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Chapter

Novel Direct and Accurate
Identification of Kalman Filter
for General Systems Described
by a Box-Jenkins Model
Rajamani Doraiswami and Lahouari Cheded

Abstract

A novel robust Kalman filter (KF)-based controller is proposed for a multivari-
able system to accurately track a specified trajectory under unknown stochastic
disturbance and measurement noise. The output is a sum of uncorrelated signal,
disturbance and measurement noise. The system model is observable but not con-
trollable while the signal one is controllable and observable. An emulator-based
two-stage identification is employed to obtain a robust model needed to design the
robust controller. The system and KF are identified and the signal and output error
estimated. From the identified models, minimal realizations of the signal and KF,
the disturbance model and whitening filter are obtained using balanced model
reduction techniques. It is shown that the signal model is a transfer matrix relating
the system output and the KF residual, and the residual is the whitened output
error. The disturbance model is identified by inverse filtering. A feedback-
feedforward controller is designed and implemented using an internal model of the
reference driven by the error between the reference and the signal estimate, the
feedforward of reference and output error. The successful evaluation of the pro-
posed scheme on a simulated autonomously-guided drone gives ample encourage-
ment to test it later, on a real one.

Keywords: identification, Box-Jenkins model, Kalman filter, whitening filter, signal
estimation, model reduction, robust controller, feedback controller, feedforward
controller, internal model principle, autonomous vehicles, drones

1. Introduction

In conventional Kalman filter applications, the system involved is typically
linearized and then identified. Based on the identified system, the Kalman filter is
then identified. In this chapter, we propose a novel approach in that (a) the system
is represented by a more general model, termed multi-input multi-output Box-
Jenkins (MIMO BJ model) which subsumes all previous classical models, such as
ARMA models and their derivatives, and (b) the associated Kalman filter identifi-
cation is carried out directly, i.e. it does not necessitate the prior identification of
the system involved. The various tools involved in our proposed approach are all
explained below.
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1.1 Box-Jenkins model and its applications

Identification of a class of system described by MIMO BJ model, and the associ-
ated Kalman filter directly from the input-output data is proposed [1, 2]. There is no
need to specify the covariance of the disturbance and the measurement noise,
thereby avoiding the use the Riccati equation to solve for the Kalman gain. The
output is the desired waveform, termed signal, corrupted by a stochastic distur-
bance and zero-mean white measurement noise. The state-space BJ model is an
augmented system formed of the signal and disturbance model. The signal model
and the disturbance models are driven respectively by a user-defined accessible
input, and an inaccessible zero-mean white noise process. The signal model is
generally a cascade, parallel and feedback combinations of subsystems such as
controllers, actuators, plants, and sensors [3]. Unlike the ARMA model, the Box-
Jenkins model is observable but not controllable while the signal model is both
controllable and observable. In other words, the transfer matrix of the system is
non-minimal whereas that of the signal is minimal. This issue will need to be
addressed in the identification and implementation of the Kalman filter.

1.2 Kalman filter and its key properties

The structure of the Kalman filter is determined using the internal model
principle which establishes the necessary and sufficient condition for the tracking
of the output of a dynamical system [3, 4]. In accordance with this principle, the
Kalman filter consists of (a) a copy of the system model driven by the residuals,
and (b) a gain term, termed the Kalman gain, to stabilize the filter. The Kalman
gain is determined such that the residual of the Kalman filter is a zero-mean white
noise process with minimum variance. The Kalman filter enjoys the following key
properties:

Tracking a signal: The estimate of the Kalman filter tracks a given signal if and
only if the model that generates the signals including those of the noise and distur-
bances is embodied in the Kalman filter. In other words, the Kalman filter tracks the
input, thanks to its internal model-based structure [3, 4].

Model matching: The residual is a zero-mean white noise process if and only if
there is no mismatch between the actual model of the system and its identified
version embodied in the Kalman filter, and its variance is minimum [4].

Optimality: The estimate is optimal in the sense that it is the best estimate that
can be obtained by any estimator in the class of all estimators that are constrained
by the same assumptions [5].

Robustness: Thanks to the feedback (closed-loop) configuration of the Kalman
filter with residual feedback, the Kalman filter provides the highest robustness
against the effect of disturbance and model variations [5].

Model-mismatch: If there is a model mismatch, then the residual will not be a
zero-mean white noise process and an additive term termed fault-indicative term
will occur. The fault-indicative term is a filtered version of the deviation in the
linear regression model of the system or that of the signal [6–8].

1.3 Identification using residual model

The equation error in the regression model of the system is a colored noise
process, and hence a direct identification of the system model from the input-
output data by minimizing the equation error will not ensure that the estimates are
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consistent, unbiased, and efficient. The fundamental requirement of identification is
that the leftover signal from identification, namely the residual is a zero-mean white
noise process that contains no information. To meet this requirement, both the input
and output of the system are filtered. Among the class of all linear whitening filters,
the Kalman filter is the best. The system model is indirectly identified by minimizing
the residual generated by the Kalman filter instead of the equation error. The Sub-
space Method (SM) uses the structure of the state-space model of the Kalman filter,
whereas the prediction error method (PEM), which is the gold standard in system
identification, is developed from the residual model [1, 9–11].

