
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

Cyanobacteria for PHB Bioplastics 
Production: A Review
Erich Markl, Hannes Grünbichler and Maximilian Lackner

Abstract

Cyanobacteria, or blue-green algae, can be used as host to produce polyhy-
droxyalkanoates (PHA), which are promising bioplastic raw materials. The most 
important material thereof is polyhydroxybutyrate (PHB), which can replace the 
commodity polymer polypropylene (PP) in many applications, yielding a bio-based, 
biodegradable alternative solution. The advantage from using cyanobacteria to make 
PHB over the standard fermentation processes, with sugar or other organic (waste) 
materials as feedstock, is that the sustainability is better (compare first-generation 
biofuels with the feed vs. fuel debate), with CO2 being the only carbon source and 
sunlight being the sole energy source. In this review article, the state of the art of 
cyanobacterial PHB production and its outlook is discussed. Thirty-seven percent of 
dry cell weight of PHB could be obtained in 2018, which is getting close to up to 78% 
of PHB dry cell weight in heterotrophic microorganisms in fermentation reactors. A 
good potential for cyanobacterial PHB is seen throughout the literature.

Keywords: polyhydroxybutyrate (PHB), bioplastics, EN13432, biodegradability, 
organic carbon content, microplastics, cyanobacteria

1. Introduction

Bioplastics [1–3] are either biodegradable, e.g., according to the standard EN13432 
[4], or at least partly made from renewable raw materials, e.g., according to ASTM 
D6866 [5]. Although their market share today is only approx. 2%, they see two-digit 
growth figures [6]. The sustainability of bioplastics is reviewed in [7]. Plastics in 
general and their composites are a large and important class of materials. The global 
production volume exceeds 300 million tons/year [8]. For a bioplastics material to 
have a major impact, it has to match the key properties of one of the commodity 
plastics such as PP, PE, PVC, PS or PET. This is the case with polyhydroxyalkanoates 
(PHA), which have the potential to replace mass polymer PP in many applications. 
Polyhydroxybutyrate (PHB) is the most important representative of PHA.

Cyanobacteria [9–11] are a phylum of bacteria that obtain their energy through pho-
tosynthesis, and they are the only photosynthetic prokaryotes that can produce oxygen. 
The name “cyanobacteria” is derived from the Greek word for “blue,” which is the color 
of cyanobacteria. Cyanobacteria are prokaryotes, and they are also called “blue-green 
algae,” though the term “algae” is not correct technically, as it only includes eukaryotes.

It was discovered that cyanobacteria can produce polyhydroxyalkanoates (PHA) 
photoautotrophically [12], with the potential for CO2 recycling and bioplastics pro-
duction. This chapter is an up-to-date review on PHB production from cyanobacteria, 
since the last review article on this topic [13] was written already 5 years ago.
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2. PHB, a commodity bioplastics for mass market products?

Today, thermoplastic starch (TPS) and polylactic acid (PLA) are the two domi-
nant biodegradable bioplastics materials. Partly, bio-based PET (see, for example, 
the PlantBottle™ project) and “Green PE,” a polyethylene made from sugarcane-
derived ethanol in Brazil, are the two most common nondegradable, but bio-based 
plastics. PHB has striking similarities to PP and has therefore been envisaged as 
potential replacement candidate for PP by Markl et al. [14], for instance, in bio-
medical, agricultural, and industrial applications [15]. The following Table 1 shows 
a comparison of PHB and PP.

The low elongation and break and the brittleness of PHB are limitations. These, 
however, can be overcome by using other PHA, blends of copolymers, see Table 2.

Apart from short-chain-length PHA, there are medium- and long-chain-
length variants, too, [17], so that material properties can be tailored in a wide 
spectrum.

The majority of PP is used in short-lived plastic products such as rigid packag-
ing, which partly end up in nature. A biodegradable alternative can be a sensible 
material solution. Since PHA can be selected and customized for various applica-
tions, and also blended, co-polymerized and compounded, it is estimated that up to 
90% of all PP applications can be covered by PHA and to a large extent thereof by 
PHB. A disadvantage of PHB is its high production cost. In [15], ways to make PHA 
production more cost-competitive are listed (see Table 3).

Table 1. 
Properties of PHB compared to those of PP (source: [16]).

Table 2. 
Property modification by copolymerization (source: [13]).
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Avoiding feedstock costs and using CO2 as sole carbon source are described as 
strong potential here.

In general, organic carbon feedstocks can yield high PHB contents in micro-
organisms. For instance, Bhati et al. produced 78% PHB of dry well weight with 
Nostoc muscorum Agardh [18].

