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Chapter

Determination of the Velocity of
the Detonation Wave and the
Conditions for the Appearance of
Spherical Detonation during the
Interaction of Hydrogen with
Oxygen
Myron Polatayko

Abstract

The well-known formula for the flat detonation wave velocity derived from the
Hugoniot system of equations faces difficulties, if being applied to a spherical
reactor. A similar formula has been obtained in the framework of the theory of
explosion in reacting gas media with the use of a special model describing the
transition of an explosive wave in the detonation. The derived formula is very
simple, being also more suitable for studying the limiting processes of volume
detonation. The conditions for the transition of a shock wave to a detonation wave
are studied. Initial detonation conditions required for fast chemical reactions to take
place at the front of a spherical explosive wave have been determined. A simple
relation describing the critical detonation temperature for various pressures in the
hydrogen-oxygen mixture was obtained. Using the known formulas for a shock
transition, the critical temperature was coupled with the initial conditions in a static
environment, such as the pressure, temperature, and hydrogen content in the
mixture.

Keywords: detonation, point blast, spherical wave, Haber scheme, Lewis scheme,
kinetics of chemical reactions, critical temperature

1. Introduction

The strong explosion in a small volume of a detonating gas mixture has been
studied well in modern physics [1, 2]. The velocity of a detonation wave propagat-
ing in a spherical reactor can be calculated absolutely precisely with the use of a
variety of original software programs [3]. There are also approximation formulas
such as

D

Dn
¼ 1�

A

r� Rx
, (1)
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where r is the current radius, Rx is the critical radius, А is a constant, Dп is the
velocity of a plane wave, and D is the velocity of a spherical wave. For larger
charges, if the radius exceeds the critical one, the Eyring dependence

D

Dn
¼ 1�

A

r
(2)

is used. The work is aimed at analyzing the development of the process at the
time moment, when the energy of a point explosion is equal to the energy of a
burned gas, r ¼ Rx, but provided that Rx 6¼ ∞. In other words, we intended to
study the initial stage of detonation in reacting gas media by determining the scalar
value of detonation wave velocity. The transition to the Chapman-Jouguet regime
begins at some distance Rx from the center [4, 5], when the energy of the system
appreciably increases. The model supposes that the pressures at the front and in the
explosion region are equal, which results in the appearance of a high temperature at
the transition point behind the shock front, since the main part of the substance
mass is concentrated in a thin layer of the blast wave.

A lot of researches were devoted to the emergence of detonation in a hydrogen-
oxygen mixture [6–8]. At the same time, there are no works in the scientific
literature dealing with the influence of initial conditions on the detonation process,
when the blast wave propagates in the gas environment. In this paper it was possible
to obtain the necessary results by studying the chain reactions [9] of the interaction
of hydrogen with oxygen.

2. Determination of the detonation wave velocity in an explosive gas
mixture

2.1 Explosion in a chemically inert gas mixture

Consider an explosion in a chemically inert gas mixture. Let the point explosion
occur instantly in a perfect gas with density ρ0, and a shock wave propagates in the
gas from the point of energy release. We intend to analyze the initial stage of the
process of shock wave propagation, when the shock wave amplitude is still so high
that the initial gas pressure, Р0, can be neglected. This assumption is equivalent to a
neglect of the initial internal gas energy in comparison with the explosion one, i.e.,
we consider a strong explosion. The problem is to determine the velocity of the blast
wave, when the wave front is modeled by a rigid piston compressing the volume of
the gas in front (Figure 1). The main regularities of the process are well-known
[10], and there is a simple approximate method to find them.

Let the total mass of a gas engaged into a blast wave be concentrated in a thin
layer near the front surface. The gas density here is constant and equal to that at the
front,

ρ1 ¼
γ þ 1

γ � 1
ρ0: (3)

This formula can be derived from the formula for strong shock waves [11] in the
case where the Mach numberM≫ 1. To avoid a misunderstanding, note that, in this
case, we mean a transformation of a medium denoted by subscript. 0 (the medium
at rest before the explosion) into a medium denoted by subscript 1. The layer
thickness ∆r is determined from the condition of mass conservation,
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4πR2
Δrρ1 ¼

4

3
πR3ρ0; (4)

whence

Δr ¼
Rρ0
3ρ1

¼
R

3

γ � 1

γ þ 1

� �

: (5)

Since the layer is very thin, the gas velocity in it almost does not change and
coincides with that at the front,

u1 ¼
2D

γ þ 1
: (6)

In the shock wave theory, a more accurate formula is considered, which couples
the gas flow velocity behind the shock wave front, u1, with the front velocity D:
u1 ¼

