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Chapter

Cosmological Constant and
Particle Masses in Conformal
Quantum Gravity
Ho-Ming Mok

Abstract

It has been proposed that the equivalence principle of quantum gravity should
be introduced as a fundamental symmetry in quantum gravity to reconcile quantum
mechanics and general relativity. Such symmetry extends the equivalence principle
of general relativity to the observer frames of reference which are in quantum
mechanical motions. That means the quantum state of a particle is relative to the
observer frame which can also be itself in a quantum mechanical state. As a conse-
quence, all the physical laws apply not just to the frames of reference in any kind of
motion as in the general relativity but also the same in the reference frames in
quantum mechanical motions as well. The classical space-time concept therefore
requires to be significantly modified. Because of such principle, the quantum grav-
ity should be formulated in the quantum space-time-matter space with local con-
formal symmetry. In this book chapter, we explore the formulation of the quantum
space-time-matter geometry with local conformal symmetry for discussing the
relationship between the cosmological constant and quantum gravity as well as the
mass spectrum of fundamental particles. The mathematical expressions of the fun-
damental particle masses and cosmological constant are discussed.

Keywords: cosmological constant, equivalence principle of quantum gravity, Higgs
condensate, quantum space-time-matter geometry, local conformal symmetry

1. Introduction

The cosmological constant would be fundamentally related to the quantum
nature of space-time. The author has proposed that the cosmological constant prob-
lem could be resolved by making the hypothesis that the space-time itself behaves as
the phase of Higgs condensate (or say space-time condensate) and is discrete in
nature. The estimated value of cosmological constant is in excellent agreement with
the cosmological observations [1–4]. It has been further shown that the phase factor
associated with the particle field in the discrete space-time could generate the CP
violation in quark mixing system [5]. It is thus expected that the ultimate theory of
quantum gravity would explain the cosmological constant problem.

However, there are fundamental inconsistencies between the general relativity
and quantum mechanics in constructing a quantum theory of gravity. Actually,
some important elements that are present in one theory are missing in the other. In
the one hand, the general relativity does not involve the concepts of quantisation
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and probability as well as the uncertainty principle which are the important char-
acteristics of quantum mechanics. On the other hand, quantum mechanics is not
geometrical and there is no equivalence principle to make it independent with the
quantum state of the observer frame of reference like the classical reference frame
of general relativity. Such situation imposes fundamental difficulties in the unifica-
tion of both theories. In order to achieve a more symmetrical treatment to bridge
the gaps between both theories for their unification, it has been proposed that the
equivalence principle of quantum gravity should be introduced in quantum gravity
to reconcile the quantum mechanics and general relativity [6]. The equivalence
principle of quantum gravity is that the laws of physics must be of such a nature
that they apply to systems of reference in any kind of motion, both classical and
quantum mechanical. Such symmetry extends the equivalence principle of general
relativity to the observer frames of reference which are in quantum mechanical
motions. That means the quantum state of a particle is relative to the observer frame
of reference which can also be itself in a quantum mechanical state. As a conse-
quence, all the physical laws apply not just to the frames of reference in any kind of
classical motion as in general relativity but also the same in the reference frames in
quantum mechanical motions as well. The classical space-time concept therefore
requires to be modified significantly. Under such principle, the quantum gravity
should be formulated in the quantum space-time-matter space with local conformal
symmetry. The advantages of such treatment are that quantum mechanical motions
of observers are introduced to extend general relativity from the classical to quan-
tum mechanical domain. On the other hand, quantum mechanics can be made
geometrical and relative to the quantum state of observer without any preferred
frame. No preferred observer frame of reference is the essence of the principle of
relativity.

In this book chapter, we explore the formulation of the quantum space-time-
matter geometry with local conformal symmetry for discussing the relationship
between the cosmological constant and quantum gravity as well as its connection
with the Higgs condensate that would explain the nature of cosmological constant.
Furthermore, such formulation implies that the mass spectrum of fundamental
particles is related to the cosmological constant and the mathematical expressions of
the fundamental particle masses and cosmological constant are discussed.

2. Quantum space-time-matter geometry

According to the principle of relativity, the space and time are defined by the
coordinate system established respectively by the measuring-rods and synchronised
clocks (or the equivalent measurement devices) at rest relative to the observer,
which is known as the observer frame of reference, for the descriptions of physical
events. In the theory of relativity, the measuring-rods and clocks are in classical
motions and thus, within a specified measurement uncertainty, we can assume that
their measuring results correspond to the points in the four-dimensional space-time
coordinate system as space-time points. However, such classical concept of space-
time can only be an approximation as the measuring-rods and clocks themselves are
subject to quantum uncertainty and quantum mechanical motions, just the same as
the observed matter particles. That means the measuring results of the measuring-
rods and clocks should be probabilistic and subject to the uncertainty principle.
When the interested scale of length and time are in microscopic level and the
quantum uncertainties of the measuring-rods and clocks are large, we can imagine
that no admissible coordinate system in classical sense can be established by such
measuring-rods and clocks. On the other hand, if we require the quantum
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uncertainties of the measuring-rod and clock to be infinitely small, according to the
uncertainty principle, the momentum and energy involved in the measurements, or
say the observation or probing energy scale, should be infinitely large. However,
when the energy and momentum is sufficiently large, according to the general
relativity, a black hole with an event horizon comparable to the measuring scale will
form and it will make the interested physical events hidden behind the event
horizon and thus become inaccessible. That means it is not possible to achieve the
measurement of space-time points. Such situations reveal that the classical space-
time definition is obviously in trouble and modification to it is needed.

