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Chapter

MicroRNAs (miRNAs) in 
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and Yasemin Basbinar

Abstract

Colorectal cancer (CRC) is the third most common cancer in the world and 
third leading cause of cancer-related deaths in men and women as well. While 
early screening procedures and removal of small polyps improve the survival 
rates among the patients, there is still need for new diagnostic and therapeutic 
approaches for developing more effective treatments. MicroRNAs (miRNAs) 
are short noncoding RNA fragments, which involve in posttranscriptional 
regulation of gene expression, and they are shown to involve in tumorigenesis 
either targeting oncogenes or tumor suppressor genes. Based on the current 
studies, miRNAs are now suggested as potential biomarkers for CRC diagnosis, 
prognosis, and therapeutic responses. In this chapter, the latest findings on the 
role of miRNA in CRC in many aspects are reviewed: diagnosis (role of circular 
miRNAs in blood and miRNAs from tissue biopsies and their potential role 
in pathophysiology and diagnosis of CRC), prognosis (miRNAs related with 
metastasis, recurrence, and survival rates in CRC), and therapeutic responses 
(role of miRNAs both in chemotherapies and/or in targeted therapies in CRC). 
In conclusion, miRNAs are promising molecules for diagnosis, prognosis, and 
therapeutic responses of CRC.

Keywords: colorectal cancer, diagnosis, miRNA, prognosis, therapeutic response

1. Introduction

MicroRNAs are a subgroup of small noncoding RNAs containing 18–25 nucleo-
tides, and they do not carry any genetic information for protein expression. They 
regulate the posttranslational gene expression by binding 3′ untranslated region 
(UTR) of the target messenger RNA (mRNA). Approximately 30% of protein 
coding genes are regulated by miRNAs, and they have important roles in cellular 
functions including proliferation, differentiation, apoptosis, signaling, metabolism, 
and tumorigenesis. Due to their effect on crucial processes, miRNAs are significant 
modifiers of transcription and translation of both oncogenes and tumor suppres-
sor proteins. Hence, some of them are classified as oncomiR and tumor suppressor 
miRNA in the cellular processes of tumor [1].

First miRNA, lin-4, was discovered in Caenorhabditis elegans in 1993, and it had 
role on the regulation of larval development by the repression of a nuclear protein 
encoded by lin-14. The second discovered miRNA, let-7, is expressed in late devel-
opment and complementary to the 3′ UTR of the several genes including lin-14, 
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lin-28, lin-41, lin-42, and daf-12. After the discovery of lin-4 and let-7, miRNAs 
were shown in other organisms including plants and animals [2, 3], and over 10,000 
miRNAs have been identified in various organisms. In humans, over 2500 types of 
encoded miRNAs have been determined [4].

2. Biogenesis of miRNA

The biogenesis of miRNA is a complicated process, starting in the nucleus, 
following with posttranslational modifications, and finalized in the cytoplasm. 
Similar to gene encoding, biogenesis of primary miRNAs (pri-miRNAs) is starting 
with the transcription by RNA polymerase II or RNA polymerase III enzyme. In the 
nucleus, pri-miRNA is recognized and cleaved by Drosha enzyme to form precursor 
miRNA (pre-miRNA). The pre-miRNA is exported to cytoplasm by exportin-5. In 
the cytoplasm, pre-miRNA is bound to cytoplasmic RNase Dicer and RNA-induced 
silencing complex (RISC), which is composed of argonaute 2 (AGO2) and transac-
tivation response (TAR) RNA-binding protein (TRBP). Firstly, AGO2 cleaves the 
pre-miRNA from its 3′ end, and the cleaved pre-miRNA is further cleaved by Dicer 
into mature miRNA duplex. Mature miRNA duplex is then unwounded; while one 
strand of the miRNA remains on AGO2 protein, and the other strand (passenger 
strand) is degraded. Mostly, miRNAs are recognizing the complementary sequence 
of 3′ UTR of mRNAs, hence directing RISC to cleave mRNAs and translational 
repression of mRNAs [5, 6] (Figure 1).