2D

γþ1ð Þ 1�
b0
D

� �2
h i, where b0 is the sound velocity in the unperturbed gas. The gas

mass in the layer is finite and equal to the mass m of the gas originally contained
within a sphere of radius R,

m ¼
4

3
πR3ρ0: (7)

Let us denote the pressure at the inner layer side as Pc, and let it equal α times the
pressure at the wave front, Pc ¼ αP1. Newton’s second law for the layer ∆r in
thickness reads

d

dt
mu1ð Þ ¼ 4πR2Pc ¼ 4πR2αP1: (8)

It can be used only within the limits

0 <R≤R0
x , (9)

where the quantity R0
x is determined from energy considerations. At this point,

the kinetic energy of the blast wave is still high enough, and its velocity consider-
ably exceeds that of sound in the unperturbed gas medium.

Figure 1.
Schematic diagram of a shock wave from the point explosion.
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Here, we arrive at a detailed mathematical representation of formulas and equa-
tions, by using the already known relations (4) and (8), which are the conservation
laws for the mass and the moment, respectively. However, the latter are not enough
for the problem to be solved. One more equation is needed,

E ¼ ET þ Ek ¼ const; (10)

which is the energy conservation law. The explosion energy is constant and
equal to a sum of two terms: the potential, ET, and kinetic, Ek, energies. The general
system consists of three equations—Eqs. (4), (8), and (10)—appended by the
condition of strong explosion, M≫ 1, when formula (6), the relations (4), (8), (10)
and the condition of strong explosion

M≫ 1 (11)

are valid. Moreover, we have Eq. (6), and

P1 ¼
2

γ þ 1
ρ0D

2, (12)

where P1 is the pressure at the front of the shock wave. Formula (12) follows

from the relation P1

P0
¼ 2γM2�γþ1

γþ1 of work [11] in the case where M≫ 1: P1

P0
≈

2γM2

γþ1 ¼

2γ�D2

b2
0

γþ1ð Þ ¼
2γ�

D2ρ0
γP0

γþ1ð Þ ¼ 2ρ0D
2

P0 γþ1ð Þ.

It should be noted that, in the given system of equations, relation (4) does not
determine a connection between the regions separated by the shock wave front
(regions 0 and 1). Instead, it couples the states before the explosion and after it.
While solving this problem for the one-dimensional centrally symmetric flow, we
come back to Eq. (8).

The mass itself depends on the time, so that it is the momentum mu1 rather than
the velocity that should be differentiated with respect to the time. The mass is

subjected to the action of the force 4πR2Pc directed from the inside, because the
pressure Pc is applied to the inner side of the layer. The force acting from the outside
is equal to zero, because the initial pressure of the gas is neglected. By expressing

the quantities u1 and P1 in Eq. (8) in terms of the front velocity D ¼ dR
dt and using

formulas (6) and (12), we obtain the new relation

1

3

d

dt
R3D ¼ αD2R2: (13)

Bearing in mind that

d

dt
¼

d

dR

dR

dt
¼ D

d

dR
(14)

and integrating Eq. (13), we find

D ¼ aR�3 1�αð Þ (15)

where a is the integration constant. To determine the parameters a and α, let us
take the energy conservation law into account. The kinetic energy of the gas is equal to

Ek ¼
mu21
2

: (16)

4

Direct Numerical Simulations - An Introduction and Applications



The internal energy is concentrated in a “cavity” confined by an infinitesimally thin
layer. The pressure in the cavity is equal to Pc. Actually, this means that, strictly
speaking, the whole mass is not contained in the layer. A small amount of the sub-
stance is included into the cavity as well. In gas dynamics, the specific internal energy

of the ideal gas is calculated by the formula e ¼ P
ρ

1
γ�1

� �

, where P is the pressure, ρ the

density, and γ the adiabatic index. Therefore, the internal energy is equal to

ET ¼
1

γ � 1
�
4πR3

3
Pc, (17)

so that

E ¼ ET þ Ek ¼
1

γ � 1
�
4πR3

3
Pc þ

mu21
2

: (18)

Expressing the quantities Pc and u1 once more in terms of D and substituting

D ¼ aR�3 1�αð Þ, we obtain

E ¼
4

3
πρ0a

2 2α

γ2 � 1
þ

2

γ þ 1ð Þ2

" #

R3�6 1�αð Þ: (19)

Since the explosion energy E is constant, the power exponent of the variable R
must be equal to zero. This means

α ¼
1

2
: (20)

