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Chapter

Mathematical Models of
Oscillators with Memory
Roman Ivanovich Parovik

Abstract

The chapter proposes a mathematical model for a wide class of hereditary oscil-
lators, which is a Cauchy problem in the local formulation. As an initial model
equation, an integrodifferential equation of Voltaire type was introduced, which
was reduced by means of a special choice of difference kernels to a differential
equation with nonlocal derivatives of fractional-order variables. An explicit finite-
difference scheme is proposed, and questions of its stability and convergence are
investigated. A computer study of the proposed numerical algorithm on various test
examples of the hereditary oscillators Airy, Duffing, and others was carried out.
Oscillograms and phase trajectories are plotted and constructed.

Keywords:mathematical model, cauchy problem, heredity, derivative of fractional
order, finite-difference scheme, stability, convergence, oscillograms, phase
trajectory

1. Introduction

In the paper of the Italian mathematician Vito Volterra [1], the notion of hered-
ity (memory), a property of a dynamical system characterized by nonlocality in
time, is introduced, which consists in the dependence of its current state on a finite
number of previous states. In another paper [2], Volterra investigated the heredi-
tary oscillator—a vibration system with memory, which was written in the form of
an integrodifferential equation with a difference kernel, a function of memory.
Further, for such an oscillator, Volterra derived the law of total energy, in which an
additional term appeared, responsible for the dissipation of energy in the vibra-
tional system. This fact was confirmed in subsequent works.

In papers [3–21], fractal oscillators were considered, which represent the class of
hereditary oscillators with a power-law function of memory. The peculiarity of such
oscillators is that their mathematical description can be reduced to differential
equations with nonlocal derivatives of fractional constant orders, which are inves-
tigated within the framework of the theory of fractional calculus [22–24].

In papers [6–9, 11–14, 18–21], models of fractal linear oscillators were investi-
gated in the sense of the Gerasimov-Caputo derivative and in papers [4, 10, 16]—in
the sense of the Riemann-Liouville derivative. Analytical solutions of model equa-
tions in terms of a special function of Mittag-Leffler-type and generalized Wright-
type function, oscillograms, and phase trajectories are constructed. It is shown that
in the regime of free oscillations, the presence of memory effects in the system leads
to attenuation of oscillations as a result of energy dissipation, and with allowance
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for external periodic action, it is possible to stabilize the amplitude of the oscilla-
tions, with the phase trajectories reaching the limit cycle and also the resonance
effect.

In papers of the author [25, 26], the fractal parametric resonance (the fractal
Mathieu oscillator) was investigated, and the Strutt-Ince diagrams of parametric
resonance existence areas were constructed. It is shown that these regions strongly
depend on the orders of the value fractional derivatives entering into the initial
equation.

In a monograph by the Slovak mathematician Ivo Petras [10], the fractal
nonlinear oscillator models whose differential equations contained fractional deriv-
atives in the sense of Riemann-Liouville were considered and analyzed using
numerical methods and considered the stability of the rest point of oscillatory
systems. However, the stability and convergence of numerical methods have not
been considered.

A further continuation of the investigation of hereditary oscillators is associ-
ated with the introduction of the derivatives of fractional variable orders in the
model equations. This is due to the fact that the orders of fractional derivatives
are related to the properties of the medium in which this or that process takes
place and changes with time under the influence of external influence. There-
fore, papers [27–30] proposed that the models of fractal nonlinear oscillators
(Duffing, Van der Pol, Van der Pol-Duffing, FitzHugh-Nagumo) were proposed
and investigated using explicit finite-difference schemes, whose equations con-
tain both the derivatives of the constants and variable fractional orders of the
Gerasimov-Caputo and Riemann-Liouville types. With the help of computer
experiments, the convergence of finite-difference schemes was shown, and
estimates of the computational accuracy of the method were obtained; oscillo-
grams and phase trajectories were constructed. However, the questions of sta-
bility and convergence were not formulated in the form of corresponding
theorems.

In [31, 32], a new class of fractal oscillators was proposed and investigated;
active fractal oscillators (AFOs)—nonlinear oscillators with external influences,
which include the fractional Riemann-Liouville integral—were investigated. Such
oscillators are constructed on the basis of the scheme of the radioelectronic
аutogenerator with a fractional feedback circuit. Authors use the method of equiv-
alent linearization to investigate AFOs and come to the conclusion that the self-
oscillator is isochronous.