Figure 1. 
miRNA biogenesis. The pathway starts miRNA transcription by RNA polymerase II or III to generate the 
primary transcripts (pri-miRNAs). Pri-miRNA is processed by the Drosha-DiGeorge syndrome critical 
region gene 8 (DGCR8, Pasha Pasha in Drosophila melanogaster and Caenorhabditis elegans) complex (also 
known as the microprocessor complex) that generates ~70 nucleotide (nt) pre-miRNAs. Pre-miRNA, which 
is recognized by the nuclear export factor exportin-5, is transferred to the cytoplasm. In the cytoplasm, the 
cytoplasmic RNase Dicer cleaves the pre-miRNA hairpin to its mature length. Dicer in complex with the 
transactivation response (TAR) RNA-binding protein (also known as TRBP and TARBP2) and argonaute 
(AGO) 1–4 mediate the processing of pre-miRNA and the assembly of the RISC (RNA-induced silencing 
complex). With the formation of this complex structure, one strand of the miRNA duplex is removed and 
single-stranded miRNA is generated. Interaction between microRNA complex and target mRNA induces post-
transcriptional silencing by destabilization of mRNA and suppression of translation [7, 8].
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3. Involvement of microRNAs in cancer

microRNA studies were began in C. elegans, as lin-4 and let-7 were identified as 
noncoding RNAs functioning in larval development. Soon after, the research groups 
focused on the function of these noncoding RNAs and discovered their homologs 
in vertebrates as well. The role of miRNAs in tumorigenesis was first reported in 
chronic lymphocytic leukemia (CLL) by two different groups in 2002. Hemizygous 
or homozygous loss of 13q14 chromosome was frequently observed among CLL 
patients [9]. Two different miR-15 and miR-16 expression levels were shown to 
be downregulated with the deletion of this locus [10]. Both miR-15/16 levels are 
inversely correlated with antiapoptotic B cell lymphoma-2 (Bcl-2) protein level 
in the cells. Introduction of miR-15/16 to the leukemic cell lines repressed Bcl-2 
expression and induced apoptosis in these cells [11]. It is now very well established 
that aberrant miRNA expression contributes to cancer [12]. miRNAs are targeting 
the genes, which involve in cell proliferation, migration, invasion, and metastasis; 
hence dysregulation of these miRNAs leads to transformation and malignancy of 
cells [13, 14]. miRNA dysregulation in cancer cells can be result of genomic dele-
tion, mutations, amplification, or epigenetic silencing [14]. A single miRNA can 
target a variety of mRNAs involved in different cell signaling pathways; interest-
ingly, a single mRNA can be targeted by several miRNAs also [15], such as Let-7, 
which is one of the initially discovered miRNAs, targets human rat sarcoma (RAS), 
high-mobility group AT-hook 2 (HMGA2), and MYC mRNAs and downregulates 
their expression [16]. Phosphotensin homolog (PTEN), which is an important regu-
lator of cell cycle, can be targeted by several different miRNAs including miR-21, 
miR-22, miR-106b-25, miR-17-92 [17].