1.4 Emulator-based two-stage identification

The static and dynamic behavior of a physical system change as a result of
variations in the parameters of some of its subsystems such as sensors, actuators,
plant, disturbance models, and controllers. As the parameters of these subsystems
are not generally accessible to generate data, instead, emulators, which are hard-
ware or software devices, are connected in cascade to the output, input or both, of
the subsystems. An emulator is a transfer function block which mimics the varia-
tions in the associated subsystems including the disturbance model. An emulator
takes the form of a static gain or an all-pass filter to induce gain or phase variations
in the subsystem it is connected to. Emulator parameters are perturbed to mimic
various normal and abnormal, or faulty, operating scenarios resulting from varia-
tions in these subsystems. The emulator-generated data is employed in (a) the
identification of robust systems and signal models and their associated Kalman
filters using the two-stage identification scheme [2, 3, 6–8].

A two-stage identification is used in various applications including the non-
parametric identification of impulse response, estimation of Markov parameters in
the SM, in model predictive control, identification of a signal model and in system
identification. The use of the two-stage identification is inspired by the seminal paper
by [12] for an accurate estimation of the parameters of an impulse response from
measurements in an additive white noise. It is shown via simulation that the variance
of the parameter estimation error approaches the Cramer-Rao lower bound [13].
Further, it is shown analytically that using a high-order model (with an order several
times larger than the true order) improves significantly the accuracy of the parameter
estimates. The two-stage scheme has not received much attention in system identifi-
cation although it has been mentioned as an alternative scheme to the PEM [1, 14],
and has been successfully employed in identification in [15–17].

It should be emphasized that the prediction error method (PEM), viewed as a
gold standard for system identification, is not geared for the estimation of the signal
buried in the output, i.e. it is developed for the ARMA model and not for the Box-
Jenkins one. A two-stage identification of the Box-Jenkins model is proposed as the
system model is observable but not controllable while the signal model is both
controllable and observable:

• In the first stage, the robust system model and the associated Kalman filter are
identified using the emulator-generated data using PEM, and the signal and the
output error are both estimated. Further, the whitening filter that relates the
output error and the residual is obtained.

• In the second stage, minimal realizations of the signal model and the associated
Kalman filter are obtained using model reduction method [18].
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The high- order for the first stage and the reduced-order for the second are both
selected using the Akaike information criterion (AIC) and are cross-checked by
verifying the whiteness of the associated residual. The two-stage identification has
also been successfully employed in the identification model.

The question arises as to how to obtain the system model and the signal model
from the identified high-order model Kalman filters. A key property of the Kalman
filter is established here, namely that the transfer matrix of the signal and the
system is the matrix fraction description model derived from the Kalman filter
residual model of the system. This property is exploited to derive the signal and the
system transfer matrices. The state-space models of the signal and the system
models are derived from the identified state-space models of the Kalman filters.
Thus, the proposed scheme identifies (a) the Kalman filter for the system, (b) the
Kalman filter for the signal first. Then, the system model and the signal model are
separately obtained.

The proposed scheme is further extended to identify the signal model to com-
plement the PEM. In the first stage, a very high-order model is identified using
PEM. In the second stage, the signal model is identified using a balanced model
reduction of the high-order identified model obtained in the first stage. The PEM
and state-space method (SM) are both tailored to identify the signal model and
estimate the signal by employing the proposed version of the two-stage identifica-
tion scheme. The results of the comparison of the performance of these methods in
identifying the system and signal models are presented.

1.5 Highlights of the contributions

• The Auto-Regressive (AR), The Moving Average (MA), and the Auto-
Regressive and Moving Average (ARMA) models are all special cases of
the proposed Box-Jenkins model. As this model is more general and hence
has wider applications, including robust controller design; estimation of
latent variables; monitoring of the status of the system, fault diagnosis,
development of condition-based maintenance programs and design of fault-
tolerant systems; filtering of signals, speech enhancement, noise and echo
cancelation in communication; 2-D image filtering and tracking of moving
objects.

• The state-space models of the system and the signal models are derived from
the identified Kalman filters, by invoking the (causal) invertibility of the
output error and the residual [5].

• An efficient scheme to monitor the status of the system may be implemented
from the proposed scheme. First the status of the system is monitored by
analyzing the residual of the Kalman filter of the system model. If there is a
variation, then the residual of the Kalman filter of the signal model is analyzed
to ascertain whether a fault has occurred.

• In practice, disturbances are inevitable, and can negatively affect the system
performance. When the system is in an abnormal state, it is not in general easy
to determine whether the abnormal operation is the result of variations in the
disturbance or the occurrence of a fault. The proposed scheme provides a
simple solution by analyzing the residuals of both Kalman filters as the residual
of the Kalman filter for the system captures the variations in both the system
and disturbance models, while that of the Kalman filter for the signal, and
captures only the variations in the signal model. This is crucial for reducing
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false alarm, and all its concomitant risks and costs, resulting from variations in
the disturbance and not in the signal model [19].

• The PEM (SM) may be tailored to identify the signal model and estimate the
signal itself by using the proposed two-stage identification scheme.

1.6 Applications

Applications include monitoring the status of the system and the signal models,
distinguishing between the variations in the disturbance model and those in the
signal model to help diagnose a fault in the system and ensure a low false alarm
probability, estimating the latent variable, namely the signal, developing a frame-
work for applications including robust controller design; fault diagnosis; speech and
biological signal processing; tracking of moving objects, design of soft sensors to
replace maintenance-prone hardware sensors, evaluate and monitor product qual-
ity, meeting the ever-increasing need for fault-tolerant systems for mission-critical
systems found in aerospace, the nuclear power systems, and autonomous vehicles.