If we still adopt defining space-time by measuring-rods and clocks for describing
the physical events, the quantum mechanical motions of such measuring-rods and
clocks should be considered in the space-time definition. Therefore, the space-time
cannot simply be a 4-dimensional coordinate system with space-time points but
should be associated with the quantum states of measuring-rods and clocks specified
by their state parameters. As the measuring-rod and clock are used for measuring
the space and time, their quantum states should be characterised by the classical

space-time vector x
!
; otherwise, they are not the suitable measuring devices for

performing the space-time measurements. Furthermore, because of the constraint
of measurement scale by the uncertainty principle as explained before, it is reason-
able to introduce the quantum uncertainties associated with the space-time mea-
surements as additional state parameters of the measuring-rod and clock. This
treatment has the advantage that it is similar to specifying errors or uncertainties for
experimental data but the major difference now is that the quantum uncertainty
introduced should be an intrinsic spacetime property, rather than instrumental
errors or uncertainties. This will lead to a very fundamental change on the spacetime
concept. In this connection, let us denote the quantum state of the measuring-rod
and clock, that is the quantum state of the spacetime by definition, as

x
!
;Δ x

!
���

E
(1)

where x
!
is the classical spacetime vector and Δx

!
is the associated uncertainty. It

should be noted that the above notation represents the quantum states of spacetime
associated quantum uncertainties, which is the states of coordinate system
established by measuring-rods and clocks, rather than the particle states. As the
quantum uncertainties of the measuring-rod and clock depends upon their energy
scales, the modified definition of spacetime should therefore be observation energy
scale dependent.

In order to have a proper representation space for the quantum state of particle,
the spacetime state should satisfy the following relation

x
! þδ x

!
;Δx

!
���

E
¼ x

!
;Δx

!
���

E
þ δ x

!
;Δx

!
���

E
(2)

The quantum state αj i of a particle can be projected to such quantum spacetime

state to become a wave function ϕ x
!
;Δx

!
� �

as

ϕ x
!
;Δx

!
� �

¼ x
!
;Δx

! jα
D E

(3)

From the above expression, one may find that, although such expression of wave
function in terms of state kets is somehow similar to the usual expression in the
ordinary quantum mechanics, the major differences between them are that the
spacetime uncertainty should be specified in the quantum spacetime representation
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for the particle quantum state and the spacetime states are in general not a
spacetime point. Furthermore, in the ordinary quantum mechanics, the expression

x
! jα
D E

represents the projection of the particle quantum state αj i to its position

eigenstate x
!
���
E
. The position eigenstate is simply the particle position quantum state

as measured by the classical frame of reference. Whereas, the expression in Eq. (3)
extends such meaning to the measurement of the particle position quantum state by
an observer in quantum mechanical motion. The projection in the ordinary quan-
tum mechanics therefore becomes a special case of it. The above treatment intro-
duces quantisation and probability to the spacetime concept as required in the
actual situation of physical measurements in microscopic scale and also, the mean-
ing of particle wave function is extended to become the observation of the particle
quantum state in a specific quantum spacetime state.

We can imagine that the particle quantum state can be observed in another

quantum spacetime state y
!
;Δ y

!
���

E
which can be expressed in general as linear

combination of the eigenstate of x
!
;Δ x

!
���

E
. We can therefore express the

transformation as

y
!
;Δ y

! jα
D E

¼
Z

y
!
;Δ y

! j x!;Δ x
!

D E
x
!
;Δ x

! jα
D E

(4)

The integration sign represents the summation or integration of all the possible

eigenstates of x
!
;Δ x

!
���

E
. Actually, we can omit such notation, when summing or

integrating the states, by identifying the operator x
!
;Δ x

!
���

E
x
!
;Δ x

!
D ��� as the internal

index of the summation or integration. That is similar to the Einstein’s convention
of omitting the summation sign when summing the internal index of the product of
contravariant and covariant tensor in the general relativity. The expression in
Eq. (4) is directly analogous to representing the projection of four vectors in dif-
ferent coordinate systems, which is associated with different frame of references, in
special relativity. The above treatment allows us to bring the general relativity
closer to quantum mechanics in constructing the theory of quantum gravity.

In order to bring the quantummechanics closer to the general relativity, we need
to introduce the equivalence principle and geometrical concept to the ordinary
quantum mechanics in the theory of quantum gravity. As mentioned above, in the
relativity, the measuring-rod and clock at rest relative to the observer defines the
observer frame of reference. However, the measuring-rod and clock are subject to
quantum mechanical motion and described by the quantum spacetime state

x
!
;Δ x

!
���

E
, which means the observer frame of reference in different quantum

mechanical motions should be described by different quantum spacetime states. As
the equivalence principle of general relativity requires that all the physical laws
apply to the frames of reference in any kind of classical motion but actually the
observer frames of references can be in quantummechanical motions, it is therefore
natural and reasonable to extend the equivalence principle to the observer frames of
references in quantum mechanical motions. As a consequence, all the physical laws
apply not just to the frames of reference in any kind of classical motion as in general
relativity but also the same in the reference frames in quantum mechanical motions
as well. We call this the equivalence principle of quantum gravity [6]. Since differ-
ent quantum mechanical observer frames are described by different quantum
spacetime states, the equivalence principle of quantum gravity implies that the
general laws of nature are required to be expressed by equations which hold good
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for all systems of quantum spacetime states which are covariant under the trans-
formation in Eq. (4). Actually, this is an extension of the general covariance from
the classical coordinate system to the to the quantum spacetime space.