An alternative production pathway for PHB is a catalytic one [19, 20]. Both the 
fermentation and the catalytic process yield an expensive PHB product, which 
is hard to sell as it competes with low-price commodities such as PE and PP for 
packaging applications, which are very cost-sensitive.

3. PHB production by cyanobacteria: current state of knowledge

It is known that cyanobacteria can produce PHB as an intracellular energy and 
carbon storage compound [21] (see Figure 1).

Reference [23] discusses the use of cyanobacteria to produce chemicals. 
Cyanobacteria show several industrially relevant benefits compared to their plant 
counterparts, including a faster growth rate, higher CO2 utilization and greater 
amenability to genetic engineering [24, 25].

Table 4 shows compounds that can be produced by cyanobacteria photoautotro-
phically [26].

In 2013, a review on the production of poly-β-hydroxybutyrates from cyanobac-
teria for the production of bioplastics was published [13]. Meanwhile, significant 
improvements have been implemented.

In 2018, Troschl et al. could report 12.5% PHB cry well weight [21]. In the same 
year, Kamravamanesh et al. have shown that the cyanobacterium Synechocystis 
sp. PCC 6714 can produce up to 37% dry cell weight of PHB with CO2 as the only 

Table 3. 
Technology to be developed to lower PHA production cost (reproduced with permission from [15]).
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carbon source [27, 28], which is significantly above the other reported values 
from literature. The strain had been subjected to UV light mutations to increase 
the PHB productivity. Prior to that work, the thermophilic cyanobacterium, 

Figure 1. 
PHB granules in cyanobacteria. Left: Wild type. Right: Mutant (reproduced with permission from [22]).

Table 4. 
Compounds that could be produced by cyanobacteria (reproduced with permission from [26]).
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Synechococcus sp. MA19, was reported to have achieved 27% of dry cell weight 
PHB [29]. It was reported that, originally, the MA 19 was isolated from a hot 
spring in Japan (Miyakejima). However, neither the authors of this paper nor 
other researchers [30] were able to obtain a sample from that strain in 2016–2018, 
despite high efforts, so currently, Kamravamanesh’s strain Synechocystis sp. PCC 
6714 can be considered the cyanobacterium with the highest PHB content. A 
high PHB content is advantageous for downstream processing in terms of energy 
efficiency, for instance, or product quality.

Genetic engineering is commonly deployed to increase the yield of PHB 
compared to wild types [26, 31, 32]. Also, bioprocess optimization is carried 
out [27, 28]. Growth is typically followed by nitrogen and/or phosphorous 
limitation. Also, “feast and famine” strategies concerning the carbon source are 
applied [33].

Reference [34] discusses the use of consortia of cyanobacteria and heterotrophic 
bacteria for stable PHB production.

The modeling of cyanobacterial PHB production is discussed in [35].
A possible growth system for PHB from cyanobacteria is presented in [18], see 

Figure 2 below.
The study in [18] uses long-term, non-sterile cultivation of Synechocystis sp. 

CCALA192 in a tubular photobioreactor for PHB production. Another concept 
would be open pond photobioreactors like open pond raceways. Different photobio-
reactor setups are reviewed in [18, 36–39]. A promising alternative is an integrated 
algae-based biorefinery, e.g., for the production of biodiesel, astaxanthin and PHB 
as presented by [40] or [41].

4. PHB production by cyanobacteria: an outlook

A major unsolved issue is the downstream processing of the cyanobacteria, i.e., 
how to get the bioplastics material out of the cyanobacteria (see Figure 3).

In Ref. [23], photomixotrophic conditions to increase cyanobacterial produc-
tion rate and yield are reviewed. Supplementation with fixed carbon sources 
gives additional carbon building blocks and energy to speed up production. 
Photomixotrophic production was found to increase titers up to fivefold over 
traditional autotrophic conditions [23], so there is a strong future potential in this 
mode for cyanobacteria.

Figure 2. 
Operation mode for PHB production from cyanobacteria. The ripening tank is used for PHB production at a 
later stage, where no CO2 is consumed, but glycogen gets converted into PHB (reproduced with permission from 
[18]).
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5. Conclusions

This chapter has presented an update on PHB production by cyanobacteria, 
a process route which can be more sustainable than catalytic production from 
CO or fermentation from sugar compounds. It is expected that PHB and its 
compounds will gradually replace PP in many large volume applications. Genetic 
engineering can increase the yield of PHB in cyanobacteria; however, the down-
side is that approval for large-scale cultivation in (cost- and energy-efficient) 
open growth systems will be difficult to obtain in most countries, so technolo-
gies avoiding genetic engineering seem to be most promising for commercial 
development.
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