We determine the constant a from Eq. (19)

a ¼
3

4π
�

γ � 1ð Þ γ þ 1ð Þ2

3γ � 1

" #1
2

E

ρ0

� �1
2

, (21)

and substituting it together with Eq. (20) into formula (15), we arrive at the
expression for the shock wave velocity in the case of point-like explosion

D ¼
3

4π
�

γ � 1ð Þ γ þ 1ð Þ2

3γ � 1

" #1
2

E

ρ0

� �1
2

R�3=2 , (22)

or

D ¼ ξ0
E

ρ0

� �1
2

R�3=2 , (23)

where

ξ0 ¼
3

4π
�

γ � 1ð Þ γ þ 1ð Þ2

3γ � 1

" #1
2

¼ const: (24)

2.2 Theory of explosion in a combustible mixture of gases

Distinctive features of the problem consist in that the exothermic chemical
reactions are possible in such a medium. Therefore, it is quite reasonable to assume
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that the blast wave continuously transforms into the detonation one. Let us consider
the following model. An explosion in the gas generates a strong shock wave, which
propagates over the gas and heats it up to a state, in which burning reactions
become probable. We denote the energy of explosion by E0. The energy U released
at the combustion of the gas is equal t

U ¼
4

3
πR1

3ρ0Q
0, R0 <<R1 (25)

where Q 0 is the specific heat released in the medium (per mass unit of the
medium). The process is considered at the time moment t1, when R ¼ R1

(Figure 2). Supposing that E0>U, we determine a condition, under which the
detonation energy weakly affects the gas flow [12],

R1 <Rx, (26)

where R3
x ¼

3E0

4πQ 0ρ0
. Let the charge have a finite radius R0 Then, when applying

the conventional theory of point explosion to the description of the motion, we have
to use the estimation

R0 <R <Rx: (27)

It should be noticed that conditions (26) and (27) strongly restrict the scope,
where the laws of point explosion in an inert gas are applicable to the flows in the
detonating medium. However, if the energy E0 is high, and if it is released in a small
volume, the flow in the region R1 <Rx would mainly occur as it does at an ordinary
point explosion. On the other hand, for the time moment t2, at which

R ¼ R2 and E0 <U, (28)

the combustion processes start to play a dominating role, and the gas flow will
possess the main characteristics of the detonation combustion [12].

From the aforesaid, some interesting conclusions can be drawn.

1. The theory of a point explosion is proposed to be used for a combustible
mixture of gases within the limits R0 <R <Rx, if the proposed model of
transformation of a blast wave into a detonation one is valid for the given

Figure 2.

Scenario of the continuous transformation of a blast wave into a detonation one: R0 is the charge radius, Rx is
the initial threshold, R2 is the final threshold, where the transformation of the strong detonation mode into the
Chapman-Jouguet one is possible.
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mixture. Another scenario is probable, when the detonation is impossible
under the given physico-chemical conditions in the gas medium, and the blast
wave simply fades.

2.When R ! Rx, the energy of the system considerably changes, E 6¼ const,
increasing almost twice as much, which has to be taken into consideration
while studying the gas motion at this stage.

3. It is evident that, if R ! Rx, the energy becomes proportional to the cube of the

sphere radius, E � R3.

Hence, we come to an idea of that, for the model of point explosion in a
combustible mixture of gases to be valid at R ! Rx under our conditions, it should
be either modified or extended. Look once more at formula (19) expressing the
energy conservation law. In the theory of point explosion for a usual non-detonable
mixture of gases, it is adopted that E ¼ const, which results in α ¼ 1

2. However, in the

case α ¼ 1, Eq. (19) yields E � R3, which is necessary in our case. One can see that
the energy conservation law allows the following set of relations:

α ¼ 1; (29)

E ¼
4

3
πρ0a

2 2

γ2 � 1
þ

2

γ þ 1ð Þ2

" #

R3; (30)

a ¼
3 γ � 1ð Þ γ þ 1ð Þ2

16πγ

" #1
2

E

ρ0

� �1
2

R�3=2 : (31)

Substituting the new values of a and α into formula (15), we obtain

D ¼ a ¼
3 γ � 1ð Þ γ þ 1ð Þ2

16πγ

" #1
2

E

ρ0

� �1
2

R�3=2 : (32)

According to the integration rules, the quantity a is a constant. Hence, a new
formula for the velocity of a blast wave in the reacting gas medium is proposed:

D ¼
3 γ � 1ð Þ γ þ 1ð Þ2

16πγ

" #1
2

E

ρ0

� �1
2

R�3=2 ¼ const: (33)

The law of conservation of energy gives unpredictable results, but these results
are quite possible, given that the energy of the system is changing.

