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Chapter

Thermal Radiation and Thermal
Diffusion for Soret and Dufour’s
Effects on MHD Flow over
Rotating Infinite Disk
Gamal M. Abdel-Rahman and Faiza M.N. El-fayez

Abstract

In general, the thermal radiation and thermal diffusion effects over an electri-
cally conducting, Newtonian fluid in a steady laminar magnetohydrodynamic con-
vective flow over a porous rotating infinite disk with the consideration of heat and
mass transfer in the presence of Soret and Dufour’s diffusion effects have been
obtained and studied numerically. The governing continuity, momentum, energy
and concentration equations are converted into a system of non-linear ordinary
differential equations by means of similarity transformation. The resulting system
of coupled non-linear ordinary differential equations is solved numerically. In this
chapter, numerical results were presented for velocity (radial, axial and tangential),
temperature, concentration and pressure profiles for different parameters of the
problem Also, the effects of the pertinent parameters on the radial and tangential
skin friction, the rate of heat and mass transfer are obtained and discussed numer-
ically and illustrated graphically.

Keywords: MHD, heat and mass transfer, thermal radiation, slip flow,
porous medium, rotating disk

1. Introduction

The flow due to rotating disks is of great interest in many practical and engi-
neering aspects. Rotating disk flows of electrically conducting fluids have practical
applications in many areas, such as rotating machinery, lubrication, oceanography,
computer storage devices, viscometer and crystal growth processes etc. Also, the
study is interesting from the mathematical point of view. During the last two
decades, research on renewable energy sources, as for example, solar, wind energy
or energy from hydro-power and the preparation of oxygenated additives to blend
diesel fuel, has been intensified.

Pioneering study of fluid flow due to an infinite rotating disk was carried by
authors [1–3]. Chemical reactions usually accompany a large amount of exothermic
and endothermic reactions. These characteristics can be easily seen in a lot of
industrial processes, it has been realized that it is not always permissible to neglect
the convection effects in porous constructed chemical reactors [4]. The reaction
produced in a porous medium was extraordinarily in common, such as the topic of

1



PEM fuel cells modules and the polluted underground water because of discharging
the toxic substance, etc.

Fourier’s law, for instance, described the relation between energy flux and
temperature gradient. In other aspects, Fick’s law was determined by the correlation
of mass flux and concentration gradient. Moreover, it was found that energy flux
can also be generated by composition gradients, pressure gradients, or body forces.
The energy flux caused by a composition gradient was discovered in 1873 by Dufour
and was correspondingly referred to the Dufour effect.

It was also called the diffusion-thermo effect. On the other hand, mass flux can
also be created by a temperature gradient, as was established by Soret. This is the
thermal-diffusion effect. In general, the thermal-diffusion and the diffusion-thermo
effects were of a smaller order of magnitude than the effects described by Fourier’s
or Fick’s law and were often neglected in heat and mass transfer processes. There
were still some exceptional conditions. The thermal-diffusion effect has been uti-
lized for isotope separation and in mixtures between gases with very light molecular
weight H2;Heð Þ and of medium molecular weight N2; airð Þ, the diffusion-thermo
effect was found to be of a magnitude such that it may not be neglected in certain
conditions [5].

The first traceable interest in magnetohydrodynamics (MHD) flow was in 1907,
when Northrop built an MHD pump prototype [6, 7]. Since then, analysis of the
effects of both rotation and magnetic fields on fluid flows has been an active area of
research. While technology expanded in many directions, the subject of MHD has
developed in the use of magnetic fields and the range of fluid and thermal processes
by [8–13]. This study considers the effect of slip as a result of rarefied effect, a type
of flow commonly encountered in many engineering tasks such as high altitude
flight, micro-machines, vacuum technology, aerosol reactors, etc. In this study,
the slip and no-slip regimes that lie in the range 0.1 > Kn > 0 are considered.
A completely different extension of von Karman’s one-disk problem is the analysis
of Sparrow et al. [14]. They considered the flow of a Newtonian fluid due to the
rotation of a porous-surfaced disk and for that purpose replaced the conventional
no-slip boundary conditions at the disk surface with a set of linear slip flow condi-
tions. A substantial reduction in torque then occurred as a result of surface slip.
Recently Frusteri and Osalusi [15] studied the effects of variable properties on MHD
and slip flow over a porous rotating disk.