2. Problem formulation

The output y kð Þ∈Rq is an additive sum of the signal s kð Þ∈Rq, disturbance,
d kð Þ∈Rqand the measurement noise v kð Þ∈Rq where R is real scalar field.

y kð Þ ¼ s kð Þ þ d kð Þ þ v kð Þ (1)

Where the signal and the disturbance models are:

s zð Þ ¼ Gs zð Þu zð Þ (2)

d zð Þ ¼ Gw zð Þw zð Þ (3)

Where u kð Þ∈Rq is the input; w kð Þ∈Rp is zero-mean white noise process that
generates the disturbance d kð Þ∈Rp, and is uncorrelated with the measurement

noise v kð Þ; Gs zð Þ ¼ D�1
s zð ÞNs zð Þ and Gw zð Þ ¼ D�1

w zð ÞNw zð Þ are qxp transfer matrix
of order ns and nw respectively; ϑ kð Þ¼d kð Þ þ v kð Þ is the output error.

The signal model Gs zð Þ is formed of cascade and parallel combinations of the
subsystems such as actuators, plant and the sensors. Let the state space model of the
signal and the disturbance models be respectively As;Bs;Csð Þ and Aw;Bw;Cwð Þ.

Figure 1 shows the input-output model relating the input, the signal model, the
signal, the disturbance model, the disturbance, the measurement noise and the
output.

Linear regression model:

Figure 1.
System: signal, the disturbance and the measurement noise.
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Using, (1)–(3), the expression for the linear regression becomes:

Dsw zð Þy zð Þ ¼ Dw zð ÞNsw zð Þu zð Þ þ υ zð Þ

υ zð Þ ¼ Ds zð ÞNw zð Þw zð Þ þDsw zð Þv zð Þ
(4)

Where υ zð Þ ¼ D zð Þϑ zð Þ is the equation error; Dsw zð Þ ¼ Ds zð ÞDw zð Þ and
Nsw zð Þ ¼ Dw zð ÞNs zð Þ are respectively the denominator and numerator polynomials.
The model is termed Box-Jenkins model.

Note that the model that generates the equation error υ zð Þ is a Moving Average
(MA) model, whereas the one that generates the output error ϑ kð Þ is an Auto-
Regressive Moving-Average (ARMA) model.

Augmented state-space model: The augmented state-space representation of the
multi-input and multi-output (MIMO) system A;B;C;Dð Þ formed of the signal
model As;Bs;Cs;Dsð Þ and Aw;Bw;Cw;Dwð Þ representing a p-input, q-output system,
is given by:

x kþ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ þ Eww kð Þ

s kð Þ ¼ Csx kð Þ þDsu kð Þ

y kð Þ ¼ Cx kð Þ þDu kð Þ þ v kð Þ

(5)

Where A ¼
As 0

0 Aw

� �

;B ¼
Bs

0

� �

;Ew ¼
0

Bw

� �

;C ¼ Cs Cw½ �; A∈Rnxn is an augmented

state transition matrix formed of As ∈ℜ
nsxns and Aw ∈ℜ

nwxnw ;

B¼ B1 B2 : Bp

� �

∈Rnxp; C¼ C1 C2 : C q

h iT
∈Rqxn; Ew ∈Rnxp is a disturbance entry

matrix;

x kð Þ ¼ x1 kð Þ x2 kð Þ x3 kð Þ … xn kð Þ½ �T ∈Rn; s kð Þ ¼ s1 kð Þ s2 kð Þ½

s3 kð Þ… sq kð Þ�T ∈Rq;

u kð Þ ¼ u1 kð Þ u2 kð Þ u3 kð Þ … up kð Þ
� �T

∈Rp;

y kð Þ ¼ y1 kð Þ y2 kð Þ y3 kð Þ … yq kð Þ
� �T

∈Rq are respectively the state, the input and

output; n ¼ ns þ nw is the order; w kð Þ∈Rn and v kð Þ∈Rq are respectively the
disturbances and measurement noise; Dsw zð Þ ¼ zI �Asð Þj j zI �Awð Þj j where :ð Þj j
is the determinant of :ð Þ. Using Dsw zð Þ ¼ Ds zð ÞDw zð Þ and Nsw zð Þ ¼ Dw zð ÞNs zð Þ
we get:

G zð Þ ¼ C zI �Að Þ�1BþD¼D�1
sw zð ÞNsw zð Þ

G zð Þ ¼ D�1
s zð ÞNs zð Þ ¼ Gs zð Þ

(6)

The augmented transfer matrix is not a minimal realization of the system output
model as there is (stable) pole-zero cancelation since the polynomial Dw zð Þ, which
is common to both the numerator Nsw zð Þ and the denominator Dsw zð Þ. In other
words, Nsw zð Þ and Dsw zð Þ are not coprime. The signal model As;Bs;Cs;Dsð Þ
associated with signal model Gs zð Þ is controllable and observable while A;B;C;Dð Þ,
associated withG zð Þ, is merely an observable. As;Bs;Cs;Dsð Þ (Gs zð Þ) is a minimal
realization of A;B;C;Dð Þ (G zð Þ).