In tumorigenesis, miRNAs either act as tumor suppressor or as an oncogene; 
interestingly, their expression is repressed or induced by transcription factors such 
as p53 or MYC via their promoter regions. miR-145 is one of the initial examples of 
tumor suppressor miRNAs. miR-145 was found to be downregulated in a variety 
of tumors including colon, breast carcinomas [18, 19]. It is interesting that tumor 
suppressor protein p53 induces miR-145 expression via p53 response element in its 
promoter. Later, miR-145 targets c-Myc or insulin receptor substrate I (IGF-R1) pro-
tooncogenes and silences their expressions, hence preventing tumor cell prolifera-
tion [18, 20] . Furthermore miR-145 inhibits invasion and metastasis by targeting 
Fli-1 or Mucin-1 [20, 21]. miR-145 also targets estrogen receptor-α (ER-α) via its 
two complementary sites and downregulates ER-α expression [22]. miR-34 family 
is another target of p53 tumor suppressor protein [23]. Another important tumor 
suppressor miRNA is miR-34 family. miR-34 family comprises three members: 
miR-34a, miR-34b, and miR-34c. While miR-34a is ubiquitously expressed in every 
tissue, expression of miR-34b and miR-34c is restricted to fallopian tubes, lungs, 
and brain [24, 25]. miR-34a is a very potential tumor suppressor since it is target-
ing many mRNAs related with proliferation [such as cyclin-dependent kinase-4 
(CDK4) and cyclin-dependent kinase-6 (CDK6)], cellular growth [such as Notch2, 
platelet-derived growth factor receptor A (PDGFRA)], antiapoptosis [Bcl-2, sirtuin 
1 (SIRT1), survivin], invasion, and migration [MET, SNAIL, cluster of differentia-
tion (CD44)] [26–28]. Downregulation of miR-34 is observed among many malig-
nancies and associated with poor prognosis [29, 30]. As a result of its role as a tumor 
suppressor, miR-34 has been applied either alone or in combination with conven-
tional therapies on several tumor cell lines and mouse tumor models and showed 
promising results [31–34]. miR-34 was first miRNA tested in human Phase I trial 
(NCT01829971). MRX34, liposomal miR-34 mimic, was tested among patients with 
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solid advanced tumors. While MRX34 treatment showed evidence of antitumor 
activity in a subset of patients, it exerts some toxicities in patients. Hence, there is 
need for further studies for improving tolerability among the patients [35, 36].

In addition to tumor suppressor miRNAs, miRNAs behave like oncogenes, 
called as “oncomiRs.” mir-21 is the first miRNA identified as oncogenic; it is 
significantly upregulated in many tumors including colon cancer, breast cancer, 
hepatocellular carcinoma, and glioblastoma [37]. miR-21 overexpression con-
tributes to cell proliferation and antiapoptotic responses by targeting important 
downstream proteins such as phosphotensin homolog (PTEN), programmed 
cell death protein 4 (PDC4), and tropomyosin I [38–40]. Besides this, miR-21 
was shown to be bona fide oncogene by causing pre-B-cell lymphoma in mouse 
models by overexpression. When mir-21 expression was inactivated, tumors 
regressed completely in few days [41].

As the importance of miRNAs became evident, miRNA expression profiles for 
each tumor type have been studied with several methodologies including microar-
ray, QRT-PCR, and next-generation sequencing [15, 42]. miRNA expression profiles 
can reflect embryonic or development origin of the tissue and able to classify the 
origin of tissue with high accuracy (>90%), even separate cell subtypes (stem cells 
vs. progenitor cells) in the same tissue [43–45]. These miRNA profiling studies open 
the way for biomarker studies. In the biomarker studies, it is aimed to find diagnos-
tic, prognostic, and predictive markers for better characterization of the disease 
and therapy response as an outcome [46].

4. miRNA and colorectal cancer

Colorectal cancer (CRC) is the second most common cancer among the women 
and third most common cancer among men. In 2016, more than 1.4 million men 
and women in the USA have been diagnosed with CRC [47]. Despite the availability 
of successful treatment options such as surgery, chemotherapy, and radiotherapy, 
the prognosis of CRC is not promising. Relapse or metastatic spread occurs after 
surgery in many CRC patients. Colorectal cancer is divided into two phenotypes 
according to mutational status. In chromosomal instability phenotype (CIN), high 
rate of inactivating mutations in adenomatous polyposis coli (APC) and tumor 
protein P53 (TP53) genes are found as well as activating mutations in Kirsten rat 
sarcoma viral oncogene homolog (KRAS) gene. However mutations in DNA repair 
genes, transforming growth factor-beta receptor II (TGFBRII) gene, Bcl2- associated 
C protein (BAX) and BRAF genes are commonly existed in microsatellite instability-
high tumors (MSI-H) [48]. Certainly, genomic background affects the miRNA 
expression in CRC, such as TP53 mutations affect miR-145 expression levels, which 
is downregulated among many CRC patients [49, 50]. Furthermore, miR-193a-3p 
expression was found as specifically downregulated in BRAF-mutated CRC cases 
[51]. The distinction between these phenotypes became more prominent in disease 
progression and therapy response, which will be discussed in the following sections. 
In CRC, to date, totally, 1870 original studies were retrieved in PubMed (as of May 
2018), in which 38 of them were clinical trials investigating miRNA expression 
patterns in both CRC tissue specimen and plasma samples and compared them with 
normal samples. Bunch of miRNAs were found to be dysregulated in CRC samples 
in these studies [52–54]. While some of these miRNAs are related with early stages 
of tumorigenesis and can be used as diagnostic markers, the others are associated 
with therapeutic response, resistance to chemotherapy, and survival prognosis, 
hence aiding the physician in making therapeutic decisions as prognostic and 
predictive biomarkers [55].
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4.1 miRNAs in colorectal cancer diagnosis