In all these studies Soret and Dufour effects were assumed to be negligible. Such
effects are significant when density differences exist in the flow regime. For exam-
ple, when species are introduced at a surface in fluid domain, with different (lower)
density than the surrounding fluid, both Soret (thermo-diffusion) and Dufour
(diffusion-thermal) effects can be influential. An analytical study of convection
along a horizontal cylinder for a Helium-air system was reported subsequently by
Sparrow et al. [16]. In view of the importance of above mentioned effects, Maleque
[17] studied Soret effect on convective heat and mass transfer past a rotating porous
disk and he neglected the Dufour effect. Ahmed [18] investigated the Dufour and
Soret effects on free convective heat and mass transfer over a stretching surface
considering suction or injection. Recently, numerical study of free convection mag-
netohydrodynamic heat and mass transfer due to a stretching surface under satu-
rated porous medium with Soret and Dufour effects was also discussed by Anwar
Beg et al. [19].

In these two papers [15, 20] they have studied the effect of the magnetic field on
the equations of motion that I found them used in the cylindrical coordinate,
although the magnetic field parameters are in the Cartesian coordinate, which is
wrong.
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2. Mathematical formulation

Consider the steady, axially symmetric, incompressible flow of an electrically
conducting fluid with heat and mass transfer flow due to a rotating porous disk in
the presence of radiation has been considered. Assume that the fluid is infinite in
extent in the positive z-direction. Let r;φ; zð Þ be the set of cylindrical polar coordi-
nates and let the disk rotate with constant angular velocity Ω and is placed at z ¼ 0.
The components of the flow velocity are u; v;wð Þ in the directions of increasing
r;φ; zð Þ, respectively. p, T and C are the pressure, the temperature and the concen-
tration distribution, respectively. The surface of the rotating disk is maintained at a
uniform temperature Tw and uniform concentration Cw. Far away from the surface,
the free stream is kept at a constant temperature T∞, at a constant concentration C∞

and at a constant pressure p
∞
. The fluid is assumed to be gray, emitting and

absorbing heat, but not scattering medium and is assumed to be Newtonian. The
physical model and geometrical coordinates are shown in Figure 1.

The MHD body forces J � B the Maxwell’s equations:

divB ¼ 0, CurlB ¼ μmJ and divE ¼ 0

where J is the electric current density, B ¼ Bþ b is the total magnetic field, μm is
the magnetic permeability and b is the induced magnetic field. The external uni-
form magnetic field B is imposed in the direction normal to the surface of the disk
which is assumed unchanged by taking small magnetic Reynolds number, so that
the flow induction distortion of the applied magnetic field can be neglected as in the
case with most of conducting fluids. In addition, a uniform suction is applied at the
surface of the disk for the entire range.

The magnetic body force J � B takes the form σ V � B
� �

� B, therefore,

σ V � B
� �

� B ¼ �σB2V=r, where σ is the electrical conductivity of fluid and V is

Figure 1.
Schematic diagram of the problem.
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velocity vector V ¼ u; v;wð Þ and B ¼ 0;0;Bð Þ. The Lorentz force (MHD body force)
has two components:

Fr ¼ �σB2u=r, Fθ ¼ �σB2v=r:

Under these assumptions, the governing equations for the continuity, momentum,
energy and concentration in laminar incompressible flow can be written as follows:

∂u

∂ r
þ u

r
þ ∂w

∂z
¼ 0 , (1)

u
∂u

∂ r
� v2

r
þw

∂u

∂z
¼ � 1

ρ

∂p

∂r
þ ν

∂
2 u

∂r2
þ 1

r

∂u

∂ r
� u

r2
þ ∂

2 u

∂z2

� �

� σB2

ρ r
u� ν

K∗

1

uþ g βT T � T∞ð Þ þ g βC C� C∞ð Þ,
(2)

u
∂v

∂r
þ uv

r
þ w

∂v

∂z
¼ ν

∂
2 v

∂r2
þ 1

r

∂v

∂r
� v

r2
þ ∂

2 v

∂z2

� �

� σB2

ρ r
v� ν

K∗

1

v, (3)

u
∂w

∂r
þ w

∂w

∂z
¼ � 1

ρ

∂p

∂z
þ ν

∂
2w

∂r2
þ 1

r

∂w

∂r
þ ∂

2w

∂z2

� �

, (4)

u
∂T

∂ r
þ w

∂T

∂z
¼ k

ρcp

∂
2T

∂r2
þ 1

r

∂T

∂r
þ ∂

2T

∂z2

� �

� 1

ρ cp

∂qr
∂z

þDkT
cscp

∂
2C

∂r2
þ 1

r

∂C

∂r
þ ∂

2C

∂z2

� �

þ σB2

ρ cpr
u2 þ Q

ρ cp
T � T∞ð Þ,

(5)

u
∂C

∂r
þ w

∂C

∂z
¼ D

∂
2C

∂ r2
þ 1

r

∂C

∂r
þ ∂

2C

∂z2

� �

þDkT
Tm

∂
2T

∂ r2
þ 1

r

∂T

∂ r
þ ∂

2T

∂z2

� �

� k1 C� C∞ð Þ

(6)