2.3 Formula for the velocity of a spherical wave

Let us determine the shock wave velocity in the critical zone, when R ! Rx and
R ! R2 (Figure 2). One can consider a simplified version, when the transition
occurs at a distance Rx from the center [4], but for the formation of normal
detonation it is necessary to isolate the transition interval. As an example, let us
consider the detonating gas, 2H2 þO2 ¼ 2H2Oþ Q , where Q ¼ 286:5 kJ=mol is the
thermal effect obtained at a combustion of one mole of hydrogen. Let this reaction
(an initial explosion) be initiated. The energy of the system is
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E ¼ VnH2qþ E0, (34)

where V is the volume of a certain ball, nH2 the concentration of hydrogen
molecules in it, q the thermal effect produced by one hydrogen molecule, and E0

the initial energy of a charge of radius R0 (recall that R0≪Rx, but the current
radius of the sphere R ! Rx). The volume of the ball and the concentration of

hydrogen in it are calculated using the known formulas: V ¼ 4
3 πR

3, nH2 ¼
P0

K∗T0
NAc,

where P0

K∗T0
¼ ρ0

μ
; P0, T0, and ρ0 are the initial pressure, temperature, and density

of the gas mixture; K∗ is the universal gas constant; NA is the Avogadro constant;
c the current content of hydrogen in the mixture (it is supposed that all the
hydrogen burns out in the course of the reaction); and μ is the molar mass of the
mixture. Hence,

E ¼
4

3
πR3 P0

K∗T0
NAcqþ E0: (35)

Substituting Eq. (35) into Eq. (33), we obtain

D ¼
γ þ 1ð Þ2 γ � 1ð ÞNAqc

4γμ
þ ξ00
� �2 E0

ρ0R
3

" #1
2

,

where

ξ00 ¼
3 γ � 1ð Þ γ þ 1ð Þ2

16πγ

" #1
2

: (36)

At the time moment, when R!R2, where R2>Rx ≫R0, the second term in the

brackets tends to zero, ξ00ð Þ2 E0

ρ0R
3 !0, whence we obtain

D ¼
γ þ 1ð Þ2 γ � 1ð ÞQc

4γμ

" #1
2

, (37)

taking into account that Q ¼ NAq, where Q is the thermal energy of one hydro-
gen mole. The final formula (37) is suggested to describe the velocity of a detona-
tion wave. Above the threshold R2, the charge energy E0 loses its importance;
further, the energy of the system is replenished only by the first term Eq. (35),
which demonstrates the real wave velocity. Provided that formula (37) is valid, the
examined quantity does not depend on the mixture pressure. At the initial time
moment, the velocity is constant, and it is governed by the following parameters:
the combustion energy per one mole of the combustible gas, Q; the fraction of the
burned-out gas, c; the molar mass of the mixture, μ; and the adiabatic index for the
given mixture of gases, γ.

For a plane wave, the following formula is widely known [11, 13]:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 γ2 � 1ð ÞQ∗
p

(38)

where Q∗ is the ratio between the energy released by a substance to the mass
flow of this substance. As a result, by comparing formulas (37) and (38), we come
to a conclusion that they are very similar, although the former seems to be more
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adequate for the description of the spherical detonation at the beginning of the
process. The results of calculations for two different gas mixtures are compared in
the Table 1, where Ds is the velocity of a spherical wave calculated by the new
formula (37) at the beginning of the detonation, when R ¼ R2; Dn is the plane wave
velocity at the final stage of detonation, when R ! ∞, taken from work [14]; and ε

is the corresponding relative difference.
In this work, the ideal case of the transformation of an explosive spherical wave

into the Chapman-Jouguet mode is considered. From this viewpoint, formulas (33)
and (37) prove that the regime of normal spherical detonation can exist at the
beginning of the process, much earlier before the curvature radius can be assumed
tending to the infinity. Moreover, it demonstrates a possibility of the existence of
the normal spherical detonation with a lower velocity of a shock wave in compari-
son with the classical one. The mathematical expression (38) is “actual” at the final
stage, when the radius tends to infinity, i.e. for the plane wave. It should be noted
that, in the gas dynamics researches, instead of the shock wave velocity, its ratio to
the sound velocity in the unperturbed gas medium, b0, i.e. the Mach number M, is
often used,

M ¼
D

b0
: (39)

With regard for the formula for the sound velocity,

b0 ¼

ffiffiffiffiffiffiffiffi

γ
P0

ρ0

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ
K∗T0

μ

s

, (40)

and expression (37), we obtain

M ¼
γ þ 1ð Þ2 γ � 1ð ÞQc

4γ2K∗T0

" #1
2

: (41)

Formula (41) demonstrates the dependence of the Mach number on the adia-
batic index γ, the combustion heat Q, the fraction of the burned-out gas c, and the
temperature of the medium T0. By varying those quantities, it is possible to regulate
the shock transition intensity.