Assumptions: It is assumed that (a) the disturbance w kð Þ and the measurement
noisev kð Þ are independent zero-mean Gaussian white noise processes with unknown

but finite covariance, Q ¼ E w kð ÞwT kð Þ
� �

and R ¼ E v kð ÞvT kð Þ
� �

, respectively, and
are inaccessible, (b) A;Cð Þ is observable, (c) the signal and disturbance models are
both minimal, As;Bs;Cs;Dsð Þ and Aw;Bw;Cw;Dwð Þ are both controllable and
observable, (d) The initial conditions x 0ð Þ, w kð Þ and v kð Þ are mutually
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uncorrelated. However, the signal s zð Þ and the disturbance w zð Þ may have spectral
overlap, (e) the output error is bounded.

2.1 Kalman filter

Predictor form: A robust Kalman filter of the identified system A0
;B0

;C0
;D0

� �

relating the system input u zð Þ and system output y kð Þ to the estimated output
ŷ kð Þ is:

x̂ kþ 1ð Þ ¼ A0 � K0C0
� �

x̂ kð Þ þ B0 � K0D0
� �

u kð Þ þ K0y kð Þ

ŷ kð Þ ¼ C0x̂ kð Þ þD0u kð Þ

e kð Þ ¼ y kð Þ � ŷ kð Þ

(7)

Where x̂ kð Þ ¼ x̂1 kð Þ x̂2 kð Þ x̂3 kð Þ… x̂n kð Þ½ �T ∈Rn and

ŷ kð Þ ¼ ŷ1 kð Þ ŷ2 kð Þŷ3 kð Þ… ŷq kð Þ
h iT

∈Rq are respectively the best estimate of the

state x kð Þ, and of the output y kð Þ; e kð Þ ¼ e1 kð Þ e2 kð Þ e3 kð Þ … eq kð Þ
� �T

∈Rq is

the residual or the innovation sequence; the Kalman gain K0 ∈Rnxq ensures the

asymptotic stability of the Kalman filter, i.e. (A0 � K0C0) is strictly Hurwitz having
all its eigenvalues strictly inside the unit circle.

Innovation form: There is duality between the predictor, and the innovation
forms of the Kalman filter [5]. The output y kð Þ and the residual e kð Þ are (causally)
invertible. In other words, e kð Þ can be generated from the output y kð Þ and r kð Þ
using the (causal) predictor form, and y kð Þ can be generated from e kð Þ and r kð Þ
using the innovation form. The Kalman filter given by (7) is termed the predictor
form and can be expressed in an alternative form, termed the innovation form,
given by:

x̂ kþ 1ð Þ ¼ A0x̂ kð Þ þ B0u kð Þ þ K0e kð Þ

ŷ kð Þ ¼ C0x̂ kð Þ þD0u kð Þ
(8)

Figure 2 shows the system and the Kalman filter which embodies the system
model A;B;Cð Þ. The inputs to the Kalman filter are the input r kð Þ and the output
y kð Þwhich is corrupted by the noise v kð Þ and affected by the disturbance w kð Þ.

2.2 Residual model

The frequency-domain expression relating the input u zð Þ∈Rp and the output
y zð Þ∈Rq to the residual e zð Þ∈Rq is given by the following model termed the
residual model:

e zð Þ ¼ F�1 zð ÞD zð Þy zð Þ � F�1 zð ÞN zð Þu zð Þ (9)

where D zð Þ and N zð Þ are matrix polynomials, F zð Þ is the scalar characteristic

polynomial termed Kalman polynomial, F zð Þ ¼ zI �A0þK0C0
�

�

�

�;

D zð Þ ¼ zI �A0
� ��

�

�

�; D zð Þ ¼ F zð Þ I � C0 zI �A0þK0C0
� ��1

K0
	 


is qxq matrix;

N zð Þ ¼ F zð Þ C0 zI �A0þK0C0
� ��1

B0 � K0D0
� �

þD0
	 


is qxpmatrix; I ∈Rqxq is an

identity matrix;
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D zð Þ ¼

D1 zð Þ

D2 zð Þ

:

Dq zð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

D11 zð Þ D12 zð Þ : D1q zð Þ

D21 zð Þ D22 zð Þ : D2q zð Þ

: ; : :

Dq1 zð Þ Dq2 zð Þ : Dqq zð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

;

N zð Þ ¼

N1 zð Þ

N2 zð Þ

:

Nq zð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

N11 zð Þ N12 zð Þ : N1p zð Þ

N21 zð Þ N22 zð Þ : N2p zð Þ

: ; : :

Nq1 zð Þ Nq2 zð Þ : Nqp zð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(10)

Dij zð Þ ¼ ∑n
ℓ¼0aijℓz

�ℓ; Nij zð Þ ¼ ∑n
ℓ¼1bijℓz

�ℓ; aijℓ and bijℓ are the coefficients of the

polynomials Dij zð Þ and Nij zð Þ, respectively. The rational polynomials F�1 zð ÞD zð Þ

and F�1 zð ÞN zð Þ associated with the system output y zð Þ and the input u zð Þ are
termed as an output IIR filter, and an input IIR filter, respectively. The estimate of
the Kalman filter ŷ kð Þ is:

ŷ zð Þ ¼ I � F�1 zð ÞD zð Þ
� �

y zð Þ þ F�1 zð ÞN zð Þu zð Þ (11)

The residual model of the Kalman filter forms the backbone of the proposed
identification scheme.