When the mean free path of the fluid particle is comparable to the characteristic
dimensions of the flow field domain, Naiver-Stokes equations break down since the
assumption of continuum media fails. In the range of 0:1 < kn < 10 Knudsen Num-
ber, the higher order continuum equation, for example, Burnett equation should be
used. For the range of 0:001≤ kn ≤0:1, no slip boundary conditions cannot be used
and should be replaced with the following expression (Gad-el-Hak [20]):

Ut ¼
2� ξ

ξ
λ
∂Ut

∂n
, (7)

WhereUt is the tangential velocity, n is the normal direction to the wall, ξ is the
tangent momentum accommodation coefficient and λ is the mean free path. For
kn <0:001, the no-slip boundary condition is valid, therefore, the velocity at the surface
is equal to zero. In this study the slip and the no-slip regimes of the Knudsen number
that lies in the range 0:1>kn>0 is considered. By using Eq. (7), the appropriate boundary
conditions for the flow induced by an infinite disk z ¼ 0ð Þwhich rotates with constant
angular velocityΩ subjected to uniform suctionw0 through the disk are given by

z ¼ 0 : u ¼ 2� ξ

ξ
λ
∂u

∂z
, v ¼ Ω rþ 2� ξ

ξ
λ
∂v

∂z
, w ¼ w0, T ¼ Tw, C ¼ Cw,

z ! ∞ : u ! 0, v ! 0, T ! T∞, C ! C∞, p ! p
∞
:

(8)
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where k is the thermal conductivity, ν ¼ μ=ρ is the kinematic viscosity of the
ambient fluid, σ is the electrical conductivity, K∗

1 is the permeability of the porous
medium, g is the gravitational acceleration, βT and βC are the expansion coefficients
of temperature and concentration, ρ, μ and cp are the density, dynamic viscosity
and the specific heat at constant pressure, respectively, Q is the volumetric heat
generation/absorption rate, D is the molecular diffusion coefficient,
kT, cs, Tm and qr are the thermal-diffusion rate, concentration susceptibility, the
mean fluid temperature and the radiative heat flux. Using the Rosseland approxi-
mation (Rashed [21]), the radiative heat flux qr could be expressed by

qr ¼ �4σ∗

3k∗
∂T4

∂z
(9)

Where the σ∗ represents the Stefan-Boltzman constant and k∗ is the Rosseland
mean absorption coefficient.

Assuming that the temperature difference within the flow is sufficiently small

such that T4 could be approached as the linear function of temperature

T4 ffi 4T3
∞
T � 3T4

∞
(10)

For the flow under study, it is relevant to assume that the applied magnetic field
B rð Þ has the form cobble [22] B ¼ B0

ffiffi

r
p

, where B0 is constant magnetic flux density.
To obtain the non-dimensional form of the above equations, the following

dimensionless variables are introduced.

R ¼ r

L
, Z ¼ z

L
, U ¼ u

ΩL
, V ¼ v

ΩL
, λ ¼ λ

L
,W ¼ w

ΩL
, P ¼ p� p

∞

ρΩ2L2 ,

ν ¼ ν

ΩL2 , k1 ¼
k1

L2 , T ¼ T � T∞

Tw � T∞

, C ¼ C� C∞

Cw � C∞

, k∗1 ¼
k∗

L2

(11)

Substituting Eqs. (9)–(11) in Eqs. (1)–(6), we obtain the following dimension-
less equations:

∂U

∂R
þU

R
þ ∂W

∂Z
¼ 0 , (12)

U
∂U

∂R
� V2

R
þW

∂U

∂Z
¼ � ∂P

∂R
þ ν

∂
2U

∂R2
þ 1

R

∂U

∂R
� U

R2
þ ∂

2U

∂Z2

� �

� σB2
0

ρΩ
U � ν

k1
U

þ g βT Tw � T∞ð Þ
Ω

2L
T þ g βc Cw � C∞ð Þ

Ω
2L

C,

(13)

U
∂V

∂R
� UV

R
þW

∂V

∂Z
¼ ν

∂
2V

∂R2
þ 1

R

∂V

∂R
� V

R2
þ ∂

2V

∂Z2

� �

� σB2
0

ρΩ
V � ν

k1
V, (14)

U
∂W

∂R
þW

∂W

∂Z
¼ � ∂P

∂Z
þ ν

∂
2W

∂R2
þ 1

R

∂W

∂R
þ ∂

2W

∂Z2

� �

, (15)

