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Abstract

The existence of metasurface, in the way of propagating wave, affects the wave by
blocking some of the incident power. In this chapter, modal analysis is used to analyze a
metasurface structure, which is a two-dimensional periodic structure. First, the structure
is modeled by an element inside the TEM waveguide. In the following, the reflected and
transmitted waves are expanded by different modes, potentially propagated along the
TEM waveguide. The key parameters in determining the behavior of structure are speci-
fied. The effect of each parameter in behavior of the structure is shown. This technique is
used for different metasurfaces, and simulation results are presented in the chapter. This
technique is extended to multilayer metamaterial structures.

Keywords: metamaterial layer, metasurface, periodic structure, modal analysis

1. Introduction

The appearance of metamaterial sun on the horizon of electromagnetic field results to/into

absorbing most researchers to them (directing most researches into them). Although these

structures were used a long time ago, it did not take a long time from when the metamaterial

was introduced. Ref. [1] reviews a brief history about metamaterial structures over time. The

importance of metamaterials is hidden behind (due to) their behaviors. The ability to control

the refractive index, in other words constitutive parameters, of metamaterials leads into their

interest behaviors [1, 2]. These structures help engineers to design new devices and improve

the performance of available systems. Some of them are THz detectors, new substrate, modu-

lator, THz switches, cloaking, bolometers, and angular-independent surfaces [2].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Generally, a metamaterial is a periodic structure that is made from arranging a lot of the same

micro-scatterers in a regular lattice/network (Figure 1) [1, 2]. A metamaterial layer is created

when micro-scatterers are distributed in a plane. The difference between metamaterials and

other periodic structures is mentioned in [2].

Impinging a wave into the metamaterial structure induces currents and charges on the

metamaterial elements. In other words, the existence of metamaterial elements reinforces the

structure in the (electric and magnetic) polarization. There are different methods developed to

determine this polarization. In the following, we discuss about these methods. Then the

structure is modeled and analyzed by modal analysis to calculate the S parameters of struc-

ture. These parameters show the general behavior of structure.

2. Modeling metamaterial structure

Some methods are developed to determine the effective parameters of these structures. The

electromagnetic properties of an inhomogeneous composite can be determined exactly by

solving Maxwell’s equations, which relate the local electric and magnetic fields to the local

charge and current densities. To solve this set of equations, a relationship must be assumed

that relates the four macroscopic field vectors that arise from the averaging or homogenization

procedure [3].

On the other hand, many researchers have in practice used an approach based upon the

reflection and transmission coefficients of a metamaterial sample of some defined thickness

[2]. The Nicolson-Ross-Weir (NRW) approach is then used to obtain the effective material

properties of the bulk metamaterials. The solution of equation in this method is dependent on

Figure 1. A metamaterial structure consisted of micro-scatterers in a regular array (reproduced from [1]).
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square root function. Typically, the choice of the sign of a square root is made unambiguous by

ensuring positive power flow in the direction of propagation [2]. In some situations, local

effects near the boundaries of the sample must also be taken into account.

In contrast, there are some metasurface studies that have modeled the film as a single-layer

metamaterial. In this way, a metasurface is replaced with a boundary plane with surface

susceptibilities. It is called the Generalized Sheet Transition Condition (GSTC) [2, 4, 5].

3. Analysis of a periodic structure with modal analysis

As mentioned above, a metasurface is a periodic structure that is comprised from distributing

a lot of micro-scatterers on a plane (Figure 2a). Therefore, for extracting the behavior of

structure, it is sufficient to consider a period of structure with suitable boundary conditions

[6]. Figure 2b shows these boundary conditions. These are two perfect electric conductors and

two perfect magnetic conductors. On the other hand, these boundary conditions form/consti-

tute a TEM waveguide, and the metasurface element in the middle is a transverse discontinu-

ity in the waveguide. The element divides the inner medium of the waveguide into two media,

medium I and medium II (Figure 2c).

Now, this model must be analyzed by a numerical technique such as mode matching, FDTD,

or so on [7–12]. Generally, the element (partially) blocks the way of incident power (Pincident). It

causes some of the incident power passes through discontinuity toward load (Ptransmitted), and

the remaining power reflects back to the source (Preflected). In mathematical form (Eq. 1)

Pincident ¼ Preflected þ Ptransmitted (1)

According to mode-matching method, the reflected and transmitted waves are expanded in

terms of different modes supported by TEM waveguide (Eqs. 2–4) [7]. These modes are men-

tioned in Eqs. 2–5:

E
!

i
¼ âyA00, H

!
i
¼ �âx

A00

η0

(2)

Figure 2. Front view of a metasurface structure (a) a TEM waveguide with a metasurface element in the middle (b) and

incident, reflected, and transmitted waves in the TEM waveguide from side view (c) [7].
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where E
!

i, E
!
r, and E

!
t are incident, reflected, and transmitted electric fields, respectively. This is

right aboutH
!