2.3 The key properties of the Kalman filter

The map relating the signal and its model, and the output IIR filter and an input
IIR filter of residual model is developed next.

The following lemmas are developed by invoking the key property namely that
the residual is a zero-mean white noise process if and only if there is no mismatch
between the actual model of the system and its identified model embodied in the
Kalman filter [4], that is, the identified model embodied in the Kalman filter is
identical to that of the actual model:

2.3.1 Derivation of the signal and the signal model

The following Lemma 1 shows that (a) the estimate of the signal model is the
matrix fraction description relating the transfer matrices relating the residual of the

Figure 2.
The system and the Kalman filter model.
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Kalman filter to the input, and the output of the system; (b) the estimate of the
signal is its output generated by the system input; and the Kalman filter whitens the
output error.

Lemma 1
(a) The left-matrix description of the MIMO signal model derived from the state-

space model A0
s ;B0

s ;C0
s ;D0

s

� �

, namely,Gs zð Þ ¼ C0
s zI �A0

s

� ��1
B0
s ¼D�1

s zð ÞNs zð Þ

and the left-matrix description of the Kalman filter derived from the residual

model,G zð Þ ¼ D
�1

zð ÞN zð Þ are identical. The signal model Gs zð Þ and the signal
s zð Þ are:

Ĝs zð Þ ¼ Ĝ zð Þ ¼ G zð Þ

ŝ zð Þ ¼ Ĝs zð Þu zð Þ ¼ G zð Þu zð Þ (12)

Proof:

(a) Consider the residual model (9). Substituting for y zð Þ yields:

F�1 zð ÞD zð Þ D�1
s zð ÞNs zð Þu zð Þ �D

�1
zð ÞN zð Þu zð Þ þ ϑ zð Þ

	 


¼ e zð Þ (13)

Since the residual is a zero-mean, white noise process and is uncorrelated with
u zð Þ andυ zð Þ, correlating both sides with the input u z�1ð Þ yields:

F�1 zð ÞD zð ÞD̂
�1

s zð ÞN̂ s zð Þ � F�1 zð ÞN zð Þ
	 


E u zð Þu z�1
� �� �

¼ 0 (14)

Assuming that the input correlation is not identically equal to zero, i.e.
E u zð Þu z�1ð Þ½ � 6¼ 0 yields:

F�1 zð ÞD zð ÞD̂
�1

s zð ÞN̂ s zð Þ � F�1 zð ÞN zð Þ
	 


¼ 0 (15)

Simplifying we get:

D̂�1
s zð ÞN̂ s zð Þ ¼ D

�1
zð ÞN zð Þ (16)

Hence Ĝs zð Þ ¼ G zð Þ holds. Since Dsw zð Þ ¼ Ds zð ÞDw zð Þ and Nsw zð Þ ¼ Dw zð ÞNs zð Þ

are not coprime as Dw zð Þ is a common factor, then Ĝs zð Þ ¼ Ĝ zð Þ ¼ G zð Þ.
(b) Substituting (16) in (13) we get

e zð Þ ¼ F�1 zð ÞD zð Þϑ zð Þ ¼ F�1 zð ÞD�1 zð ÞD zð Þυ zð Þ (17)

where F�1 zð ÞD zð Þ ¼ I �C zI �AþKCð Þ�1K
	 


.

Proof:
follows from ϑ kð Þ¼d kð Þ þ v kð Þ, (9) and

2.3.2 Derivation of the output error and its model

The following Lemma 2 shows that the output error is the difference between
the output and the estimate of the signal; the estimate of the output error model is
the matrix fraction description of the transfer matrices relating the residual of the
Kalman filter to the input; the estimate of the output error is obtained as its output
when its input is the residual. It is assumed that the transfer matrix of the Kalman
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filter F�1 zð ÞD zð Þ ¼ I � C0 zI �A0þK0C0
� ��1

K0
	 


relating the output y zð Þ and the

residual e zð Þ is minimum-phase, that is both the numerator and the denominator
polynomials are asymptotically stable.

Lemma 2.

If the matrix D zð Þis invertible, the output error ϑ zð Þ ¼ d zð Þ þ v zð Þ is given by:

ϑ̂ kð Þ ¼ y kð Þ � ŝ kð Þ

ϑ̂ zð Þ ¼ F zð ÞD
�1

zð Þe zð Þ
(18)

where F zð ÞD
�1

zð Þ ¼ I �C0 zI �A0þK0C0
� ��1

K0
	 
�1

is termed the distur-

bance model estimate which generates the output error when excited by the
residual.

Proof:
Using (17) we get (18).

As the input w kð Þ driving the disturbance model is not accessible, then by
substituting the actual input w kð Þ by the residual e kð Þ, although both are zero-mean
white noise processes, only the denominator polynomial of the disturbance model
can be identified. Hence the term “disturbance model estimate”.

Minimum realization of the output error model is obtained using balanced model

reduction method by treating e zð Þ as the input and ϑ̂ kð Þ as the output of a model [7].