U
∂T

∂R
þW

∂T

∂Z
¼ k

ρcpΩL2

∂
2T

∂R2
þ 1

R

∂T

∂R
þ ∂

2T

∂Z2

� �

þ 16σ∗T3
∞

3ρ cpΩk∗L2

∂
2T

∂Z2

þ DkT Cw � C∞ð Þ
cscpΩL2 Tw � T∞ð Þ

∂
2C

∂R2
þ 1

R

∂C

∂R
þ ∂

2C

∂Z2

� �

þ σB2
0ΩL

ρcp Tw � T∞ð Þ
U2

R
þ Q

ρ cpΩ
T,

(16)
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U
∂C

∂R
þW

∂C

∂Z
¼ D

ΩL2

∂
2C

∂R2
þ 1

R

∂C

∂R
þ ∂

2C

∂Z2

� �

þ DkT Tw � T∞ð Þ
TmΩL2 Cw � C∞ð Þ

∂
2T

∂R2
þ 1

R

∂T

∂R
þ ∂

2T

∂Z2

� �

� k

ΩL2 C:

(17)

The boundary conditions (8) are reduced to

Z ¼ 0 : U ¼ 2� ξ

ξ
λ
∂U

∂Z
, V ¼ Rþ 2� ξ

ξ
λ
∂V

∂Z
, W ¼ w0

ΩL
, T ¼ 1, C ¼ 1,

Z ! ∞ : U ! 0, V ! 0, T ! 0, C ! 0, P ! 0:

(18)

The governing equations are obtained by introducing a dimensionless normal

distance from the disk, η ¼ Z=
ffiffiffi

ν
p

along with the von-Karman transformations,

U ¼ RF ηð Þ, V ¼ RG ηð Þ, W ¼
ffiffiffi

ν
p

H ηð Þ:
T ¼ θ ηð Þ, C ¼ φ ηð Þ, P ¼ νP ηð Þ

(19)

Where F,G,H, θ,φ and P are non-dimensionless functions in terms of vertical
co-ordinate η. Substituting these transformations into Eqs. (12)–(17) gives the
nonlinear ordinary differential equations, expressed as

2F þH= ¼ 0, (20)

F== �HF= � F2 þG2 � Mþ Sð ÞF þ αθ þNφ ¼ 0, (21)

G== �HG= � 2FG� Mþ Sð ÞG ¼ 0, (22)

H== �HH= � P= ¼ 0, (23)

1

Pr
1þ 4

3Rd

� �

θ== �Hθ= þDuφ
== þ JF2 þ δθ ¼ 0, (24)

1

Sc
φ== �Hφ= þ S0θ

== � βφ ¼ 0: (25)

With the appropriate boundary conditions:

η ¼ 0; F 0ð Þ ¼ γF= 0ð Þ, G 0ð Þ ¼ 1þ γG= 0ð Þ, H 0ð Þ ¼ W s, θ 0ð Þ ¼ 1, φ 0ð Þ ¼ 1,

η ! ∞; F ∞ð Þ ¼ 0, G ∞ð Þ ¼ 0, θ ∞ð Þ ¼ 0, φ ∞ð Þ ¼ 0, P ∞ð Þ ¼ 0:
(26)

Where γ ¼ 2� ξð Þλ
ffiffiffiffi

Ω
p� �

=ξ
ffiffiffi

ν
p

the slip is factor and W s ¼ w0=
ffiffiffiffiffiffiffi

νΩ
p

represents a
uniform suction W s <0ð Þ at the disk surface. The boundary conditions given by
Eq. (26) imply that the radial Fð Þ, the tangential Gð Þ components of velocity,
temperature and concentration vanish sufficiently far away from the disk, whereas
the axial velocity component Hð Þ is anticipated to approach a yet unknown asymp-
totic limit for sufficiently large η-values.

3. Skin-friction coefficient, Nusselt number and Sherwood number

The parameters of engineering interest for the present problem are the local
skin-friction coefficients and the local rates of heat and mass transfer to the surface
are calculated. The radial shear stress and tangential shear stress are given by:
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τφz ¼ μ
∂v

∂z
þ 1

r

∂w

∂φ

� �

z¼0

,

τzr ¼ μ
∂u

∂z
þ ∂w

∂r

� �

z¼0

,

The tangential and radial skin-friction coefficient are, respectively, given by,
Eq. (27):

Cf 1
¼ τφz=ρΩ

2L2 ¼
ffiffiffiffiffi

Re

p
G= 0ð Þ,

Cf 2
¼ τzr=ρΩ

2L2 ¼
ffiffiffiffiffi

Re

p
F= 0ð Þ,

(27)

Now the heat flux qw
� �

and the mass flux Jwð Þ at the surface are given by.

qw ¼ �k
∂T

∂z

� �

z¼0

, and Mw ¼ �D
∂C

∂z

� �

z¼0

:

Hence the Nusselt number, Nu and Sherwood number, Sh are obtained as
Eqs. (28) and (29), respectively:

Nu ¼
Lqw

k Tw � T∞ð Þ νð Þ�1=2
¼ �θ= 0ð Þ, (28)

And

Sh ¼
LMw

D Cw � C∞ð Þ νð Þ�1=2
¼ �φ= 0ð Þ: (29)

Where Re ¼ R2=ν is the rotational Reynolds number.