Early diagnosis is essential for CRC patients since they have more favorable 
prognosis. Fecal blood test and colonoscopy techniques are being currently used for 
early screening. However, fecal blood tests are not very efficient for detecting early 
carcinoma formation. Colonoscopy is a gold standard technique, it reduces cancer 
risk about 30–75%, yet it is invasive and expensive technique and highly uncom-
fortable for a patient [56]. Therefore, noninvasive and inexpensive screening and 
diagnostic methods or biomarkers are needed. miRNAs are promising candidates 
for noninvasive biomarker diagnosis. Diagnostic miRNAs can be isolated from 
blood or stool samples as well as tumor tissues [57] (Table 1).

There are different miRNA profiling studies comparing CRC samples with 
normal healthy tissue samples; however, each study emphasized on different set 
of miRNAs in CRC diagnosis and progression. According to miRNA profile study, 
miR-18a, -20a, -21, -29a, -92a, -106b, -133a, -143, and -145 expression levels were 
found to be significantly changed in CRC patients when compared with normal 
patients, and these markers can be used for CRC diagnosis [59]. In a systematic 
review, miR-106a, -30a-3p, -139, -145, -125a, and -133a were proposed as diagnostic 
biomarkers [60]. In another study, miR-143, -145, -21, -320, -126, -484-5p, -143, 
-145, -16, -125b, -21, and -106 were found to be candidate for diagnostic biomarkers 
[57]. While studies share some common miRNAs (such as miR143, miR145, miR106, 
miR21), they are differing in their list of miRNAs. In fact, the type of miRNAs can 
be differed due to the type of sample (blood or stool), experimental procedures, 
and used microRNA platforms. Another handicap of these studies is that they have 
been conducted with a small number of samples. Larger sample studies and addi-
tional meta-analyses are need for better determination of CRC-related diagnostic 
markers. Still, it can be said that miRNAs are very promising noninvasive markers 
for tumor diagnosis.

4.2 miRNAs in colorectal cancer prognosis

Taking part in CRC diagnosis, miRNAs are also affecting prognosis and thera-
peutic response. As mentioned before, the expression and deregulation of miRNAs 
in CRC patients are affected by chromosomal abnormalities and microsatellite 
instability [61, 62]. In CRC, miRNA expression dysregulation is shown especially 
in microsatellite instability (MSI-high) tumors. MSI-high groups are distinct 
population among CRC patients, which accounts for 15% of all cases, observed in 
hereditary cases such as Lynch syndrome or in sporadic cases mostly as a result of 
hypermethylation or inactivation of mismatch repair (MMR) genes [63]. These 
MSI tumors characterized by distinct behavior are associated with proximal tumor 
localization and high infiltration of lymphocytes. These phenotypes showed less 
distant organ metastasis than MSI stable tumors and have better prognosis [64]. 
Several miRNAs have been shown in participating in inactivation of several DNA 
mismatch repair genes, such as miR-155 downregulates mutL protein homolog 
1 (MLH1), mutS homolog 2 (MSH2), and mutS homolog 6 (MSH6) mRNAs 
expression, whereas miR-21 targets MSH2 and MSH6 mRNA and inactivates them 
[65, 66]. Overall 94 miRNAs are differently expressed in microsatellite stable and in 
microsatellite instable tumors [67]. Upregulation (miR-17, miR-20, miR-25, miR-
31, miR92, miR-93, miR-133b, miR-135a, miR-183, miR-203, and miR-223) and 
downregulation (miR-16, miR-26b, miR-143, miR-145, miR-191, miR-192, miR-
215, and let-7a) are generally observed in MSI-high tumors [68]. miRNA expression 
is also differed among TP53 and KRAS mutated tumors as well. miR-125p targets 3′ 
UTR region of p53 and represses p53 expression and accelerates the tumor growth; 
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hence, expression levels of miR-125p are associated with poor survival among CRC 
patients [69]. However, miR34 expression is a good prognostic marker. miR-34 is 
one of the targets of p53 protein and it increases miRNA expression. miR-34 then 
suppresses the expression of WNT pathway and epithelial mesenchymal transition 
(EMT)-related genes. Increase of miR-34b and miR-34c levels in stromal tissue is 