3. Conditions for the appearance of spherical detonation in the
interaction of hydrogen with oxygen

3.1 Some issues concerning the chemical reaction kinetics

The process of shock wave propagation is very fast. For instance, at the shock
wave velocity D ¼ 2500 m=s and the gas layer thickness r ¼ 0:005 m the shock

compression of the substance lasts t ¼ 2� 10�6 s. This means that the dominant

Gas mixture Ds m=s½ � Dn m=s½ � ε %½ �

66:6%H2þ33:3%O2 2550 2830 9.9

25%C2H2þ75%O2 2089 2330 10.3

Table 1.
Shock wave velocities.
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part of a compressed substance must react within such a short time interval; only in
this case, we may talk about the supersonic burning as a self-supporting process
[13]. Proceeding from this viewpoint, let us consider some issues of the kinetics of
the chemical reaction of H2 and O2.

First of all, it should be emphasized that the matter concerns chain reactions.
The Haber scheme [9] and the development of a chain reaction with the Haber cycle
look like

OHþH2 ¼ H2OþH, (42)

Hþ O2 þH2 ¼ H2Oþ OH, (43)

Hþ O2 ¼ OHþO, (44)

OþH2 ¼ OHþH, (45)

OHþ OH ¼ H2O2 ! chain break, (46)

HþH ¼ H2 ! chain break, (47)

Hþwall ! chain break, (48)

OHþwall ! chain break: (49)

Reactions (42) and (43) correspond to the chain continuation, reactions (44)
and (45) to the chain branching, and reactions (46)–(49) to the chain break. For
reaction (42), the corresponding activation energy is supposed to be high, with not
every collision of OH and H2 resulting in the reaction between them. On the
contrary, reaction (43) runs at every ternary collision [9]. The cycle of reactions
(42) and (43) composes a repeating chain link. According to Haber, 5–10, on the
average, cycles must pass before reaction (44) occurs and there emerges a
branching in the chain. Let us consider reactions (43) and (44), which compete
with each other. Denoting the rate of reaction reaction (44) as W3 and that of
reaction (43) as W2, the probability of branching δ can be defined as the rate ratio

δ ¼
W3

W2
: (50)

In Semenov’s book [9], the expression for δ is given as

δ ¼
2:5� 105 exp �E3

K∗T2

� �

H2½ �
, (51)

where H2½ � is the partial pressure of hydrogen in units of mm Hg (the numerical

coefficient of 2:5� 105 in the nominator is multiplied by 1 mm Hg; therefore, the
pressure in the denominator is expressed in terms of mm Hg units), E3 is the
activation energy of reaction (44), K∗ the gas constant, and T2 the medium tem-
perature (in Kelvin degrees). According to Semenov’s data [9, 15],
E3 ¼ 16 kcal=mol. Formula (51) shows that δ strongly depends on the temperature,
so that the process can be substantially accelerated as the temperature grows.
Moreover, it turns out that the cycle of reactions (42) and (43) with branching (44)
does not describe the fastest mechanism. There may exist a case where

W3 ¼ W2, (52)

or

δ ¼ 1: (53)
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From the physical viewpoint, this means that the probability reaches the maxi-
mum, and the branching occurs at every chain link. Then the interaction scheme
changes, reaction (44) substitutes reaction (43), and a transformation to the
Lewis scheme takes place. In this case, we obtain OHþH2 ¼ H2OþH, Hþ O2 ¼
OHþ O, and so on, i.e. the temperature Tx, at which δ ¼ 1, is a critical one, when
the kinetics of the interaction between hydrogen and oxygen undergoes qualitative
changes. Let us write down the Lewis scheme in the complete form [9],

OHþH2 ¼ H2OþH, (54)

Hþ O2 ¼ OHþO, (55)

OHþH2 ¼ H2OþH, (56)

OþH2 ¼ OHþH, (57)

Hþwall ! chain break, (58)

Oþwall ! chain break, (59)

OHþwall ! chain break: (60)

In the summarized form, the cycle reaction looks like

OHþ 3H2 þ O2 ¼ OHþ 2Hþ 2H2O, (61)

and just this reaction is associated with the first fastest initial chain transforma-
tions that give rise to detonation.