4. Numerical results and discussion

The system of non-linear ordinary differential Eqs. (20)–(25) together with the
boundary conditions (26) are locally similar and solved numerically by using the
Keller-box method. In order to gain physical insight, the velocity (radial, axial and
tangential), temperature, concentration and pressure profiles have been discussed
by assigning numerical values to the parameter, encountered in the problem which
the numerical results are tabulated and displayed with the graphical illustrations.

In order to verify the accuracy of our present method, we have compared our
results with those of Frusteri and Osalusi [15], Osalusi and Sibanda [23] and

Maleque and Sattar [24]. Table 1 shows the values of F= 0ð Þ, � G= 0ð Þand� θ= 0ð Þ
for various values of W s. The comparisons in all above cases are found to be
excellent and agreed, so it is good.

Figures 2, 3 and 11a–d display the velocity (radial, axial and tangential), tem-
perature, concentration and pressure profiles under the magnetic field parameter,
porosity parameter and Schmidt number. The (radial, axial and tangential) compo-
nents of the velocity and pressure profile decrease with increase of magnetic field
due to the inhibiting influence of the Lorentz force and increasing of all porosity
parameter and Schmidt number, while the temperature and the concentration pro-
files increase with increasing of all magnetic field parameter, porosity parameter
and Schmidt number. In Figures 4 and 5a–d, it is clear that the (radial and axial)
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Ws F|(0) –G|(0) –θ|(0)

Frusteri

et al. [15]

Osalusi et al.

[23]

Maleque et al.

[24]

Present

study

Frusteri

et al. [15]

Osalusi et al.

[23]

Maleque et al.

[24]

Present

study

Frusteri

et al. [15]

Osalusi et al.

[23]

Maleque

et al. [24]

Present

study

γ = 0, ε = 0

0.0 0.4241 0.4241 0.5102 0.4627 0.6514 0.6514 0.6160 0.6241 0.5387 0.5387 0.3258 0.3171

�2.0 0.2324 0.2324 0.2425 0.2435 2.0687 2.0687 2.0391 2.0452 1.5196 1.5196 1.4421 1.4746

�4.0 0.1246 0.1246 0.1248 0.1245 4.0065 4.0065 4.0054 4.0052 2.8520 2.8520 2.8447 2.8432

�5.0 0.0999 0.0999 0.0999 0.0998 5.0029 5.0029 5.0031 5.0032 3.5541 3.5541 3.5541 3.5539

�10.0 0.0499 0.0499 0.0506 0.0502 10.0003 10.0003 10.0017 10.0019 7.1002 7.1002 7.1020 7.1018

Table 1.
Comparison of the current and recent numerical values of the radial and tangential skin-friction coefficients and the rate of heat transfer coefficient for various of W s with
S ¼ 0:0, α ¼ 0:0,N ¼ 0:0, J ¼ 0:0, δ ¼ 0:0,Pr ¼ 0:71, β ¼ 0:0,Rd ¼ 109

,Du ¼ 0:0, S0 ¼ 0:0, Sc ¼ 1:0 and M ¼ 0.
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Figure 2.
Effect of magnetic field parameter on (a) the velocity (radial, axial and tangential) profile, (b) the
temperature profile, (c) the concentration and (d) the pressure profile.

Figure 3.
Effect of porosity parameter on (a) the velocity (radial, axial and tangential) profile, (b) the temperature
profile, (c) the concentration and (d) the pressure profile.
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Figure 4.
Effect of temperature buoyancy parameter on (a) the velocity (radial, axial and tangential) profile, (b) the
temperature profile, (c) the concentration and (d) the pressure profile.

Figure 5.
Effect of concentration buoyancy parameter on (a) the velocity (radial, axial and tangential) profile, (b) the
temperature profile, (c) the concentration and (d) the pressure profile.
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components of the velocity and pressure profiles increase with increase of temper-
ature buoyancy parameter and increasing concentration buoyancy parameter, while
the tangential component of the velocity, the temperature and the concentration
profiles decrease with increasing temperature buoyancy parameter and concentra-
tion buoyancy parameter.

The effects of Pr on the (radial and axial) components of the velocity, the
temperature, concentration and pressure profiles are shown in Figure 6a–d,
respectively. It is observed that both the (radial and axial) components of the
velocity, the temperature and pressure profiles decrease with the increase of Prandtl
number. While, the concentration profile increase. Physically, it means that thermal
boundary layer thickness gets decreased. In fact, it is well known that the thermal
boundary layer thickness is inversely proportional to the square root of Prandtl
number. Hence, the decrease of temperature profile with increasing Pr is straight-
forward.