miRNAs Expression Target genes

miR-15a Upregulate Bcl-2

miR-17-3p Upregulate E2F, CDKN1A

miR-18a Upregulate SMAD4, KRAS

miR-19a/miR-19b Upregulate PTEN

miR-20a Upregulate BECN1, ATG16L1, SQSTM1

miR-21 Upregulate PDCD4, PTEN, SPRY2, TPMI

miR-24 Downregulate Topoisomerase-1

miR-29a Upregulate DNMT3

miR-31 Downregulate WNT, β-catenin

miR-34a Downregulate SMAD4, FRAT1, Bcl-2, c-Met

miR-92a Upregulate PHLPP2, VHL, Bim

Let-7g Upregulate KRAS, Cdk6, Cdc25, HMGA2

miR-106b Upregulate P21, E2F1

miR-133a Downregulate MCL1, BCL2L2

miR-143 Downregulate Erk5, DNMT3, KRAS

miR-145 Downregulate EGFR, IRS-1

miR-181b Downregulate ATM

miR-203 Downregulate ABL1, TP63

miR-223 Upregulate STMN1

miR-302 Upregulate GAB2, AKT2

miR-320a Downregulate VDAC, STAT3, SOX4

miR-335 Upregulate RASA-1

miR-375 Downregulate SLC7A11, IGFR1, SEC23A

miR-422a Downregulate TGF-β, CD73

miR-423-5p Downregulate RFVT3

miR-601 Downregulate PTP4A1

miR-760 Downregulate PHLPP2

Abbreviations: Bcl-2, B cell lymphoma-2; E2F, E2F transcription factor 1; CDKN1A, cyclin-dependent kinase 
inhibitor 1A; KRAS, Kirsten rat sarcoma viral oncogene homolog; PTEN, phosphotensin homolog; BECN1, Beclin 
1; ATG16L1, autophagy-related 16 like 1; SQSTM1, sequestosome 1; PDCD4, programmed cell death 4; SPRY2, 
sprouty RTK signaling antagonist 2; DNMT3, DNA methyl transferase 3; FRAT1, WNT signaling pathway regulator; 
PHLPP2, PH domain leucine-rich repeat protein phosphatase 2; VHL, von Hippel-Lindau tumor suppressor; Cdk6, 
cyclin-dependent kinase 6; Cdc25, cell division cycle 25A; HMGA2, high-mobility group gene; P21, CDKN1A, cyclin-
dependent kinase inhibitor 1A; E2F1, E2F transcription factor 1; MCL1, BCL2 family apoptosis regulator; BCL2L2, 
BCL2 like 2; EGFR, epidermal growth factor receptor; IRS-1, insulin receptor substrate 1; ATM, ataxia telangiectasia 
mutated; ABL1, v-abl Abelson murine leukemia viral oncogene homolog 1; TP63, tumor protein p63; STMN1, 
stathmin 1; GAB2, GRB2-associated binding protein 2; AKT2, v-akt murine thymoma viral oncogene homolog 2; 
VDAC, voltage-dependent anion channel; SOX4, SRY (sex-determining region Y)-box 4; SLC7A11, solute carrier 
family 7 member 11; IGFR1, insulin-like growth factor 1 receptor; TGF-β, transforming growth factor-beta; CD73, 
cluster of differentiation 73; RFVT3, known as SLC52A3 (solute carrier family 52 member 3); PTP4A1, protein 
tyrosine phosphatase 4a1.