3.2 Medium state at the shock wave front. Critical temperature

Let a point explosion took place in a gas medium. In our case, the matter concerns
the reacting gas media; therefore, the blast wave extinction may occur more slowly
that usually; or it can be absent altogether, because a strong mechanism of chain
reactions between hydrogen and oxygen starts to play its role. The ultimate result
depends on the physico-chemical properties of the gas mixture and the initial energy
of explosion. From this point of view, the most interesting is the model of a transition
of the strong (overcompressed) detonation into the Chapman-Jouguet regime.

The shock wave propagates from a region with a higher pressure into a region
where the pressure is lower. The gas dynamics usually considers waves that have a
sharp front. The region of shock-induced transition is a discontinuous surface, the
shock wave front. The unperturbed state is designated by subscript 1 and the
perturbed one by subscript. 2. The density ρ, pressure P, and temperature T change
in a jump-like manner across the front. The relations between the parameters
P1;T1; ρ1ð Þ and P2;T2; ρ2ð Þ follow from the Hugoniot relations (the conservation
laws) and the equation of ideal gas [11]. It is known that

ρ2

ρ1
¼

γ þ 1ð ÞM2

2þ γ � 1ð ÞM2 ; (62)

P2

P1
¼

2γM2 � γ þ 1

γ þ 1
; (63)

T2

T1
¼

2γM2 � γ þ 1
� �

2þ γ � 1ð ÞM2
� �

γ þ 1ð Þ2M2
, (64)
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where Mach number, M , γ ¼
Cp

CV
is the adiabatic exponent (for a two-atom ideal

gas, γ ¼1.4 [16]). In such a manner, when a shock wave propagates in gases, we
should consider the medium near (subscript 1) and at the front (subscript 2). To
characterize the latter, we must know an important parameter, the shock wave
velocity or the Mach number. In our case, using expression (37) and the formula for
sound velocity (40), we obtain (41).

Now, let us carry out a simple gedanken experiment. Let a spherical reactor
contain a hydrogen-oxygen mixture with the initial parameters (P0, T0 ¼ 293 K).
Let us heat up the mixture to the temperature T1 <T

∗

1 , where T∗

1 is the ignition
temperature of the static medium. We initiate a reaction using an explosion and
should observe a continuous transformation of a blast wave into the detonation of
the hydrogen-oxygen mixture. At the wave front, the medium parameters are
P2;T2ð Þ. Let

T2 ¼ Tx, (65)

i.e. the critical temperature Tx is attained, and the reaction develops, being
driven by the chain reaction mechanism according to the Lewis scheme. In order to
determine the critical temperature Tx, let us use formula (51). Taking into account
that δ ¼ 1, we obtain the transcendental equation for the critical temperature Tx

2:5� 105 exp � E3

K∗Tx

� �

H2½ �
¼ 1, (66)

where

H2½ � ¼ cP2 (67)

is the partial hydrogen pressure (in mm Hg units) at the shock wave front [17],
P2 is the total pressure in the mixture (in mmHg units) at the shock wave front, and
c the hydrogen content in the mixture (coefficient). With regard for Eq. (67), we
obtain

2:5� 105 exp � E3

K∗Tx

� �

cP2½ �
¼ 1: (68)

Let us express P2 in the denominator of Eq. (68) in terms of known quantities.
Before the reaction started (the initiation of the explosion), the gas mixture pres-
sure was P0, and its temperature was T0 ¼ 293 K. As the mixture is heated up to T1,
its pressure increases to

P1 ¼ P0
T1

T0
: (69)

From Eq. (63), it follows that

P2 ¼
2γM2 � γ þ 1

γ þ 1
P1, (70)

or, in view of Eq. (69),

P2 ¼
2γM2 � γ þ 1
� �

P0T1

γ þ 1ð ÞT0
: (71)
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The temperature T1 in formula (71) is expressed in terms of Tx and the Mach
number M as follows:

Tx

T1
¼

2γM2 � γ þ 1
� �

2þ γ � 1ð ÞM2
� �

γ þ 1ð Þ2M2
: (72)

Whence, we obtain

T1 ¼
γ þ 1ð Þ2M2Tx

2γM2 � γ þ 1
� �

2þ γ � 1ð ÞM2
� � , (73)

or, taking Eq. (73) into account,

P2 ¼
γ þ 1ð ÞM2TxP0

T0 2þ γ � 1ð ÞM2
� � : (74)

The denominator in formula (68) also includes the hydrogen content, c. If we
assume that all hydrogen in the gas mixture burns out, we can express c using the
Mach number (Eq. (41)) and the temperature of the gas medium T1,

c ¼
4γ2M2K∗T1

γ � 1ð Þ γ þ 1ð Þ2Q
, (75)

or, in accordance with Eq. (73),

c ¼
4γ2M4K∗Tx

γ � 1ð Þ 2γM2 � γ þ 1
� �

2þ γ � 1ð ÞM2
� �

Q
(76)