Figures 7 and 10a–d show the effects of radiation parameter and heat source
parameter on the velocity (radial and axial), temperature, concentration and pres-
sure profiles, also, we found that the (radial and axial) components of the velocity,
temperature and pressure profiles increase with the increase of radiation parameter
and increasing heat source parameter. While the concentration profile decrease.
The effects of Du and S0 on the velocity (radial and axial), temperature, concentra-
tion and pressure profiles, are shown in Figure 8a–d, respectively. It is observed
that the (radial and axial) components of the velocity, temperature, concentration
and pressure profiles increase with the decreasing the Dufour’s number and
increasing Soret number.

Figure 6.
Effect of Prandtl number on (a) the velocity (radial and axial) profile, (b) the temperature profile, (c) the
concentration and (d) the pressure profile.
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Figure 7.
Effect of radiation parameter on (a) the velocity (radial and axial) profile, (b) the temperature profile, (c) the
concentration and (d) the pressure profile.

Figure 8.
Effect of Soret and Dufour's number on (a) the velocity (radial and axial) profile, (b) the temperature profile,
(c) the concentration and (d) the pressure profile.
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The effects of J on the velocity (radial and axial) and pressure profiles, are
shown in Figure 9a and b, respectively. We found that the (radial and axial)
components of the velocity and pressure profiles decrease with the increase Joule
heating parameter. In Figure 12a–c, it is clear that the (radial and axial) compo-
nents of the velocity, concentration and pressure profiles decrease with increase of
chemical reaction parameter. Figure 13a–d displays the velocity (radial, axial and
tangential), temperature, concentration and pressure profiles under the suction

Figure 9.
Effect of Joule heating parameter on (a) the velocity (radial and axial) profile, and (b) the pressure profile.

Figure 10.
Effect of heat source parameter on (a) the velocity (radial and axial) profile, (b) the temperature profile, (c)
the concentration and (d) the pressure profile.
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Figure 11.
Effect of Schmidt number on (a) the velocity (radial, axial and tangential) profile, (b) the temperature profile, (c)
the concentration and (d) the pressure profile.

Figure 12.
Effect of chemical reaction parameter on (a) the velocity (radial and axial) profile, (b) the concentration and
(c) the pressure profile.
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Figure 13.
Effect of suction parameter on (a) the velocity (radial, axial and tangential) profile, (b) the temperature
profile, (c) the concentration and (d) the pressure profile.

Figure 14.
Effect of slip parameter on (a) the velocity (radial, axial and tangential) profile, and (b) the pressure profile.
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M S α N Pr Rd Du&S0 J δ Sc β Ws γ Re
�1l2Cf1 �Re

�1l2Cf2 �Nu �Sh

0.1 2.0 0.5 0.5 1.0 5.0 0.25 & 0.2 0.5 0.0 0.64 0.5 �1.0 0.2 0.3857 1.6257 0.3144 1.0486

2.0 0.3323 1.7275 0.3116 1.0367

3.0 0.3112 1.7732 0.3105 1.0319

0.1 0.2 0.5534 1.3978 0.3220 1.0870

1.0 0.4629 1.5071 0.3185 1.0663

2.0 0.3857 1.6257 0.3144 1.0486

0.1 2.0 0.0 0.1970 �1.6005 0.3039 1.0056

0.5 0.3857 1.6257 0.3144 1.0486

0.8 0.4953 1.6397 0.3198 1.0725

0.1 2.0 0.5 0.0 0.2510 1.6096 0.3093 1.0247

0.5 0.3857 1.6257 0.3144 1.0486

0.9 0.4894 1.6377 0.3180 1.0667

0.1 2.0 0.5 0.5 0.71 0.3879 1.6261 0.2944 1.0522

1.0 0.3857 1.6257 0.3144 1.0486

2.3 0.3757 1.6241 0.4155 1.0326

0.1 2.0 0.5 0.5 1.0 1.0 0.3683 1.6229 0.5022 1.0194

5.0 0.3857 1.6257 0.3144 1.0486

10.0 0.3892 1.6263 0.2828 1.0541

0.1 2.0 0.5 0.5 1.0 5.0 1.0 & 0.05 0.3910 1.6266 0.2324 1.0591

0.25 & 0.2 0.3857 1.6257 0.3144 1.0486

0.2 & 0.25 0.3856 1.6256 0.3195 1.0454

0.1 2.0 0.5 0.5 1.0 5.0 0.25 & 0.2 0.1 0.3858 0.3157 1.0487
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M S α N Pr Rd Du&S0 J δ Sc β Ws γ Re
�1l2Cf1 �Re