In the general relativity, under the equivalence principle, we can always find a
free fall frame, which is local in spacetime, in which there is no gravity acting on the
observed particles. Similarly, based on the equivalence principle of quantum grav-
ity, we may anticipate that we can always find a “quantum free” frame for a matter
particle in which there is no observed quantum effect on the observed particle.
However, the major difference between such arguments is that all the matter
particles with different masses have the same acceleration under the gravity,
whereas the quantum mechanical motions depend on the energy and momentum of
the particles. That means the “quantum free” frame for one particle may not be
valid for another, especially when two particles of different energy and momentum
are observed together under the same quantum spacetime state. In the general
relativity, when a particle is moving in a gravitational field, its equation of motion is
governed by the geodestic equation given by the extremum of the following action

S ¼
Z

ds (5)

However, as we know in relativistic mechanics, the equation of motion of free
particle is given by the least action principle on the following action

S ¼
Z

mds (6)

The difference between them is that the rest mass is omitted in the particle
action in general relativity. This is due to the fact that the inertial mass is the same
as the gravitational mass under the equivalence principle of general relativity.
However, when the quantum mechanical motion of matter particle is considered,
the inertial mass cannot be neglected. We can understand this by considering the
Schrödinger equation of a particle in gravitational field. As demonstrated by the
COW experiment [7], the quantum interference pattern of neutrons induced by
gravity depends upon the neutron inertial mass. Although it does not imply that the
equivalence principle of general relativity is violated in the quantum mechanical
particles under gravity, the experiment does show that the quantum mechanical
motions of different particle masses under gravitational field cannot be made geo-
metrical in spacetime coordinate system. This is another fundamental difficulty in
unifying quantum mechanics with general relativity. In connection to this, the
author has proposed that the spacetime should be merged with matter together to
become the space-time-matter space in formulating the theory of quantum gravity
[6]. But we cannot simply write the geometrical line element mds as the action for a
particle in quantum gravity because of the quantum mechanical nature of matter
particles as well as the above mentioned quantum spacetime concept. In this con-
nection, let us introduce the quantum space-time-matter state Ψj i by combining the
quantum state of particle and spacetime as

Ψj i ¼ ϕj i x
!
;Δ x

!
���

E
(7)

As the quantum space-time-matter space combines the quantum states of the
matter particle and the spacetime, it should therefore be complex in nature. The
quantum space-time-matter space also allows different quantum spacetime for
describing different quantum particle. Then, by introducing the equivalence
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principle of quantum gravity, we can make the quantum mechanics become a
geometrical theory in quantum space-time-matter space. Under the equivalence
principle of quantum gravity, all the physical laws apply to the observer frames of
reference in any classical and quantum mechanical motions, which means there is
no preferred observer frame of reference in any classical and quantum mechanical
motions. The particle states and the equation of motion should therefore be equally
good for any observer frame of references with the same physical laws. As the
general change of observer frame of reference should be associated with the change
of the spacetime state, this requires the general covariance of the physical laws
under the transformation of the spacetime state in Eq. (4). In the general relativity,
the physical observations in accelerating observer frames are associated with the
generalised spacetime coordinate system. The general covariance on spacetime
coordinate system allows us to choose a local observer frame which is an inertial
frame such that there is no acceleration on the observed particles. This is what we
call the “free fall frame”. The gravitational field, which provides universal acceler-
ation on all matter particles, corresponds to the curvature of spacetime. Analo-
gously, the extension of the physical observations in quantum observer frames is
associated with the generalised quantum spacetime states system. The extended
general covariance on the quantum spacetime states system allows us to choose a
local quantum observer frame such that there is no observed quantum motion on
the observed particles. We may call this the “quantum free” frame. The quantum
mechanical motions then correspond to the curvature of the quantum space-time-
matter space.

The equivalence principle of quantum gravity and the quantum spacetime con-
cept therefore allows the interesting physical results that the quantum mechanical
motion of a particle depends upon the quantum mechanical motion of the observer
frame. That means the quantummechanical motion is relative in nature. This can be
further explained by the simple argument as follows. Let us suppose that there is an
observer A and, with reference to its frame of reference, the observer B and observe
C are in the same quantum mechanical states. Then, the state of observer C as
observed by the observer B should be the same as the state of observer B as observed
by the observer C since their states are the same and therefore should be symmet-
rical to each other. Analogous to the relativity that the observer is assumed to be at
rest relative to the coordinate system, if we assume that the observer C can always
find an appropriate energy scale to establish a coordinate system with a specified
uncertainty that there is no observable quantum effect between the spacetime
coordinates in the coordinate system. We can say that the space-time coordinates
are free of quantum effect (mathematically speaking, this means that the observer
as observed itself is an identity). Therefore, due to the symmetry between observer
B and C, the observer B should be in a “quantum free” state as observed by observer
C in such “quantum free” coordinate system and vice versa. As a result, we can
always establish a “quantum free” frame for a quantum particle by choosing the
quantum frame of reference at the same state of the observed particle.

As the quantum mechanical motion of a particle and the quantum spacetime
state depends upon their energy scales, or say the term mc=ℏ, which means the
changing of quantum spacetime state could be associated with the change of energy
scale. As we understand in the relativistic quantum mechanics, the normalisation
factor, say N, of a quantum state is related to the energy scale so that any change of
the energy scale should be associated with the change of N. That means the trans-
formation in Eq. (4) between different quantum spacetime states is not necessary a
unitary transformation, which preserves the total probability of quantum states,
due to the change of normalisation in different quantum observer frames. Such
change of the normalisation of the quantum states, no matter the particle state or
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the quantum spacetime state, mathematically acts like applying a conformal factor
to the state as the conformal transformation. Furthermore, as the quantum
spacetime states are in the complex domain and the particle density is related to the
modulus of N, the most general transformation between different quantum
spacetime states could also involve a complex phase factor eiδ multiplying to the
conformal factor. This phase factor could have important physical meaning to the
CP-violation problem [5] but we will limit our discussions in this chapter without
considering such phase factor. As the quantum spacetime state is allowed to be
changed with the spacetime variables, the conformal transformation should be local
in nature. Since the equivalence principle of quantum gravity requires that there is
no preferred quantum spacetime state for observation, that means the equation of
motion should then be invariant under the local conformal transformation and the
quantum space-time-matter space should therefore possess the local conformal
symmetry.