Table 1. 
Simplified list of diagnostic miRNA markers for colorectal cancer (modified from Refs. [58, 59]).
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leading to poor prognosis in colon cancer [70–72]. miR-122, miR-214, miR-372, 
miR-15b, let-7e, and miR-17 are other dysregulated miRNAs found in TP53 mutated 
tumors [73]. miR-148-b and miR-221 are also important diagnostic markers associ-
ated with p53 mutational status, and their overexpression is associated with worse 
prognosis [74, 75]. miR-143 and miR-145 are frequently downregulated in CRC 
and their one of the targets is KRAS mRNA; hence, they are important prognostic 
and predictive biomarkers in CRC [76, 77]. Let-7 role is one of the well-studied 
tumor suppressor miRNAs, which targets RAS. Let-7a expression is higher in KRAS 
mutated metastatic samples than normal mucosa or nonmetastatic disease [78]. 
Decrease Let-7b expression is worse prognostic marker, which is associated with 
recurrence and low overall survival of patients [79]. Furthermore, decrease in miR-
487b levels is associated with liver metastasis in CRC patients [80]. Not only KRAS-
associated miRNAs act as tumor suppressor, some of them are acting oncogenic in 
prognosis. miR-200 and miR-221 are downstream miRNAs of RAS pathway, and 
high expression of these miRNAs is related with worse prognosis [81].

Furthermore, exosome-containing miRNAs (miR-17/92 cluster and miR-19a 
cluster) are evaluated as biomarkers for early diagnosis and high recurrence in 
patients with CRC [82]. miR-21-5p, miR-29-3p, and miR-148-3p levels were studied 
in CRC samples and show that dysregulation in these miRNAs is associated with 
high mortality risk [83].

4.3 miRNAs in treatment response prediction of colorectal cancer

A variety of therapeutic advances are existed for CRC treatment such as con-
ventional chemotherapy (5-fluorouracil, capecitabine, irinotecan, oxaliplatin), 
immunotherapy, radiotherapy, and chemoradiotherapy. miRNAs play an impor-
tant role in the regulation of effectiveness and resistance to these therapies and 
prediction of personalized therapy response [84, 85]. Resistance to therapy is 
still the biggest challenge for defeating cancer. It may be caused by a variety of 
reasons such as reduction in transportation and intracellular accumulation of 
drugs by modulating the activity of drug transporters such ATP-binding cas-
sette subfamily B (ABCB)/multidrug resistance (MDR) transporters (which is 
reviewed in reference [86]), dysregulation in DNA damage repair mechanisms, 
insufficient or oncogenic immune response, blockage of apoptosis, emergence 
of inflammation, and altered expression of oncogenes and tumor suppressor 
genes related with therapy response. miRNAs are actively participating in all of 
these resistance mechanisms [87, 88].

4.3.1 Chemotherapy

Although there are advances in cytotoxic and targeted therapy in CRC, drug 
resistance is one of the most important obstacles in front of successful chemother-
apy [89]. Fluoropyrimidine-based chemotherapy (5-FU or capecitabine), vascular 
endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 
(VEGFR)-targeted, and epidermal growth factor receptor (EGFR)-targeted thera-
pies are the main therapeutic methods for CRC [87]. miRNAs have role in chemo-
therapy resistance in terms of deregulation of drug metabolism-related enzymes, 
increased efflux of chemotherapeutics, impairment of chemotherapeutic-induced 
apoptosis, modulation of DNA damage repair, and autophagy [87].

miR-92b-3p, miR-3156-5p, miR-10a-5p, and miR-125a-5 were found to be 
related with progression-free survival in meta;static CRC patients treated with 
5-FU/oxaliplatin/bevacizumab regime [90]. A negative relationship was found 
between miR-27b, miR-148a, and miR-326 expression levels and progression-free 
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survival in metastatic colorectal cancer patients receiving first-line oxaliplatin-
based treatment [91]. The expression of miR-326 was related with decreased overall 
survival. These results proposed that plasma miRNAs can be used as noninvasive 
biomarkers for evaluating drug response in metastatic CRC patients who are treated 
with 5-FU and oxaliplatin-based chemotherapy [91] (Table 2).