i,H
!
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t, the incident, reflected, and transmitted magnetic fields, respectively.
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where βmn, Z
TE
mn, and ZTM

mn are propagation constant, characteristic impedance of TE mode, and

characteristic impedance of TMmode, respectively. For determining the weights of each mode,

the boundary conditions must be applied on the transverse plane (Eq. 5) [7, 13–20]. These

boundary conditions include vanishing transverse electric field on the metal element (Rm) and
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continuity of electric and magnetic fields in the aperture (Rc
m). R

c
m is all the remaining parts of a

transverse plane except Rm:
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Note that the tangential components of an electric field are continuously passing through the

metal transverse discontinuity [7, 13, 21]:
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m, n ¼ 0, 1, 2,… (11)

4. The variation in S parameters for a metasurface

Considering Eq. 11 for TEM mode (m = n = 0)

c00 ¼ a00 þ A00 !
c00

. ffiffiffiffiffiffiffiffiffiffiffiffi

η0
� �

II

q

A00

. ffiffiffiffiffiffiffiffiffiffiffi

η0
� �

I

q ¼
a00

. ffiffiffiffiffiffiffiffiffiffiffi

η0
� �

I

q

A00

. ffiffiffiffiffiffiffiffiffiffiffi

η0
� �

I

q þ 1 ! s21 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

η0
� �

II

η0
� �

I

s

1þ s11ð Þ ¼ s12 (12)

where equality between s21 and s12 are resulted from reciprocity. Rewriting Eq. 12 for exciting

waveguide from transmitted media in Figure 2c [7],
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Suppose that the metasurface element is lossless. Rewriting Eq. 1;

Pincident ¼ Preflected þ Ptransmitted ! 1 ¼ s11j j2 þ s21j j2 (14)

Considering Eqs. 12–14 simultaneously result into [7],
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Eq. 15 is a relation of a circle on the complex plane of reflection coefficient (Smith chart).

The center and radius of this circle are [�(η00)I/((η00)I + (η00)II), 0] and (η00)II/((η00)I + (η00)II),

respectively. This circle crosses horizontal axis in two points: [�1, 0] and [((η00)II � (η00)I)/

((η00)II + (η00)I), 0]. The first point is corresponding to when a metal plate covers the bound-

ary between two media. The second point happens when two media touch each other

completely without any element on the boundary. In this case, the reflection coefficient is

Investigation into the Behavior of Metasurface by Modal Analysis
http://dx.doi.org/10.5772/intechopen.80584

7



((η00)II � (η00)I)/((η00)II + (η00)I). It is important that the s11 is coincided on this circle (Eq. 15),

regardless of the geometrical shape of the element. Rewriting Eq. 15 in terms of center and

radius of circle,

S11 ¼ a1 þ r1e
jθ , a1 ¼

� η00
� �
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� �

I
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II
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I

, r1 ¼ 1þ a1 (16)

r1 and a1 are functions of constitutive parameters of two media that surround the metasurface.

The geometrical properties of metasurface (size and shape) determine the parameter θ. The

circles corresponding to s21 and s22 are
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The point [�1, 0] is a common point between s11 and s22 circles. The s21 circle is located on the

right-hand side of the Smith chart.

5. Simulation results

In this section, simulation results of a few examples of metasurface are demonstrated. All

examples are simulated by modal analysis (in MATLAB). Simulation results are repeated by

finite element method (FEM) (in HFSS). In the following simulations, it is supposed that two

media are extended into infinity, and the reference planes are located 10 mm away from

discontinuity in both sides. For demonstrating the results on the Smith chart, all parameters

are calculated on the metasurface plane.

The first structure is a strip grating, made from metal and illuminated by a wave with parallel

polarization (Figure 3).

A unit cell of this structure is shown in Figure 4. Table 1 specifies the geometrical characteris-

tics of metasurface element. The frequency variations in reflection and transmission coeffi-

cients are plotted in Figure 4 for this structure.

According to this figure, the major part of incident power is reflected back in medium I.

The frequency variations in S parameters on the Smith chart are demonstrated in Figure 4, too.

The variations in s12 and s22 for this structure are the same as the variations in s21 and s11,

respectively. The dash lines on Figure 4 are s11 and s21 circles.

The metallic strips in this structure behave in the same way as parallel inductance in equivalent

circuit. Figure 5 displays the frequency variations in equivalent inductance for themetal grating.

Metamaterials and Metasurfaces8



Also, this figure shows the variations in reflection and transmission coefficients versus the

width of strip for 10 GHz. According to this figure, the more the parameter w increases, the

closer to�1 the parameter |s11| moves. In the limit, when each strip covers all areas of the unit

cell, s11 goes to �1. In general, with increasing the area of metasurface element, the parameters

s11 and s22 move to�1 along the corresponding circles (θ! π in Eq. (16)). Also, the parameters

s21 and s12 move to origin (Γ = 0) along the corresponding circle (in counterclockwise direc-

tion). Note that with decreasing frequency, the parameter θ goes to π for this structure, so that

Figure 3. Metal strip grating (a), a unit cell of the structure with suitable boundary conditions in peripheral (parallel

polarization) (b) [7].