�1l2Cf2 �Nu �Sh

0.5 0.3857 0.3144 1.0486

1.5 0.3854 0.3111 1.0485

0.1 2.0 0.5 0.5 1.0 5.0 0.25 & 0.2 0.5 �0.5 0.3795 1.6247 0.3938 1.0370

0.0 0.3857 1.6257 0.3144 1.0486

0.5 0.3931 1.6270 0.2239 1.0625

0.1 2.0 0.5 0.5 1.0 5.0 0.25 & 0.2 0.5 0.0 0.22 0.6083 1.4121 0.3451 0.5590

0.64 0.3857 1.6257 0.3144 1.0486

0.78 0.3777 1.6278 0.3084 1.2094

0.1 2.0 0.5 0.5 1.0 5.0 0.25 & 0.2 0.5 0.0 0.64 0.2 0.3927 1.6268 0.3193 0.9130

0.5 0.3857 1.6257 0.3144 1.0486

1.0 0.3770 1.6244 0.3075 1.2368

0.1 2.0 0.5 0.5 1.0 5.0 0.25 & 0.2 0.5 0.0 0.64 0.5 �1.0 0.3857 1.6257 0.3144 1.0486

�1.5 0.3737 1.7684 0.3445 1.2854

�2.0 0.3590 1.9095 0.3764 1.5404

0.1 2.0 0.5 0.5 1.0 5.0 0.25 & 0.2 0.5 0.0 0.64 0.5 �1.0 0.2 0.3857 1.6257 0.3144 1.0486

0.5 0.2403 1.0968 0.3156 1.0573

0.8 0.1757 0.8264 0.3162 1.0613

Table 2.
Numerical of the values skin-friction coefficient Re

�1l2Cf1;�Re
�1l2Cf2

� �

, Nusselt number Nu and Sherwood number Sh at the surface with M, S, α, N, Pr, Rd, Du&S0, J, δ, Sc, β, W sand γ.
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parameter. The (radial, axial and tangential) components of the velocity, tempera-
ture, concentration and pressure profiles decrease with increase of suction parame-
ter. The effects of γ on the velocity (radial, axial and tangential) and pressure
profiles are shown in Figure 14a and b, respectively. It is observed that the (radial
and axial) components of the velocity, and pressure profiles increase with the
increasing slip parameter. While the tangential component of the velocity profile
decrease.

The radial and tangential skin frictions and the heat and mass transfer coeffi-
cients are tabulated in Table 2 for various values of M, S, α, N, Pr, Rd, Du&S0, J, δ,
Sc, β, W s and γ. We observed that increase for all magnetic field parameter M and
porosity parameter S leads to an decrease in the all tangential skin friction

�G= 0ð Þ
	 


, heat transfer rate �θ= 0ð Þ
� �

and mass transfer rate �φ= 0ð Þ
� �

, while an

increase in the radial skin friction F= 0ð Þ
� �

, the increase for all radial skin friction,

tangential skin friction, heat transfer rate and mass transfer rate, with increasing of
the temperature buoyancy parameter α and the concentration buoyancy parameter
N. We found that the radial skin friction, tangential skin friction, mass transfer rate
decreases while heat transfer rate increase with increasing of Prandtl number,
Dufour number decreases and Soret number increases. It can that be seen that the
radial skin friction, tangential skin friction and mass transfer rate increase while
heat transfer rate decrease with increasing values of Rd and δ. It is observed that an
increase in the Joule heating parameter, results in a decrease in the tangential Skin-
friction coefficient, Nusselt number and Sherwood number. The tangential skin
friction and heat transfer rate decrease but the radial skin friction and mass transfer
rate increase with increasing the Schmidt number. It also can be seen from this table
that increasing the chemical reaction parameter to decrease in the radial skin fric-
tion, tangential skin friction and heat transfer rate while increase the mass transfer
rate. We found also the tangential skin friction increase but the radial skin friction,
Nusselt number and Sherwood number decrease with increasing the suction
parameter. Finally, the radial skin friction and the tangential skin friction
decrease but Nusselt number and Sherwood number increase with increasing slip
parameter.