In some sense, such local conformal symmetry behaves as a kind of gauge
symmetry on the quantum space-time-matter space, rather than only on the
spacetime. The local conformal transformation in quantum space-time-matter
space acts on the quantum space-time-matter metric whereas the conformal trans-
formation in spacetime acts on the spacetime metric. This make the local conformal
transformation in the quantum space-time-matter space something different from
the usual conformal transformation in spacetime. In contrast with the general
relativity, of which its equivalence principle implies the general covariance of
system of spacetime co-ordinates for expressing the physical laws, the equivalence
principle of quantum gravity implies the general covariance with scale change of the
system of co-ordinates of space-time-matter space. The incorporation of the local
conformal symmetry in the theory make it behaves as Weyl like geometry but now
with the spacetime replaced by the quantum space-time-matter space.

Analogous to the general relativity, in constructing the geometry of general
covariance for a curved quantum space-time-matter space, we may consider a
general small line element on a small region of quantum space-time-matter space.
Let us define the length of such line element dL as the inner product of δ Ψj i in a
small region of quantum space-time-matter space as

dL2 ¼ δ Ψj i � δ Ψj i ¼ δ ϕj i x
!
;Δx

!
���

E� �
� δ ϕj i x

!
;Δ x

!
���

E� �
(8)

where the inner product can be defined as the usual inner product used for
quantum mechanical states and thus dL2 has a real value. In fact, it is reasonable to
take real value for the inner product of the projection of a state onto itself. However,
because of the local conformal symmetry, dL2 should not be an invariant under the
transformation in Eq. (4) due to the change of the observer frame of reference. Let

us also introduce the operator
d
δx
!
Δx , which can extract the spacetime length from

the quantum spacetime state, for small changes on spacetime state with the prop-
erty as

d
δx
!
Δxδ x

!
;Δx

!
���

E
¼ δx

!
Δxδ x

!
;Δx

!
���

E
(9)

Suppose that we do not consider any mixing between the quantum matter
particle state and the quantum spacetime state, of which they respectively corre-
spond to the object and observer, by any symmetry operation, we may define
another line element dl of quantum space-time-matter space, which combines the
inner product of the quantum space-time-matter state with the extracted spacetime
vector, as
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dl2 ¼ δ ϕj i dδx!Δxδ x
!
;Δ x

!
���

E
� δ ϕj i dδx!Δxδ x

!
;Δ x

!
���

E
(10)

The element dl2 is also real and can be expressed in generalised coordinates ξμm in
the quantum space-time-matter space as

dl2 ¼ Gmn
μν dξ

μ
mdξ

ν
n (11)

where Gmn
μν is the combined metric of the quantum space-time-matter space and

the extracted spacetime length and the index μ and ν are the usual spacetime index
in general relativity whilem and n are the index associated with the inner product of
the quantum spacetime and matter states. We have assumed the expansion of the
quantum space-time-matter states by the discrete eigenstates such that the discrete
indices can be used above as analogous to the general relativity. But actually,
expansion on continuous eigenstates can be used with the integration, rather than
summation, as well in the expression without changing the formulation. If we
formulate the curved quantum space-time-matter space with local conformal sym-
metry, let us define the local conformal operator Ω on the quantum space-time-
matter state as

δ Ψj i ! Ωδ Ψj i (12)

As mentioned, we will not discuss the phase factor which may appear with the
conformal operator in the transformation of the quantum spacetime. In view of the
local conformal symmetry, we can make use of the Weyl geometry for the quantum
space-time-matter space. The closest admissible action analogously to the action for
Einstein equation under the local conformal symmetry would be taken as [8].

S ¼
Z

ℜ
2
ffiffiffiffiffiffiffiffi
�G

p
dnξ (13)

where ℜ is the curvature scalar defined for the quantum space-time-matter
space in analogous to Weyl geometry and n is the number of dimensions of the
quantum space-time-matter space. This is a generalised action of quantum gravity
in the formulation of the quantum space-time-matter space of which the general-
ised coordinates of spacetime and matter are combined together. Such action deter-
mines the combined scale of the matter state and the associated spacetime energy
scale. The variation of the action gives

δS ¼ δ

Z
ℜ

2
ffiffiffiffiffiffiffiffi
�G

p
dnξ ¼

Z
2ℜδℜ

ffiffiffiffiffiffiffiffi
�G

p
þℜ

2δ
ffiffiffiffiffiffiffiffi
�G

p� �
dnξ ¼ 0 (14)

As in Weyl geometry, the curvature scalar can be expressed as

ℜ ¼ ~ℜ � n� 1ð Þ n� 2ð Þ ∂Φð Þ2

Φð Þ2
þ 2 n� 1ð Þ 1ffiffiffiffiffiffiffiffi

�G
p

ffiffiffiffiffiffiffiffi
�G

p ∂
α
Φ

Φ

� �

∣α

(15)

where ~ℜ is the metric Gmn
μν dependent part of the curvature scalar in Weyl

geometry. The last term is the boundary term which can be neglected in the
variation of the action. Actually, the Φ field is the scale of metric Gmn