4.3.2 Immunotherapy

Since chemo/radio therapies and surgery have limitations, immunotherapy is 
a good alternative to treat CRC patients. Immunotherapy aimed to evoke immune 
system to eliminate tumors either using immune stimulatory cytokines (vaccines, 
etc.) or checkpoint inhibitors [such as cytotoxic T-lymphocyte-associated antigen 4 
(CTLA-4), programmed death 1 (PD-1) receptor, and its ligands (PD-L1/2)] [92]. 
Interestingly, immune cell filtrates more in MSI-high CRC, and these subtypes are 
responding better to immunotherapies [93].

miRNAs Therapy Expression Target genes

miR-7 EGFR-targeted Downregulate EGFR, RAF-1

miR-10b 5-FU Upregulate BIM

miR-20a Oxaliplatin Upregulate BNIP2

miR-21 5-FU Upregulate MSH2

miR-22 5-FU Downregulate BTG-1

miR-23a 5-FU Upregulate APAF-1, ABCF-1

miR-27a, miR-27b 5-FU Downregulate DPYD

miR-133b EGFR-targeted Downregulate EGFR

miR-139-5p 5-FU Downregulate Bcl-2

miR-143 Oxaliplatin Downregulate IGF-1R

miR-153 Oxaliplatin Upregulate FOXO3a

miR-199-5p, miR-375 EGFR Upregulate PHLPP1

miR-203 5-FU Downregulate TYMS

miR-203 Oxaliplatin Upregulate ATM

miR-204 5-FU Downregulate HMGA2

miR-218 5-FU Downregulate TYMS, BIRC5

miR-302, miR-369, miR-200c 5-FU Upregulate MRP8

miR-409-3p Oxaliplatin Downregulate Beclin-1

miR-425-5p 5-FU Upregulate PDCDIO

miR-494 5-FU Downregulate DPYD

miR-519c 5-FU Downregulate ABCG2, HuR

miR-520g Oxaliplatin Upregulate P21

Abbreviations: 5-FU, 5-fluorouracil; EGFR, epidermal growth factor; RAF-1, Raf protooncogene; BNIP2, BCL2-
interacting protein 2; MSH2, human mutS homolog 2; BTG-1, BTG antiproliferation factor 1; APAF-1, apoptotic 
peptidase-activating factor 1; ABCF-1, ATP-binding cassette subfamily D member 1; DPYD, dihydropyrimidine 
dehydrogenase; Bcl-2, B cell lymphoma-2; IGF-1R, insulin-like growth factor 1 receptor; FOXO3a, forkhead box 
class O3; PHLPP1, Phlpp1 PH domain and leucine-rich repeat protein; TYMS, thymidylate synthase; ATM, ataxia 
telangiectasia mutated; HMGA2, high mobility group AT-hook 2; BIRC5, baculoviral IAP repeat containing 5; 
MRP8, myeloid-related protein 8; ABCG2, ATP-binding cassette subfamily G member 2; P21, cyclin-dependent 
kinase inhibitor 1A.