5. Conclusions

In this work, thermal radiation and thermal diffusion effects over an electrically
conducting, Newtonian fluid in a steady laminar magnetohydrodynamic convective
flow over a porous rotating infinite disk with the consideration of heat and mass
transfer in the presence of Soret and Dufour’s diffusion effects have been obtained
and studied numerically. Magnetic field parameter, porosity parameter, tempera-
ture buoyancy parameter, concentration buoyancy parameter, Prandtl number,
radiation parameter, Soret and Dufour’s number, Joule heating parameter, heat
source parameter, Schmidt number, chemical reaction parameter, suction parame-
ter, slip parameter effects were considered in the separate cases. The subsequent
outcome may be drawn as:

1. The components (radial, axial and tangential) of the velocity, temperature,
concentration and pressure profiles under the porosity parameter. The (radial,
axial and tangential) components of the velocity and pressure profile decrease
with increasing porosity parameter, while the temperature and the
concentration profiles increase with increasing porosity parameter. And also,
that increase porosity parameter S leads to a decrease in the all tangential skin
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friction �G= 0ð Þ
	 


, heat transfer rate �θ= 0ð Þ
� �

and mass transfer rate

�φ= 0ð Þ
� �

, while an increase in the radial skin friction F= 0ð Þ
� �

.

2. The (radial and axial) components of the velocity and pressure increase with
increasing of temperature buoyancy parameter and concentration buoyancy
parameter, while the tangential component of the velocity, the temperature
and the concentration profiles decrease with increasing temperature buoyancy
parameter and concentration buoyancy parameter. We found that the increase
for all radial skin friction, tangential skin friction, heat transfer rate and mass
transfer rate, with increasing of the temperature buoyancy parameter α and
the concentration buoyancy parameter N.

3. The (radial and axial) components of the velocity, temperature and pressure
profiles increase with the increase of heat source parameter. While the
concentration profile decrease. And also, the radial skin friction, tangential
skin friction and mass transfer rate increase while heat transfer rate decrease
with increasing value of δ.

4.The (radial and axial) components of the velocity, concentration and pressure
profiles decrease with increase of chemical reaction parameter. And in Table 2,
an increase the chemical reaction parameter, results in an decrease in the
(radial and tangential) Skin-friction coefficient and Nusselt number, while
Sherwood number increases.

Nomenclature

B external uniform magnetic field
B0 constant magnetic flux density
b induced magnetic field
C concentration distribution
Cw uniform concentration
C∞ constant concentration
cp specific heat at constant pressure
cs concentration susceptibility
Cf1 tangential skin-friction coefficient

Cf2 radial skin-friction coefficient

D molecular diffusion coefficient
Du Dufour number ¼ DkT Cw � C∞ð Þ=ν cscp Tw � T∞ð Þ

� �

g gravitational acceleration, m s�2½ �
k thermal conductivity
k1 rate of chemical reaction
KT thermal-diffusion rate
K∗

1 permeability of the porous medium
k∗ Rosseland mean absorption coefficient
F,G,H radial Fð Þ, tangential Gð Þ and axial Hð Þ components of dimen-

sionless velocity
M magnetic field parameter ¼ σB2

0=ρΩ
� �

N concentration buoyancy parameter ¼ gβc Cw � C∞ð Þ=LRΩ2
� �

Nu Nusselt number
n normal direction to the wall
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J
! electric current density

J Joule heating parameter ¼ σB2
0ΩL=ρ cp Tw � T∞ð Þ

� �

Pr Prandtl number ¼ νρ cp=k
� �

p pressure distribution, N m�2½ �
p
∞

constant pressure
Q volumetric heat generation/absorption rate, W m�3½ �
qr radiative heat flux, W m�2½ �
Rd radiation parameter ¼ k∗k=4σ∗T3

∞

� �

S porosity parameter ¼ ν=k1
� �

S0 Soret number ¼ DkT Tw � T∞ð Þ=νTm Cw � C∞ð Þ½ �
Sc Schmidt number ¼ ν=D½ �
Sh Sherwood number
T temperature distribution K½ �
Tm mean fluid temperature K½ �
Tw uniform temperature K½ �
T∞ constant temperature K½ �
u; v;wð Þ components of the flow velocity are in the directions of increas-

ing r;φ; zð Þ, respectively, ms�1½ �
Ut tangential velocity, ms�1½ �
w0 uniform suction
Greek symbols
μm magnetic permeability, kg m�1 s�1½ �
ξ tangent momentum accommodation coefficient
λ mean free path
ρ fluid density, kg m�3½ �
μ dynamic viscosity, kg m�1 s�1½ �
ν kinematic viscosity of the ambient fluid, m2 s�1½ �
δ heat source parameter ¼ Q=Ωρcp

� �

α temperature buoyancy parameter ¼ gβT Tw � T∞ð Þ=LRΩ2
� �

γ slip factor
η similarity variable
θ dimensionless temperature distribution
φ dimensionless concentration distribution
σ electrical conductivity
σ Stephan-Boltzmann constant
Ω constant angular velocity
β chemical reaction parameter ¼ k=ΩL2

� �

βT coefficient of temperature
βC coefficient of concentration
Subscripts
w,∞ conditions at the surface and in the free stream
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