μν which

determines the relative quantum effect of a particle as observed in a frame of
reference in quantummechanical motion. If we impose the gaugeℜ � 4Λ for fixing
the scale of the quantum space-time-matter space, where Λ is a constant, Eq. (13)
becomes
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S ¼
Z

~ℜ � 2Λ� n� 1ð Þ n� 2ð Þ ∂Φð Þ2

Φð Þ2

 !
ffiffiffiffiffiffiffiffi
�G

p
dnξ (16)

In order to make the expression of the action simpler, as analogous to the Weyl
geometry of spacetime, we can perform a local conformal transformation on the

metric as Gmn
μν ! Φ

2Gmn
μν to remove the Φ field in the action before imposing the

gauge ℜ � 4Λ. The action can be reduced to

S ¼
Z

~ℜ � 2ΛÞ
ffiffiffiffiffiffiffiffi
�G

p
dnξ

�
(17)

The equation shows that the term Λ, which determines the scale of the quantum
space-time-matter space, behaves mathematically like the cosmological constant in
general relativity but it is now in the quantum space-time-matter space rather and
its physical meaning is different.

We can then connect the formulation of quantum space-time-matter space to
the general relativity by further specifying the relationship between the spacetime
element ds in the general relativity and the quantum spacetime. Also, for simplicity,
we will assume that the matter field is a scalar field. In fact, the argument can be
extended to the fermionic field as well as the tetrad eIμ formalism of gravity [9, 10].

Firstly, let us write

δϕ2ds2
� 	

¼ δ ϕj i dδx!Δxδ x
!
;Δ x

!
���

E
� δ ϕj i dδx!Δxδ x

!
;Δ x

!
���

E
(18)

where δϕ2 ds2
� 	

is the combined inner product of the quantum space-time-
matter state with the extracted spacetime vector for a small region of quantum
space-time-matter space. It acts like the expectation value of quantum probability
weighted spacetime and matter element and then Eq. (10) above becomes

dl2 ¼ δϕ2ds2
� 	

(19)

If we consider the special case that the quantum-space-time-matter space is a
linear space, which is the metric Gmn

μν does not vary with the associated generalised

coordinates ξm of the quantum space-time-matter space, the above expression can
be simplified as

dl2 ¼ ϕ2ds2
� 	

(20)

Actually, we can express the curved quantum spacetime in generalised co-
ordinates analogous to Weyl geometry as

ϕ2ds2
� 	

¼ ϕ2g Δxð Þμν
D E

dxμdxν (21)

where ϕ2g Δxð Þμν
D E

is the quantum probability weighted spacetime metric,

which is specified with measurement uncertainty, combined with the matter field.
If the quantum spacetime state is the eigenstate of the g Δxð Þμν, that is the observer
frame and observation energy scale for the quantum spacetime state is the same as
the spacetime metric specified with measurement uncertainty, Eq. (20) can be
written as

dl2 ¼ ϕ2g Δxð Þμν
D E

dxμdxν ¼ ϕ2
� 	

g Δxð Þμνdxμdxν (22)
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As we assume that the quantum space-time-matter space is a linear space, the
metric Gmn

μν does not vary with ξm and it is not necessary to consider the variation of

the ξm coordinates in the action in Eq. (17). The Weyl geometry of the quantum
space-time-matter space can be reduced to that only the curvature on the spacetime
metric is described. The number of dimension n of the action in Eq. (17) can
therefore be reduced to four. Although the equation resembles the Einstein action
with the cosmological constant in general relativity, it actually describes the
dynamics of the quantum space-time-matter space rather than simply the
spacetime. The dependence on the quantum probability and uncertainty parameter

of ϕ2g Δxð Þμν
D E

provides a freedom for the spacetime metric to change scale with

the matter field. For instance, when we need to probe into the microscopic scale by
using high energy scale observation, the metric will change due to the uncertainty
required changes. This let us to connect the metric in macroscopic scale with the
microscopic scale observation. Physically, it means that when the spacetime obser-
vation is performed by quantum mechanical devices, the probability of observation
of existence of spacetime state should be taken into account in the metric of quan-
tum spacetime. This echoes with the mentioned requirements of introduction of the
quantum uncertainty into the spacetime states when we need to consider the quan-
tum mechanical nature of measuring-rods and clock to bring classical general rela-
tivity closer to quantum mechanics. One may find that when the probability of
quantum spacetime metric tends to unity, g Δxð Þμν ¼ gμν, which is the metric of the

general relativity. For simplicity, let us write g Δxð Þμν as gμν. Then, the action in

Eq. (17) now can be expressed in terms of gμν and ϕ as

S ¼
Z

ϕ2R� 2Λϕ4 þ 6 ∂ϕð Þ2
� � ffiffiffiffiffiffi

�g
p

d4x (23)

The action behaves like the conformal coupling of a scalar field to the gravitation

field. Actually, we can divide the action by the factor 1/12 to align the term ∂ϕð Þ2 as
the kinetic term of the ϕ field and gives

S0 ¼
Z

1

12
ϕ2R� 1

6
Λϕ4 þ 1

2
∂ϕð Þ2

� � ffiffiffiffiffiffi
�g

p
d4x (24)

If the Ricci scalar R of the spacetime is a constant, we will show that it relates to
the mass term of the scalar matter field. Applying the spontaneous symmetry
breaking on the ϕ field of such Lagrangian, the minimum of the potential gives the
relation

R

4Λ
¼ ϕ2

0 (25)