(in this case, we impose a restriction on the gas mixture composition,
0 < c≤0:66). From Eq. (67) and using Eqs. (76) and (74), we obtain the partial
pressure of hydrogen at the shock wave front,

H2½ � ¼
4γ2 γ þ 1ð ÞM6K∗P0

γ � 1ð Þ 2γM2 � γ þ 1
� �

2þ γ � 1ð ÞM2
� �2

QT0

T2
x: (77)

Then, formula (66) reads

T2
x ¼

2:5� 105QT0 γ � 1ð Þ 2γM2 � γ þ 1
� �

2þ γ � 1ð ÞM2
� �2

4γ2 γ þ 1ð ÞM6K∗P0

exp �
E3

K∗Tx

� �

: (78)

Hence, we obtained the dependence which connects the initial pressure in the
medium and the Mach number with the critical temperature at the shock wave
front.

3.3 Results and discussion

After the substitution of the corresponding numerical values of physical param-
eters of the hydrogen-oxygen mixture and taking into account that γ ¼1.4,

Q ¼ 286:5 kJ=mol , K∗ ¼ 8:31 J= mol Kð Þ, E3 ¼ 16� 103 � 4:19 J=mol, and
T0 ¼ 293 K, Eq. (78) reads
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Tx
2 ¼

5:38� 1010 2þ 0:4M2
� �2

2:8M2 � 0:4
� �

P0M
6

exp �
8067

Tx

� �

: (79)

Most of these quantities are well known. The values of the others are chosen for
practical reasons. So, for example, T0 ¼ 293 K, this is the temperature at which the
experimental setup operates. The most optimal for laboratory conditions is the
pressure of the gas mixture P0 ¼ 60 mm Hg, since at P0>60 mm Hg the shock wave
acquires destructive energy. Using expression (79), let us calculate the critical
temperature for two Mach numbers, (i) M ¼ 2:15 and (ii) M ¼ 4:78, i.e. for shock
waves of two types, but at the fixed initial pressure P0 ¼ 60 mm Hg. Experimental
data indicate that detonation is not observed at M< 2:15, weak shock waves become
waves of compression and rarefaction. At the same time, the value M ¼ 4:78 was
selected as the largest one obtained from expression (41) at the following parame-
ters: c ¼ 0:66, T1 ¼ T0 ¼ 293 K, and γ ¼ 1:4. In the first case (M ¼ 2:15 and
P0 ¼ 60 mm Hg)

Tx
2 ¼ 1:69� 109 exp �

8067

Tx

� �

: (80)

In the second one (M ¼ 4:78 and P0 ¼ 60 mm Hg),

Tx
2 ¼ 5:93� 108 exp �

8067

Tx

� �

: (81)

The transcendental equations were solved with the use of the software package
“Consortium Scilab (Inria, Enpc)” with the program code “Scilab-4.1.2”. After the
corresponding calculations, we obtained Tx ¼ 1120 K for the first case and
Tx ¼ 1420 K for the second one. The interval of researches can be expanded to
determine the critical temperatures for Mach numbers within line segment [2; 5]
with an increment of 0.2. Only real-valued roots, which have a physical sense, must
be taken into consideration. The corresponding plot for the dependence Tx � f Mð Þ
at P0 ¼ 60 mm Hg is shown in Figure 3.

Figure 3.
Dependences of the critical temperature at the shock wave front, Tx � f Mð Þ, and the temperature of static
medium T1 � g Mð Þ, at which the detonation is possible, on the Mach number at a fixed pressure P0 ¼ 60mmHg.
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One can see that the critical temperature grows nonlinearly with the Mach num-
ber. This behavior is not of surprise. The stronger the shock wave, the higher is the
pressure at its front, and the higher is the probability of the chain break. As a result,
we obtain the critical temperature growth, because the probability of chain break can
be compensated only by the probability of chain branching, which increases with the
medium temperature. However, this is not the main point. Knowing the critical
temperature and the Mach number, it is possible to determine the initial temperature
of the gas medium required for the detonation to take place. In other words, it is

possible to determine such a temperature T1 in front of the shock wave front that the
corresponding wave would stimulate the detonation. Using expression (73), let us

plot the dependence of T1 on M at P0 ¼ 60 mm Hg (Figure 3). It allows us to
determine the initial temperature of the medium, at which the detonation of the gas
mixture becomes possible for the given Mach number. Moreover, in accordance with
Eq. (41), the initial temperature and the known Mach number determine the hydro-
gen content. Hence, the critical temperature is unambiguously related with the Mach
number and, therefore, with the initial parameters of the hydrogen-oxygen mixture.