2.3.3 Minimal realization of the signal model

There are two approaches to identifying the signal model and the signal. One
approach is by deriving them from the residual model of the Kalman filter as shown
in Lemma 1 given by (12) and the other approach is to invoke the duality between
the predictor form (7) and the innovation form (8) of the Kalman filter. The latter
approach may be more convenient.

In view of (12), the system model G zð Þ and the signal model Gs zð Þ is derived
from the identified Kalman filter (7) by simply replacing the transition matrix of

the Kalman filter A0 � K0C0 by the system transition matrixA0.

Lemma 3.

A0
;B0

;C0
;D0

� �

¼ A0þK0C0,B0
;C0

;D¼
� �

As;Bs;Cs;Dsð Þ ¼ minreal A0
;B0

;C0
;D0

� � (19)

Where minreal A0
;B0

;C0
;D0

� �

is the minimal realization of A0
;B0

;C0
;D0

� �

.

Proof

There is duality between the predictor form (7) and the innovation form (8) of
the Kalman filter [5]. The output y kð Þand the residual e kð Þ are (causally) invert-
ible. In other words, e kð Þ can be generated from the output y kð Þ and r kð Þ using
the (causally) predictor form, and y kð Þ can be generated from e kð Þ and r kð Þ using

the innovation form [3]. Moreover, A0
;B0

;C0
;D0

� �

and A0
s ;B0

s ;C0
s ;D0

s

� �

are

associated with the system transfer matrices G zð Þ ¼ D�1 zð ÞN zð Þ and
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Gs zð Þ ¼ D�1
s zð ÞNs zð Þ respectively, as shown in (4), implying that

A0
s ;B0

s ;C0
s ;D0

s

� �

is a minimum realization of A0
;B0

;C0
;D0

� �

.

The minimum realization of the system A0
s ;B0

s ;C0
s ;D0

s

� �

is obtained from the
balanced model reduction method by treating u kð Þ as the input and ŝ kð Þ as the
output of a model [7].

3. Emulator-based two-stage identification

An identified model at each operating point characterizes the behavior of the
system in the neighborhood of that point. In practice, however, the system model
may be perturbed because of variations in the parameters of that system. To
overcome this problem, the system model is identified by performing a number of
emulator parameter-perturbed experiments proposed in [7–9]. Each experiment
consists of perturbing one or more emulator parameters. A robust model is iden-
tified as the best fit to the input–output data from the set of emulated perturba-
tions. The robust model thus obtained characterizes the behavior of the system
over wider operating regions (in the neighborhood of the operating point)
whereas the conventional model characterizes the behavior merely at the nominal
operating point (that is, the conventional approach assumes that the model of the
system remains unperturbed at every operating point). In [7–9], it is theoretically
shown that the identification errors resulting from the variations in the emulator
parameters are significantly lower compared to those of the conventional ones
based on performing a single experiment (that is, without using emulators). The
emulator-based identification scheme is inspired from the model-free artificial
neural network approach which captures the static and dynamic behaviors by
presenting the neural network with data covering likely operating scenarios. The
PEM identifies the robust model of the plant, and the Kalman filter associated
with the plant is then derived from the identified model without any a-priori
knowledge of the statistics, such as covariance of the disturbance and measure-
ment noise affecting the input-output data.

An accurate emulator-based model identification scheme is proposed and
employed here. An emulator, which is modeled as a product of first-order all-pass
filters and which induces phase and gain changes, is connected in cascade to the
input, output or both, of the signal model to emulate a set of likely operating
regimes around the nominal operating point. The identified model is obtained as the
best fit over all emulated operating regions, thereby ensuring both accuracy and
robustness of the identified model.

3.1 Two-stage identification

• In the first stage, a robust model of the system A0
;B0

;C0
;D0

� �

and its

associated Kalman filter A0 � K0C0
; B0 � K0D0
� �

K0
� �

;C0
;D0

� �

are identified
using PEM from the set of the emulator-generated input-output data. Then the

estimate s0 kð Þ of the signal s kð Þ and the estimate ϑ̂ kð Þ of the output error ϑ kð Þ
are derived.

• In the second stage, using the key properties established in Lemmas 1–3, the

robust signal model A0
s ;B0

s ;C0
s ;D0

s

� �

and its associated Kalman filter

A0
s � K0

s C
0
s ; B0

s � K0
s D

0
s K0

s

� �

;C0
s ;D0

s

� �

are obtained using balanced model

reduction method and the PEM.
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Akaike Information Criterion: To select an appropriate order for the identified
system model in the first stage, and for the signal model in the second stage, the
widely popular Akaike Information Criterion (AIC) is used, which weights both the
parameter estimation error and the complexity of the model so as to arrive at an
optimal order [1].

3.2 Signal model and the Kalman filter

Similar to the Kalman filter for the system (7), the Kalman filter for the signal is:

x̂s kþ 1ð Þ ¼ A0
s � K0

s C
0
s

� �

x̂s kð Þ þ B0
s � K0

s D
0
s

� �

u kð Þ þ K0
s s

0 kð Þ

ŝ kð Þ ¼ C0
s x̂s kð Þ þD0

s u kð Þ

es kð Þ ¼ s0 kð Þ � ŝ kð Þ (20)

Where x̂s kð Þ∈Rns ; ŝ kð Þ∈Rns ; the residual

es kð Þ ¼ es1 kð Þ es2 kð Þ es3 kð Þ … esq kð Þ
� �T

∈Rq is the residual; and Ks ∈R
nsxq is

the Kalman gain.
Status monitoring: The residuals e kð Þ and es kð Þ of the Kalman filters (7) and (20)

are employed to monitor the status of the overall system and to detect and isolate
faults in the signal and disturbance models and the sensors. The proposed scheme
provides a sound framework for developing fault-tolerant systems and condition-
based maintenance systems as well.