We later will know that selecting the value of ϕ0 determines the relative scale
between the matter field and spacetime metric. In fact, when selecting the scale in
the variation of the Weyl action in Eq. (13), the local conformal symmetry of the
quantum space-time-matter space is broken and the combined scale between the
matter density and the four dimensional spacetime energy scale is fixed. But it does
not mean that the local conformal symmetry on the spacetime and matter field
which relates to the changing energy scale of observation is broken and actually, it is
not. Let us define the conformal operator ω, which is associated with the change of
scale of observation, in the spacetime on the metric and scalar field as
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gμν ! ω2gμν (26)

and

ϕ ! ω�1ϕ (27)

As mentioned, we will not discuss the phase factor which may appear with the
conformal operator in the transformation of the quantum spacetime. We may find
that the conformal transformation, which is the change of scale of observation, in
spacetime does not change the action in Eq. (24), which is a conformal invariant.
Actually, the change of scale of observation should preserve the uncertainty relation
ΔxΔp � ℏ, since such change of scale is governed by the uncertainty relation. The
local conformal symmetry of spacetime is broken when the scale of observation is
fixed. This is the case when we apply the spontaneous symmetry breaking condition
in Eq. (25) to the action. One may be aware that we need to fix two degree of
freedoms in determining the scale of the whole theory in quantum gravity. This
point is very important since we will find that we can change the scale in one space
and then compensate by the other to make it invariant. This property let the
quantum gravity possess an interesting double conformal structure. Actually, the
selection of scale in the variation of the Weyl action determines the scale of Λ. Then
with the relationship of the spontaneous symmetry breaking in Eq. (25), all three

parameters R, Λ and ϕ0 can be fixed so as the whole scale of the observer and matter

space. Actually, if the electroweak energy density scale is chosen for Λϕ4 or Rϕ2 in
the variation of the Weyl action, the equation becomes a Higgs potential like
Lagrangian. That means it is possible to interpret the Higgs potential as the broken
Weyl action of the quantum space-time-matter space with an observation scale
dependent metric. It provides the physical explanation of the Higgs potential and its
relationship with quantum gravity. Furthermore, the interesting thing is that even
the energy density scale is fixed at electroweak scale, we still have the freedom to
choose the scale of observation by the said conformal transformation on
spacetime. This will lead to the relationship between the cosmological constant and
Higgs potential as well as the fundamental particle masses as discussed in the next
section.

3. Fundamental particle masses

If we consider that the conformal symmetry is spontaneously broken in the
action of Eq. (24), just as breaking the gauge symmetry in Higgs mechanism, we
may consider the shift field h around the minimum of the potential as ϕ ¼ ϕ0. If we

first consider the symmetry breaking at an energy scale ϕ2
0 ¼ 6m02 related to the

fundamental interaction, say electroweak scale, the equation becomes

S ¼
Z

1

2
m02R� 3Λm04 � 1

2
∂hð Þ2 þ 1

2
Rh2 þ…

� � ffiffiffiffiffiffi
�g

p
d4x (28)

If we now change the scale of observation by applying conformal transformation
on the spacetime as

gμν !
m0

Mp

� �2

gμν (29)

and
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ϕ ! m0

Mp

� ��1

ϕ (30)

where themass scaleMp is reduced Planckmass. Thenwe canwrite the equation as

S ¼
Z

1

2
M2

pR
0 � 3ΛM4

p �
1

2
∂h0

 �2 þ 1

2
R0h0

2 þ…

� � ffiffiffiffiffiffi
�g

p
d4x (31)

We have to note that the Planck mass is an energy scale introduced here to the
Lagrangian through the relative ratio with m0 in the conformal transformation. As a
result, the action become the gravitational action with cosmological constant and
the excitation field become the matter field that coupled to the gravitational field
and the square of Planck mass become the coupling constant between matter and

gravity. The term R0h0
2
acts as the mass term of the excitation field h. Unexpectedly,

it also indicates that the spontaneous symmetry breaking on electroweak energy
scale is associated with the symmetry breaking that generate the gravitational

action. Since R0 is the conformal transformation of the related to the vacuum energy

of spacetime in empty space and since R
ffiffiffiffiffiffi
�g

p
should be transformed as g and

therefore R0 should be equal to m0=Mp


 �2
R which is the particle mass square term.

This implies the existence of a particle with mass m0=Mp


 �
R

1
2. The calculation results

mean that the particle mass of the matter field is related to the vacuum energy of
the spacetime, which is the cosmological constant.

On the other hand, due to the double conformal symmetry structure of the
quantum space-time-matter space, we may change the observer frame of reference
for observing such particle and this will lead to the change on the broken scale of the
quantum space-time-matter space. Recalling that the scale of the quantum space-
time-matter space is fixed by the gaugeℜ � 4Λ and let the factor for the associated

scale change is Ω4, the scale of Λ is therefore changed as

Λ ! Ω
4
Λ (32)

The scale change of Λ implies that the spontaneous symmetry breaking condi-

tion in Eq. (25) requires to be varied so that the mass value m0=Mp


 �
R

1
2 in Eq. (31) of

the said particle will be changed also. However, we still have not established the
reference for the values of mass and energy and, actually, mass value is just the
mass ratio relative to the mass standard reference which could fundamentally be the
Planck mass Mp. Recalling that, in Eq. (31), the Planck mass is introduced only
through the conformal transformation of spacetime. That means, in changing of
frame of reference, the Planck mass is required to be re-determined in the new
observer frame of reference. The freedom of choosing the observation scale by
conformal transformation on the spacetime and matter field in the new frame of
reference let us have the freedom to do the transformation such that the mass value
as reference to the mass standard reference of a particle remained unchanged. This
point is important in the equivalence principle of quantum gravity since it ensures
that there is no preferred observer frame of reference such that the observer is not
able to distinguish the nature of the frames of reference that he is sitting in for
making his observations and measurements. As the mass value is determined by the

ratio R
ffiffiffiffiffiffi
�g

p
=ϕ2, for the mass remains unchanged in the new frame, we need to have

R
ffiffiffiffiffiffi
�g

p

ϕ2 ¼ m0

Mp
¼ unchanged (33)
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As under the change of scale in Eq. (31), the term R
ffiffiffiffiffiffi
�g

p
will be transformed as

R
ffiffiffiffiffiffi
�g

p

ϕ2 !
Ω

4R
ffiffiffiffiffiffi
�g

p

ϕ2 (34)

and the conformal transformation ω on the spacetime and matter field induce
the transformation as