From the analysis of the above publications on the study of hereditary oscillator,
we can conclude that the main tool for their study is numerical methods, for
example, finite-difference schemes. In most cases, the authors leave without con-
sidering the questions of stability and convergence of finite-difference schemes
and, even if they touch, then without formulating the corresponding theorems and
proofs. Therefore, the goal of the present paper is to construct a finite-difference
scheme for a wide class of hereditary (fractal) linear and nonlinear oscillators, prove
its stability and convergence, formulate results in the form of corresponding theo-
rems, and study finite-difference schemes on specific test examples.

2. Formulation of the problem

Consider the following model integrodifferential equation for the function

x tð Þ ∈ C3 0;Tð Þ, where T > 0:
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ð

t

0

K1 t� ηð Þ €x ηð Þdηþ λ

ð

t

0

K2 t� ηð Þ _x ηð Þdη ¼ f x tð Þ; tð Þ, (1)

where €x tð Þ ¼ d2x=dt2, _x tð Þ ¼ dx=dt, λ > 0—given constant.
Eq. (1) describes a wide class of hereditary, depending on the form of the right-

hand side (function f x tð Þ; tð Þ) of linear or nonlinear oscillators.
Definition 1. Functions K1 t� ηð Þ and K2 t� ηð Þ—difference kernels in Eq. (1)—

will be called memory functions, since they define the notion of heredity (memory),
which was introduced in the work of the Italian mathematician Vito Volterra [2].

Definition 2. A nonlinear function f x tð Þ; tð Þ on the right-hand side of Eq. (1)
satisfies a Lipschitz condition with respect to a variable x tð Þ:

f x1 tð Þ; tð Þ � f x2 tð Þ; tð Þj j ≤ L x1 tð Þ � x2 tð Þj j, (2)

L—Lipschitz constant.
Eq. (1) describes a broad class of hereditary nonlinear oscillators, depending on

the form of the function f x tð Þ; tð Þ on its right-hand side, and the parameter λ has the
meaning of the coefficient of friction.

Note that in Definition 1, the memory functions K1 t� ηð Þ and K2 t� ηð Þ can be
chosen arbitrarily, depending on the conditions of the particular problem. We will
choose these functions power law, since power laws are often found in various
fields of knowledge [33]. We choose the memory functions K1 t� ηð Þ and K2 t� ηð Þ
in the form

K1 t� ηð Þ ¼
t� ηð Þ1�β tð Þ

Γ 2� β tð Þð Þ
, K2 t� ηð Þ ¼

t� ηð Þ�γ tð Þ

Γ 2� γ tð Þð Þ
, 1 < β tð Þ < 2,0< γ tð Þ < 1, (3)

where γ tð Þ, β tð Þ∈C 0;T½ �, Γ tð Þ—Euler gamma function.
We give the following definitions.
Definition 3. Derivatives of fractional variables of orders β tð Þ and γ tð Þ

Gerasimov-Caputo type: we call the following operators of fractional differentiation:

∂
β tð Þ
0t x ηð Þ ¼

1

Γ 2� β tð Þð Þ

ð

t

0

€x ηð Þdη

t� ηð Þβ tð Þ�1
, ∂

γ tð Þ
0t x ηð Þ ¼

1

Γ 1� γ tð Þð Þ

ð

t

0

_x ηð Þdη

t� ηð Þγ tð Þ
: (4)

We note that in the case when the functions β tð Þ and γ tð Þ in the relations (4) and
(5) are constants, we arrive at the definitions of the fractional derivative in the
sense of Gerasimov-Caputo [34, 35], and in the case when these constants β ¼ 2 and
γ ¼ 1, the operators of fractional differentiation (4) become classical derivatives of
the second and first orders.

Taking into account Definition 3, the model Eq. (1) can be rewritten in a more
compact form:

∂
β tð Þ
0t x ηð Þ þ λ∂

γ tð Þ
0t x ηð Þ ¼ f x tð Þ; tð Þ: (5)

For Eq. (5), the initial conditions in the local formulation are valid:

x 0ð Þ ¼ α0, _x 0ð Þ ¼ α1, (6)

where α0 and α1—given constants. As a result, we arrive at the Cauchy problems
(5) and (6), which we will investigate.
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3. Explicit finite-difference scheme

We construct an explicit finite-difference scheme for the Cauchy problems (5)
and (6). We divide the time interval 0;T½ � into N equal parts with a step τ ¼ T=N.
We introduce the grid function x tkð Þ ¼ xk, where tk ¼ kτ, k ¼ 1,…, N � 1.