4. Conclusions

To summarize, it should be noted that formula (37) determines the velocity of a
detonation wave at the initial stage, if this wave is generated at the combustion of
some “portion” (the parameter c) of a combustible gas, when R ! R2 (see Figure 2
and the model described the transformation of a blast wave in a detonation one).
This formula is valid for spherical wave, in contrast to formula (38) known from the
literature, which was obtained for plane waves. Thus, provided that the shock wave
velocity or the Mach number is known, the solution of one of the basic gas dynamics
problems can be obtained, i.e. we can find the parameters P1;T1; ρ1ð Þ at the wave
front, if we know the set P0;T0; ρ0ð Þ of parameters for the unperturbed medium. In
particular, the determined parameters are necessary for studying the kinetics of a
chemical reaction in the course of the shock transition. There is no doubt that the
stoichiometric mixture of hydrogen and oxygen will generate a detonation wave.
However, it is difficult to assert the same for the mixture with 12% of hydrogen. In
this case, it is necessary to consider the reaction mechanism itself.

The expression (66) obtained for the critical temperature is the simplest crite-
rion for the transformation of the blast wave into a detonation one. At this temper-
ature, T2 ¼ Tx if δ ¼ 1, i.e. the probability of branching becomes maximum for the
scheme of chain reactions with the hydrogen-oxygen interaction, which was con-
sidered above. The obtained Eq. (78) allows the sought value to be determined as a
function of the Mach number, provided that the initial pressure is fixed. The critical
temperature is the threshold of a detonation in a gas mixture, because the super-
sonic burning is impossible at temperatures below it. For example, let us analyze gas
mixtures with different hydrogen contents of 66.6, 60, and 50%, and the tempera-
ture of static medium T1 ¼ 273 K (Table 2).

Gas mixture T1 K½ � M T2 K½ � Tx K½ �

66:6%H2 þ 33:3%O2 273 4.95 1558 1427

60%H2 þ 40%O2 273 4.72 1438 1420

50%H2 þ 50%O2 273 4.31 1241 1390

Table 2.
Parameter changes at the shock transition (T1 ¼ 273 K and P0 ¼ 60 mm Hg).
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Comparing the T2- and Tx-values, we come to a conclusion that the process,
which is of interest for us, occurs only in the first two cases. However, it is enough
to raise the initial temperature T1 ¼ 373 K for the detonation to become possible at
lower hydrogen concentrations (Table 3).

The practical results testify that the conditions for the emergence of spherical
detonation have a drastic dependence on the temperature and the mixture compo-
sition. The relation obtained in this work allows the critical values of those param-
eters to be determined and, in such a manner, to stimulate the regime of supersonic
burning in the hydrogen-oxygen mixture. In the future, the presented results can be
used to determine the range of admissible values of the parameters of the hydrogen-
oxygen mixture necessary for detonation. Thus, it becomes possible to improve the
performance of engines, make them more efficient.

Nomenclature

Basic designations

D shock wave velocity, detonation velocity
Rx critical radius
M Mach number
P, T, ρ pressure, temperature, density of the medium
u1 gas velocity behind the shock front
b0 speed of sound in a stationary gaseous medium
γ adiabatic index
E0 explosion energy
U burnt gas energy
Q combustion energy of one mole of combustible gas
μ molar mass
K∗ universal gas constant
NA Avogadro number
c coefficient of flammable gas content in the mixture
W chemical reaction rate
δ branching probability
H2½ � is the partial pressure of hydrogen
Tx critical temperature
H2 hydrogen molecule
O2 oxygen molecule
H2O water molecule
O oxygen atom
H hydrogen atom
OH compound of an oxygen atom with a hydrogen atom
f xð Þ function of the variable x
exp xð Þ exponential function

Gas mixture T1 K½ � M T2 K½ � Tx K½ �

66:6%H2 þ 33:3%O2 373 4.23 1648 1384

60%H2 þ 40%O2 373 4.04 1523 1365

50%H2 þ 50%O2 373 3.70 1339 1339

Table 3.
Parameter changes at the shock transition (T1 ¼ 373 K and P0 ¼ 60 mm Hg).

16

Direct Numerical Simulations - An Introduction and Applications



∆x increment of variable x
d
dx

derivative

≪ much less
≫ much more
! aspires to
a; b½ � line segment
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