Ω
4R

ffiffiffiffiffiffi
�g

p

ϕ2 !
ω4

Ω
4R

ffiffiffiffiffiffi
�g

p

ϕ2 (35)

Therefore, the unchanged mass ratio requires that ω ¼ 1=Ω. Once the particle
mass value remains unchanged in the transformed frame and since the observer is
not able to distinguish the frames of reference that he makes the observations and
measurements, in order to explore the structure of the quantum space-time-matter
space under broken symmetry, we can repeatedly perform the above processes of
changing observer frame such that in every changed frame the mass of the particle
are still equal to m0=Mp, although the Mp varies with the transformed frame of
reference. We can therefore find that a set of scale factors is allowed for the
quantum space-time-matter space scale

Ωð Þ2n ¼ m0

Mp

� �2

) Ω ¼ m0

Mp

� �1
n

(36)

where n is the number of the said transformation to achieve the mass factor
m0=Mp in a frame. The relation means that, for observing a particle with mass factor
m0=Mp in a frame, it is possible that it can be due to a number of conformal trans-
formations on the quantum space-time-matter space to bring to the observed mass
value in a frame of reference. That means, in an observer frame of reference, there
is a set of possible scale factors Ω for the broken scale of quantum space-time-
matter space. As in an observer frame of reference the Planck mass is fixed, the set
of possible broken scales of quantum space-time-matter space implies that there is a
set of possible mass states with the mass factors as in Eq. (36). Suppose

m0=Mp � 10�15, that is m0 ¼ 2:435TeV, a set of mass factors can be found for
different values of n, for instance n = 1 to 5, as follows

Ωm1 ¼
m0

Mp
¼ 2:435GeV

2:435� 1018 GeV
¼ 10�15 (37)

Ωm2 ¼
m0

Mp

� �1
2

¼ 2:435GeV

2:435� 1018 GeV

� �1
2

¼ 3:16� 10�8 (38)

Ωm3 ¼
m0

Mp

� �1
3

¼ 2;435GeV

2:435� 1018 GeV

� �1
3

¼ 1:0� 10�5 (39)

Ωm4 ¼ m0

Mp

� �1
4

¼ 2;435GeV

2:435� 1018 GeV

� �1
3

¼ 1:778� 10�4 (40)

Ωm5 ¼
m0

Mp

� �1
5

¼ 2;435GeV

2:435� 1018 GeV

� �1
5

¼ 1� 10�3 (41)
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As mentioned above, since the particle mass mi is equal to ΩmiR
1
2, if R

1
2 ¼ 10TeV,

the following mass values mi can be found and when compared with the lepton
masses data of the Particle Data Group [11]:

m1 ¼ 10�15R0
1
2 ¼ 10�15 � 10TeV ¼ 0:01 eV � mν? (42)

m2 ¼ 3:16� 10�8R0
1
2 ¼ 3:16� 10�8 � 10TeV ¼ 316:23 keV � me (43)

m3 ¼ 1:0� 10�5R0
1
2 ¼ 1:0� 10�5 � 10TeV ¼ 100MeV � mμ (44)

m4 ¼ 1:778� 10�4R0
1
2 ¼ 1:778� 10�4 � 10TeV ¼ 1:778GeV � mτ (45)

m5 ¼ 1� 10�3R0
1
2 ¼ 1� 10�3 � 10TeV ¼ 10GeV (46)

where mν, me, mμ and mτ are respectively the mass of neutrinos, electron, muon
and tau lepton. Although the mass values of the three neutrino mass states are so far
not experimentally determined, the mass value of m1 state is consistent with the
cosmological constraint on the sum of the neutrino masses. The actual neutrino
masses might not be a necessary degenerate as the radiative correction of different
neutrino mass states is not considered in the above calculation and that would lead
to small differences between the actual neutrino masses and the calculated mass
state value. For m2 state, it is of the same order of magnitude of the electron mass.
The difference between them is about 38% and could be due to the radiative
correction to the QED vacuum. When the value of the mass states become relatively
large, we find that the mass of m3 state is equal to the experimental mass value of
muon up to about 5% and the m4 state is even equal to the experimental mass value
of tau lepton up to about 0.06%. For the mass states with n>4, there are many so far
not experimentally observed particle states. They could be the dark matter particles
or the mass resonance states. For instances, the mass value of m5 state is consistent
with the dark matter candidate with a mass of 10 GeV as proposed by some
researchers [12].

In fact, the above argument can be extended to the case that n is allowed to be
half-integer, in the formulation of the gravitational fields by tetrads eIμ for considering

its coupling with fermions. In such case, we can find more mass states which are
associated with half integer n values, for instance, n ¼ 1:5, n ¼ 2:5 etc. For n ¼ 4:5
and n ¼ 8:5, we can find that the mass value are respectively m4:5 ¼ 4:64GeV and
m8:5 ¼ 171:9GeV. The values are very close to the mass values of bottom and top
quarks. That means the half integer values of n may somehow correspond to the
quark masses. However, it is possible that, due to the QCD vacuum, the calculated
values of the quark masses which are comparable with the QCD vacuum energy
would have greater discrepancy with the actual current quark masses.