Figure 4. Frequency variations in S parameters for metal strip grating (a) on the Smith chart (b) [7].

a w Medium I Medium II

2.5 mm 0.5 mm Air Air

Table 1. Geometrical properties of the metal strip grating (Figure 5) [7].
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when θ equals to π, the value of s11 is �1. It is clearly predictable from the model used for

simulating metasurface.

The variations in real and imaginary parts of s11 versus |s11| are shown in Figure 6 for this

structure. Clearly seen, with increasing |s11| from zero to one, the real part of s11 uniformly

decreases, while the graph of Im(s11) has a maximum where |s11| is equal to 1/√2 (θ = π/2 in

Eq. (16)). This point is corresponding to when the excitation of higher-order modes causes the

highest stored energy around the structure [7].

Figure 5. Frequency variations in equivalent inductance (a) and the variation in S parameters versus the width of strip for

10 GHz (b) [7].

Figure 6. The variations in Re(s11) and Im(s11) versus |s11| [7].

Metamaterials and Metasurfaces10



The second structure is the same as the first example, metal grating printed on Teflon but perp-

endicular polarization. Physical dimensions of this structure are available in Table 2. Simulation

results for this structure are demonstrated in Figure 7.

According to Figure 7, the major part of incident power is transmitted through medium II.

Figure 7 displays the frequency variations in S parameters on the Smith chart for this structure,

too. The scattering transfer parameters for this structure are shown in Figure 8.

These parameters are located along the straight line [7]. In contrast to the previous structure,

the metasurface element in this structure plays the role of parallel capacitance in equivalent

circuit. The frequency variations in equivalent capacitance are shown in Figure 8. Figure 9

shows the real and imaginary parts of the reflection coefficient in terms of |s11|.

In contrast to what happened about the previous structure, the imaginary part of reflection coef-

ficient is lower than zero, and it has a minimum. This point happens when the stored energy is

maximum around metasurface [7]. The variations in the real part of reflection coefficient are

similar to the previous structure. Same as the previous structure, the increment in w causes the

parameters s11 and s22 to move to �1 along the corresponding circles. Decreasing and increas-

ing frequency causes s11 to move to ((η00)II � (η00)I)/((η00)II + (η00)I) and � 1, respectively.

The next example is a metasurface composed of square patches (Figure 10). Let metasurface

elements be printed on FR4. Physical dimensions of each element are presented in Table 3.

Figure 10 displays simulation results of this structure. The variations in the scattering param-

eters on the Smith chart are presented in the same figure.

a w Medium I Medium II

2 mm 1.5 mm Air Teflon

Table 2. Geometrical properties of the metal strip grating (Figure 7) [7].

Figure 7. Frequency variations in S parameters for metal strip grating in perpendicular polarization (a) on the Smith

chart (b) [7].
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The variations in scattering transfer parameters are demonstrated in Figure 11 for this structure.

An array of square loops comprises the forth metasurface. This array of loops are located in the

boundary between air and FR4. Geometrical properties of each element are available in

Table 4. Simulation results of this structure are presented in Figure 12. The variations in the

scattering parameters on the Smith chart are plotted in Figure 12.

The variations in scattering transfer parameters are demonstrated in Figure 13 for this structure.

The last structure is square perforated metal plate. A unit cell of this structure is depicted in

Figure 14. Suppose that this structure is embedded in air. The geometrical properties of each

Figure 8. The scattering transfer parameters formetal strip grating (a) and frequency variations in equivalent capacitance (b) [7].

Figure 9. The variations in Re(s11) and Im(s11) versus |s11| for metal grating in perpendicular polarization [7].

Metamaterials and Metasurfaces12



element are specified in Table 5. The frequency variations in s11 and s21 for this structure are

plotted in Figure 14. Figure 14 shows the variations in S parameters for this structure on the

Smith chart.

Figure 10. Frequency variations in S parameters for an array of metallic squares (a) on the Smith chart (b) [7].

a w Medium I Medium II

3 mm 2 mm Air FR4

Table 3. Geometrical properties of the metasurface comprised from metallic squares [7].

Figure 11. The variations in scattering transfer parameters for an array of metallic squares [7].
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The variations in scattering transfer parameter corresponding to this structure are demonstrated

in Figure 15. The variations in S parameters for this metasurface is in the same way of the first

structure. The s11 for this structure goes to �1 when w increases or frequency decreases. In

contrast, increasing the frequency causes the parameter s11 to move to 0 along circle.

a l w Medium I Medium II

1 mm 0.565 mm 0.13 mm Air FR4

Table 4. Geometrical properties of the array of metal loops [7].

Figure 12. Frequency variations in S parameters for an array of metal loops (a) on the Smith chart (b) [7].

Figure 13. The locus of scattering transfer parameters [7].

Metamaterials and Metasurfaces14



Figure 14. Frequency variations in S parameters for a square perforated metal plate (a) on the Smith chart (b) [7].

a w Medium I Medium II

3 mm 1 mm Air Air

Table 5. Geometrical properties of the square perforated metal plate [7].

Figure 15. The locus of scattering transfer parameters for the square perforated metal plate [7].
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