Table 2. 
The expression profile of miRNAs that have role on chemotherapy response in colorectal cancer (modified from 
Ref. [85]).
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miRNAs are essential in regulation of the immune response as well. The 
role of miR-34 has been mentioned earlier. Upregulation of miR-34a elicits the 
activation of tumor-infiltrating CD8+ T cells by targeting PD-L1 [94]. miRNAs 
are also involved in innate immunity by macrophages and NK cells, and adap-
tive immunity by B cells, T cells, and dendritic cells. miR-124 modulates signal 
transducer and activator of transcription 3 (STAT3) pathway and enhances the 
T cell-mediated immune clearance [95]. miR-491 regulates the proliferation and 
apoptosis of CD8+ T cells [96]. miR-491 inhibits the activation of CD8+ T cells 
and promotes its apoptosis via targeting B-cell lymphoma-extra-large (Bcl-xL), 
cyclin-dependent kinase-4 (CDK4), and T cell factor 1 (TCF1), hence aiding 
tumor cells escaping from immune system. Tumor-derived TGF-β also induces 
the miR-491 expression. Thus, miR-491 can be evaluated as a new immunotarget 
for CRC treatment [96].

miR-196b, miR-378a, and miR-486-5p are evaluated as predictive biomarkers 
for the efficacy of the vaccine treatment in CRC [97]. miRNAs were enrolled in 
Phase II studies. In 16 patients, high expression of miR-196b-5p and low expression 
of miR-378a-3p and miR-486-5p are associated with better prognosis after vaccine 
treatment. Hence, these miRNAs can be determined as novel biomarkers for predic-
tion of outcome responses of patients [97].

4.3.3 Potential candidates

miRNAs are also involving in radiotherapy responses. The expression of miRNA-
processing enzymes Drosha and Dicer was found to be upregulated in radioresistant 
cell lines when compared with radiosensitive cell lines [98]. The role of miRNAs in 
radiotherapy response was evaluated further in the study cited as reference [87]. 
In the study, biomarkers for the prediction of chemoradiotherapy response in 
CRC were identified by using integrative and systematic bioinformatics analysis. 
The unique target genes of miR-198 and miR-765 were altered significantly upon 
transfection of specific miRNA mimics in the radiosensitive cell line. Thus, it could 
be said that miR-198, miR-202, miR-371-5p, miR-513a-5p, miR-575, miR-630, and 
miR-765 could be used for predicting the response of CRC to preoperative chemo-
radiotherapy [87]. Still, further studies are needed to understand the miRNA role in 
radiotherapy/radiochemotherapy prediction.

5. Concluding remarks and limitations

By the discovery of miRNAs, a significant number of studies have been con-
ducted to indicate the utility of miRNAs. According to the highlighted studies, 
miRNAs in body fluids have potential to be predictive, diagnostic or prognostic 
biomarkers; and also they can be therapeutic targets due to their inducer ability on 
tumorigenesis. Basically, miRNAs offer promising practice for screening, diagnosis, 
prognosis, and treatment of cancer. Therefore, these noncoding RNA fragments 
may be used alone or combined with other protocols to screen, diagnose, prognose, 
and treat cancer. However, their clinical importance is still not conclusive, and 
validation studies are needed for routine-based clinical application.

Evidences showed that inhibition of oncomiRs or replacement of tumor suppres-
sive miRNAs could be used to develop innovative treatment approaches. Further 
studies are needed to reveal the molecular mechanisms on the regulation of miRNA 
biogenesis. Determination of miRNA target genes, molecular interactions between 
target mRNA and miRNAs, and signaling pathways will help to interpret molecular 
mechanisms of cancer. Besides investigations on miRNA expression patterns and 
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their molecular mechanisms, studies on technological developments for reliable 
and cost-effective miRNA applications are also extremely important to enhance 
minimally invasive routine miRNA applications. Methodological variability among 
different clinical centers is the biggest limitation for the successful combination of 
miRNAs in cancer management. Standardization and normalization of essential 
steps of miRNA applications, such as miRNA extraction, processing, biobanking, 
and quantitation, eliminate the clinical facility-based variations. Using internal 
controls and enrollment of the laboratory accreditation/validation programs may 
present benefits for standardization. miRNAs have potential to be therapeutic 
targets and treatment options. But determination of mRNAs and miRNAs interac-
tions and obtaining the large population-based multicenter cohorts are essential to 
use miRNAs in therapy. Especially before the implementation of miRNAs in clinics, 
evaluation of miRNA panels on large patient cohorts must be achieved.
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