4. Cosmological constant

As we explained before, Eqs. (24) and (31) is related by the conformal transfor-
mation of spacetime and the matter field and spontaneous symmetry breaking
which is determined by the observation scale. Actually, Eq. (24) resembles the

following action of the Higgs potential when R0 is a constant in one hand

S0 ¼
Z

1

2
μ2ϕ2 � 1

4
λϕ4 þ 1

2
∂ϕð Þ2

� � ffiffiffiffiffiffi
�g

p
d4x (47)
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On the other hand, as shown above, it can become the action of gravitational
field coupled to matter field after the local conformal transformation and sponta-
neous symmetry breaking as in Eq. (31). By comparing Eqs. (24) and (47), we can
relate the coefficients between them as follows

R

12
¼ μ2

2
(48)

Λ

6
¼ λ

4
(49)

Furthermore, by comparing Eq. (31) with the gravitational action, we can find
that

3ΛM2
p ¼ Λcc (50)

where Λcc is the cosmological constant. By eliminating Λ in the above equations,
we get

Λcc ¼ 4:5λM2
p (51)

The calculated cosmological constant is of the order of Planck scale. It is due to
the fact that the observation scale is in the microscopic scale or say high energy scale

of which the metric g0μν is quantum mechanically uncertain in nature. Thus, it is not

the scale of our cosmological observation. Actually, we can apply a conformal
transformation on the quantum space-time-matter space metric to change the
observer frame of reference which is under the same factor as the one in obtaining
the fundamental particle masses but with n ¼ 2 as

Ω ¼ m0

Mp

� �2

(52)

Since the cosmological constant transforms as the square of the metric, that is

conformal factor Ω4, with respect to the conformal factor of Ω2 on the metric, the
cosmological constant value becomes

Λcc ¼ 4:5λ
m04

M2
p

m0

Mp

� �4

(53)

By putting λ ¼ 0:258, which is based on the 125 GeV Higgs particle mass and
246 GeV electroweak VEV value,

Λcc ¼ 6:49� 10�66 eV2 (54)

This calculated cosmological constant value is in very good agreement with the

observation value of 4:33� 10�66 eV2 of Planck CMB probe with just about 50%
difference when connecting to the fundamental particle masses.

5. Discussion and conclusions

We have formulated the quantum space-time-matter geometry with the equiv-
alence principle of quantum gravity for discussing the relationship between the
cosmological constant and quantum gravity as well as the mass spectrum of
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fundamental particles. Because of the freedoms allowed for changing the quantum
observer frames under the equivalence principle of quantum gravity and the energy
scale specific observation required under the quantum properties of the spacetime
measuring devices, the quantum space-time-matter space possesses a double con-
formal symmetry geometrical structure. In such structure, we need two parameters
to determine the scale of quantum space-time-matter space so as to describe the
physical world.

In our calculation, it is fascinating that, once such parameters are determined,

the associated conformal factor Ω ¼ m0

Mp

� �
with different exponent n values gives

the fundamental particle mass values and the observed cosmological constant value
with very good agreement. It indicates that the fundamental particle masses is
connected to the cosmological constant and some fundamental physical meaning
are behind such factor, particularly the meaning of the value of 2.435 TeV. It also
demonstrates that the quantum space-time-matter space has a complicated confor-
mal structure which is related to the fundamental particles when applying the
equivalence principle of quantum gravity to it.

Actually, we can extend the theory by incorporating the gauge symmetry of the
fundamental interactions to it so as to discuss the relationship between the mass
spectrum of fundamental particles and the standard model under the conformal
nature of quantum gravity. As indicated in our calculation, it can be anticipated that
the gauge symmetry operation for the flavour states of lepton would in general not
be commutable with the conformal symmetry operation of the mass states. The
mass states are under a conformal symmetry of the quantum space-time-matter
space whereas the flavour states are under the gauge symmetry. This is consistent
with the fact that the neutrino flavour eigenstates are not the same as their mass
states. Our formulation indicates that the mass states can even be changed from one
to another when observing under different observer frame of reference in quantum
mechanical motions. As we can see, the underlying symmetry that associated with
particle masses would require the combination of the local conformal symmetry
with the gauge symmetry into the local conformal gauge symmetry.

Furthermore, the above mass formula allows the existence of some mass states
that are so far not experimentally observed. This might provide new opportunities
for discussing whether such mass states are related to the dark matter as well as the
possibilities of discovering such particles experimentally, although some of the mass
states may be forbidden by some so far unknown physical rules, just as the forbid-
den rules of atomic spectra.

One of the key underlying physical meanings of the above calculation is that
there is no absolute existence of spacetime. Similar to the quantum nature of the
matter fields, the existence of spacetime is probabilistic in nature. And it is due to
such reason, the vacuum energy can be very small in macroscopic scale but very
large in microscopic scale. Actually, there is an underlying fundamental symmetry
between the quantum spacetime states and quantum matter states that we may call
it quantum spacetime matter symmetry, or object-observer symmetry. In fact, an
observer could be an object to another observer or vice versa and this actually is the
essence of the principle of relativity.

Finally, it is expected that, given that the equivalence principle of quantum
gravity and the energy scale dependent quantum spacetime concept are introduced
under the double conformal symmetry of the quantum space-time-matter geome-
try, it is reasonable that other mathematical formalism can be used as well to arrive
at the same conclusions. The mathematical treatment is not necessary restricted to
the approach introduced in this book chapter.
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