4. Evaluation on the illustrative example

The proposed two-stage identification scheme and the key properties of the
Kalman filter established in the lemmas in Sections 2.3.1–2.3.3 are verified using the
illustrative example given in Section 3.1. The results of this illustration are shown
below in Figure 3a and b.

Subfigures A and B, of Figure 3a compare the true step response of the signal
and its Kalman filter estimate; subfigures C and D show the output error ϑ kð Þ and
its estimate.

Remarks: These subfigures confirm the accuracy of the estimates of the signal
and the output error (18) established in Lemmas 1 and 2. Subfigures A and B, of
Figure 3b show the autocorrelation of the equation error whereas subfigures C and
D show the autocorrelations of the residual.

Moreover, these subfigures clearly confirm that the equation error is a colored
noise that is whitened by the KF, thus confirming (17) of Lemma 1 and making the
KF residual a zero-man white noise process.

Table 1 compares the true and estimated poles of the signal and disturbances
models. The estimated poles are obtained from the model reduction techniques
employed in the second stage of the two-stage identification scheme.

Remarks: The estimated poles are close to the true ones, especially those of the signal.

5. Evaluation of the proposed scheme

The management of leakage faults in fluid systems is becoming increasingly
important in recent years from the point of view of economy, potential hazards,
pollution, and conservation of scarce resources. Leakage in pipes and storage tanks
occurs due to faulty joints, aging, excessive loads, holes caused by corrosion and
accidents and the like. The process control system is a MIMO system that exhibits
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turbulence and is modeled as a combination of a signal, (which includes an ideal
noise-free height, flow rate, and control input), a disturbance that includes effects
of turbulence, and a measurement noise. The augmented model of the signal, and
the disturbance, whose output is a sum of the signal, the disturbance, and the
measurement noise described by Box-Jenkins model. The transfer matrices of the

Figure 3.
(a) Signal and its estimate; output error and (b) autocorrelations of equation error and the residual and its
estimate.
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signal and the disturbance may be totally different from those of the ARMA model,
where the signal and the disturbance have identical denominator polynomials.

Physical systems are subject to model uncertainties and are affected to unknown
stochastic disturbances such as turbulence and measurement noise. The proposed
scheme covers a wider class of systems compared to the laminar flow model pro-
posed. The laminar flow is the flow of a fluid when each particle of the fluid follows
a smooth path which results in the velocity of the fluid being constant. The turbu-
lent flow is an irregular flow that exhibits tiny whirlpool regions.

It is assumed that the disturbance is a Gaussian stochastic process and the mea-
surement noise is a zero-mean Gaussian white noise process. The measurement output
is, in general, an additive combination of the signal, disturbance and measurement
noise. The output error, which is a sum of the disturbance and measurement noise, is
assumed to be bounded. The signal and the disturbance are both modeled as outputs of
linear time-invariant systems driven by some known input, and a Gaussian zero-mean
white noise process, respectively. It is assumed that the signal, disturbance and mea-
surement noise are mutually uncorrelated with each other.

5.1 Physical two-tank fluid system

A benchmark model is a cascade connection of a dc motor and a pump relating
the reference input r tð Þ and the flow rate f tð Þ, the outflow q0 tð Þ and leakage q

ℓ
tð Þ is a

fourth-order system. The linearized signal model of the nonlinear SIMO system is:

_h
_h2

_u
_f

2

6

6

6

6

4

3
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7

7
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¼

�a1 � α a1 0 b1
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�1 0 0 0
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r tð Þ (21)

Where h, h2, u and f are respectively the height of tank 1, the height of tank 2,
the control input and the flow rate; a1, a2, α and β are parameters associated with
the linearization process, α is the leakage flow rate, q

ℓ
¼ αh, and β is the output flow

rate, qo ¼ βh2. The output is given by:

s kð Þ ¼ h kð Þ f kð Þ u kð Þ½ �T

y kð Þ ¼ s kð Þ þ d kð Þ þ v kð Þ
(22)

5.2 Simulation of faults in the system

The process control system is interfaced to National Instruments LABVIEW as
shown below in Figure 4a. The controller is implemented in LABVIEW.

The two-tank system formed of subsystems and whose faults are to be isolated is
shown in Figure 4b. There are four subsystems whose faults are to be isolated.
Subsystem 1 is the flow rate sensor γs1, subsystem 2 the height sensor γs2, subsystem

True poles Identified poles

Signal Ĝ s zð Þ 0:7500� j0:3708

0:8500� j0:2784

0:7510� j0:3715

0:8483� j0:2769

Disturbance Ĝw zð Þ 0:1980� j0:8737

0:5663� j0:4114

0:2031� j0:8752

0:5822� j0:3746

Table 1.
Poles of the signal and disturbance models.
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3 the actuator G1 ¼ G0
1 γa where G0