The derivatives of the variables of fractional orders in Eq. (5) are approximated
according to the relations in [36, 37]:

∂
β tð Þ
0t x ηð Þ≈Ak ∑

k�1

j¼0
aj,k xk�jþ1 � 2xk�j þ xk�j�1

� �

, (7)

∂
γ tð Þ
0t x ηð Þ≈ Bk ∑

k�1

j¼0
bj,k xk�jþ1 � xk�j�1

� �

,

then the formulas will refer to the formula (7)

aj,k ¼ jþ 1ð Þ2�βk � j2�βk , bj,k ¼ jþ 1ð Þ1�γk � j1�γk ,

Ak ¼
τ�βk

Γ 3� βkð Þ
, Bk ¼

λτ�γk

2Γ 2� γkð Þ
,

Here, to shorten the record, β tkð Þ ¼ βk, γ tkð Þ ¼ γk.
Taking into account relation (7), the Cauchy problems (5) and (6) in the differ-

ence formulation will have the form

Ak∑
k�1

j¼0
aj,k xk�jþ1 � 2xk�j þ xk�j�1

� �

þ Bk∑
k�1

j¼0
bj,k xk�jþ1 � xk�j�1

� �

¼ f k,

x0 ¼ α0, x1 ¼ α1 þ τα0,

(8)

Here, to shorten the record, f k ¼ f xk; tkð Þ. We write the problem (8) explicitly:

xkþ1 ¼
1

Ak þ Bk
2Akxk � Ak � Bkð Þ xk�1 � Ak∑

k�1

j¼1
aj,k xk�jþ1 � 2xk�j þ xk�j�1

� �

 !

�
Bk

Ak þ Bk
∑
k�1

j¼1
bj,k xk�jþ1 � xk�j�1

� �

þ f k:

(9)

We note that the weight coefficients aj,k and bj,k have properties, which we

formulate in the form of the following lemmas.
Lemma 1. For any k weights, coefficients aj,k and bj,k, as well as coefficients Ak and

Bk, have the following properties:

1.∑k�1
j¼0aj,k ¼ k2�βk ,∑k�1

j¼0bj,k ¼ k1�γk ,

2. 1 ¼ a0,k > a1,k > … > 0, 1 ¼ b0,k > b1,k > … > 0,

3.Ak ≥ 0, Bk ≥ 0:

Proof. The first property follows the definition of weight coefficients:

∑k�1
j¼0aj,k ¼ ∑k�1

j¼0 jþ 1ð Þ2�βk � j2�βk

h i

¼ 1� 0þ 22�βk � 1þ 32�βk � 22�βk þ :…

þ k� 1ð Þ2�βk þ k2�βk � k� 1ð Þ2�βk ¼ k2�βk :
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∑k�1
j¼0bj,k ¼ ∑k�1

j¼0 jþ 1ð Þ1�γk � j1�γk

h i

¼ 1� 0þ 21�γk � 1þ 31�γk � 21�γk þ :…

þ k� 1ð Þ1�γk þ k1�γk � k� 1ð Þ1�γk ¼ k1�γk :
The second property is proven in the following way. We introduce two

functions:

φ xð Þ ¼ xþ 1ð Þ2�βk � x2�βk and η xð Þ ¼ xþ 1ð Þ1�γk � x1�γk ,

where x>0. These functions are decreasing. Really derived from these functions

φ0 xð Þ ¼ 2� βkð Þ xþ 1ð Þ1�βk � x1�βk

h i

<0, η0 xð Þ ¼ 1� γkð Þ xþ 1ð Þ1�γk � x1�γk

h i

<0:

Therefore, the second property holds. The third property follows also the prop-
erties of the gamma function. The lemma is proven.

Let ∂
β tð Þ
0t x ηð Þ and ∂

γ tð Þ
0t x ηð Þ—approximations of differential operators of

Gerasimov-Caputo types ∂ β tð Þ
0t x ηð Þ and ∂

γ tð Þ
0t x ηð Þ. Then, we have the following lemma.

