysis cutoff for the raw trace (red points) corresponds
to the location of the line labeled “5 points” (corresponding to the data in
Figure 17), while the fine-scale analysis cutoff for the filtered trace (blue
points) may be chosen as 10 data points (corresponding to the data in
Figure 19) or 20 data points (corresponding to the data in Figure 20), as
represented by respective dashed vertical lines in Figures 21–24.

8. Conclusions

Contrasting the trends displayed in Figures 19 and 20 with those displayed in
Figures 16 and 17 highlights the inherent challenge in assessing the fractal proper-
ties of time-series structures that suffer from limited total length and/or limited
resolution/spectral content. Indeed, accommodating the impact of a minimum fea-
ture size that is significantly in excess of the trace’s resolution limit generally
necessitates restricting a fractal analysis to length scales larger still than even this
observed minimum feature size. This in turn often restricts an analysis of scaling
properties to a consideration of relatively few orders of magnitude in length. For
example, performing a fractal analysis of a 512-point Fourier filtered trace using
analysis cutoffs corresponding to 10 data points and 1/5 of the trace length corre-
sponds to an analysis of the scaling behavior over barely more than one order of
magnitude in length scale; attempting to increase the accuracy of the measurement
by raising the fine-scale cutoff to 20 data points further reduces the scaling range to
0.71 orders of magnitude.

Moreover, Figures 21–24 demonstrate the difficulty in identifying an appropri-
ate fine-scale cutoff for fractal analysis of a time-series trace, even when the mini-
mum feature size found in the trace is easily identifiable and/or well-defined. The
examples of Figures 21–24 further highlight an important distinction between the
application of fractal analysis techniques to spatial and time-series fractals. In the
case of spatial fractals, it often is reasonable to expect to observe fractal scaling
behavior between the length scales corresponding to physical constraints (and in
particular at length scales sufficiently far from these cutoffs). By contrast, and as
seen in Figures 21–24, the effect of imposing (or observing) a finite minimum
feature size on a time-series trace is evident at all scales, not just at those smaller
than the minimum observed period. Accordingly, and as further illustrated in
Figures 21–24, this effect may impact the slope of a best-fit line to a logarithmic
scaling plot (and, hence, the measured fractal dimension) even when this slope is
evaluated between cutoffs that are expected to compensate for the fine-scale limi-
tation.

In light of these results, one must take care when applying these analysis tech-
niques to data sets limited in length or spectral content, as it may be difficult to
make a compelling argument for the empirical presence of fractal behavior when
examining such a narrow range of length scales. Nevertheless, it is instructive to
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examine the behavior of fractal analysis applied to known fractal structures such as
fBm traces that have been artificially subjected to such constraints. For example,
one may argue that an fBm trace that is Fourier filtered to exhibit a coarser mini-
mum feature size is analogous to a natural structure or phenomenon that has been
subjected to exterior influences such as weathering effects or measurement limits:
both may be considered examples of structures that are legitimately generated via
processes associated with fractal behavior, but whose true fractal nature has been
obfuscated by secondary considerations. In the eyes of the authors, such effects do
not necessarily render the resulting structures “less fractal” than their idealized
counterparts. Nevertheless, such effects demand careful consideration when choos-
ing an analysis method and an acknowledgment of the inherent limitations thereof.
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