1 is the fault-free transfer function, and
subsystem 4 the leakage fault sensor gain γℓ. The fault-free cases correspond
toγsi ¼ 1 :i ¼ 0, 1, 2, γa ¼ 1 and γℓ ¼ 1. The various subsystems and sensor blocks are

all shown in Figure 4b. The first two blocks G0 and G1 ¼ G0
1 γa, represent the

controller and the actuator sub-systems, respectively. The leakage is modeled by the
gain γℓ which is used to quantify the amount of flow lost from the first tank. Thus,
the net outflow from tank 1 is quantified by the gain (1� γℓ). Since the two blocks

G0
2 and (1� γℓ) cannot be dissociated from each other, they are fused into a single

block labeled G2 ¼ G0
2 1� γℓð Þ. The physical two-tank system is controlled using

LABVIEW which acquires the flow rate, and the height sensor outputs. The con-
troller is implemented in LABVIEW and the controller output drives the actuator,
namely the DC motor and pump combination. A fault in the sensor is introduced by
including the emulator block, γsi : i ¼ 0, 1, 2 in the control input, flow rate, the
height sensors, respectively in LABVIEW software. Similarly, an actuator fault is
introduced by including an emulator γa between the controller output and the
input to the DC motor. The leakage fault is simulated by opening the drainage valve
of the first tank. The amount by which the valve is opened is modeled by the
emulator γℓ.

The height, flow rate, and control input profiles under various types of faults,
are shown in Figure 5. Subfigures A, B and C show profiles for the leakage;
subfigures D, E and F show the profiles for the actuator fault; subfigures G, H, and I
show the profiles for sensor fault. The fault was simulated by varying the
appropriate emulator parameters γℓ, γa and γs2, by 0.25, 0.5 and 0.75 times
their nominal values representing ‘small’, ‘medium’ and ‘large’ fault sizes
respectively.

Figure 4.
(a) Two-tank fluid system controlled by LABVIEW interfaced to a PC and (b) block diagram of process
control system.
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Figure 5.
(a) Height, flow rate, control: nonlinear and (b) height, flow rate, control: linearized.
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Figure 6.
(a) The residuals and test statistics and (b) autocorrelations of the residuals.
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The height, the flow rate and the control input profiles under various types of
faults are shown in Figure 5a for the nonlinear model, namely the dead-band effect
of the actuator on the flow measurements. The measurement outputs are corrupted
by the disturbance and measurement noise. Figure 5b show the outputs of the two-
stage identification of the linearized signal model. Subfigures A, B and C on the top
show height profiles, and subfigures D, E and F in the middle show the flow rate
profiles, and G, H, and I at the bottom show the control input profiles under
leakage, actuator and sensor faults, respectively. The faults are induced by varying
the appropriate emulator parameters to 0.25, 0.5 and 0.75 times the nominal values
to represent ‘small’, ‘medium’ and ‘large’ faults. However, by its control design
objective, the closed-loop PI controller will hide any fault that may occur in the
system and hence will make it difficult to detect it. Also, the physical system
exhibits a highly-nonlinear behavior. The flow rate saturates at 4.5 ml/s. The dead-
band effect in the actuator exhibits itself as a delay in the output response and
saturation of the flow.

Remarks: The two-stage identification is employed to estimate the height, flow
rate and the control input; their estimates are shown in Figure 5b. Comparing
subfigures D, E, F confirms the superior performance of the identified estimates,
thanks to the use of emulators.

Figure 6a shows the residuals and their test statistics, and Figure 6b shows the
autocorrelations of the residuals when the system is subject to leakage, actuator, and
sensor faults of various degrees such a small, medium and large fault sizes.
Subfigures A, B, and C; D, E, and F; and G, H, and I of Figure 6a show the residuals
and their statistics when there is a leakage, actuator and sensor faults, respectively.
Subfigures A, B, and C; D, E, and F; and G, H, and I of Figure 6b show the
corresponding auto-correlations for different fault types.

Remarks: The Bayes decision strategy was employed to assert the fault type, i.e.,
to decide whether it is either a leakage or an actuator or sensor fault, respectively,
using the fault isolation scheme proposed in [8]. The variance of the residual, which
is the maximum value of the autocorrelation function evaluated at the origin (i.e.
at zero delay), indicates the fault size.

The proposed Kalman-filter-based scheme can detect and isolate small and
nascent faults and estimate the fault size. Thanks to the emulator-generated data,
it can also provide an accurate prognosis of the status of the system.

6. Conclusions

Emulator-based identification of a wider class of multiple-input and multiple-
output system governed by Box-Jenkins model and the associated Kalman filter
directly from the input-output data without a-priori knowledge of the disturbance
and measurement noise statistics, and the establishment of key properties of e-
stimation of the signal, the output error and their models are developed. The
applications include monitoring the status of the system including faults,
distinguishing between the variations in the disturbance model and those in the
signal model to help diagnose a fault in the system and ensure a low false alarm
probability, developing a framework for controlling autonomous vehicles, and
meeting the ever-increasing need for fault-tolerant systems. The proposed
emulator-based two-stage identification and estimation of the signal and its model
were evaluated physical laboratory-scale process control system so as to estimate
the signal corrupted by disturbance such as turbulence. Thanks to emulator-based
identification, the estimates of the signal were accurate, the detection and
isolation of leakage faults were promising and, as such, provide sufficient
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encouragement and impetus to try the proposed scheme on real-life processes in our
future work.
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