Lemma 2. Approximations ∂
β tð Þ
0t x ηð Þ and ∂

γ tð Þ
0t x ηð Þ operators of the Gerasimov-

Caputo types ∂ β tð Þ
0t x ηð Þ and ∂

γ tð Þ
0t x ηð Þ satisfy the following estimates:

∂
β tð Þ
0t x ηð Þ � ∂

β tð Þ

0t x ηð Þ

�

�

�

�

�

�

�

�

≤ C1τ, ∂
γ tð Þ
0t x ηð Þ � ∂

γ tð Þ

0t x ηð Þ

�

�

�

�

�

�

�

�

≤ C2τ, (10)

where С1 and С2—constants that are independent of the parameter τ.
Proof. Using the first property of Lemma 1 and Definition 3, we obtain

∂
β tð Þ
0t x ηð Þ ¼

τ2�βk

Γ 3� βkð Þ
∑
k�1

j¼0
aj,k €x t� jτð Þ þ O τ2

� �� �

¼
τ2�βk

Γ 3� βkð Þ
∑
k�1

j¼0
aj,k€x t� jτð Þ

þ
τ2�βkk2�βk

Γ 3� βkð Þ
O τ2
� �

¼
τ2�βk

Γ 3� βkð Þ
∑
k�1

j¼0
aj,k€x t� jτð Þ þ

t2�βk

Γ 3� βkð Þ
O τ2
� �

¼
τ2�βk

Γ 3� βkð Þ

∑
k�1

j¼0
aj,k€x t� jτð Þ þ O τ2

� �

:

∂
β
0tx ηð Þ ¼

1

Γ 2� βkð Þ
∑
k�1

j¼0

ð

jþ1ð Þτ

jτ

ξ1�βk €x t� ξð Þdξ ¼
1

Γ 2� βkð Þ
∑
k�1

j¼0
aj,k€x t� ηj

� �

,

ηj ∈ jτ; jþ 1ð Þτ½ �: ∂
β tð Þ
0t x ηð Þ � ∂

β tð Þ

0t x ηð Þ

�

�

�

�

�

�

�

�

¼
τ2�β tð Þ

Γ 3� β tð Þð Þ
∑
k�1

j¼0
aj,k €x t� jτð Þ � €x t� ηj

� �h i

þO τ2
� �

�

�

�

�

�

�

�

�

�

�

¼
τ2�βk

Γ 3� βkð Þ
∑
k�1

j¼0
aj,k �O τð Þ þO τ2

� �

�

�

�

�

�

�

�

�

�

�

¼
τ2�βkk2�βk

Γ 3� βkð Þ
O τð Þ þ O τ2

� �

�

�

�

�

�

�

�

�

�

�

¼ O τð Þ þO τ2
� �

¼ O τð Þ:

Similarly, we can obtain the second estimate from Eq. (10).
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∂
γ tð Þ
0t x ηð Þ ¼

τ1�γk

Γ 2� γkð Þ
∑
k�1

j¼0
bj,k _x t� jτð Þ þ O τð Þ½ � ¼

τ1�γk

Γ 2� γkð Þ
∑
k�1

j¼0
bj,k _x t� jτð Þ þ

τ1�γkk1�γk

Γ 2� γkð Þ

O τð Þ ¼
τ1�γk

Γ 2� γkð Þ
∑
k�1

j¼0
bj,k _x t� jτð Þ þ

t1�γk

Γ 2� γkð Þ
O τ2
� �

¼
τ1�γk

Γ 2� γkð Þ
∑
k�1

j¼0
bj,k _x t� jτð Þ þO τð Þ:

∂
γ tð Þ
0t x ηð Þ ¼

1

Γ 1� γkð Þ
∑
k�1

j¼0

ð

jþ1ð Þτ

jτ

ξ�γk _x t� ξð Þdξ ¼
1

Γ 1� γkð Þ
∑
k�1

j¼0
bj,k _x t� ηj

� �

,

ηj ∈ jτ; jþ 1ð Þτ½ �:

∂
γ tð Þ
0t x ηð Þ � ∂

γ tð Þ

0t x ηð Þ

�

�

�

�

�

�

�

�

¼
τ1�γk

Γ 2� γkð Þ
∑
k�1

j¼0
bj,k _x t� jτð Þ � _x t� ηj

� �h i

þ O τð Þ

�

�

�

�

�

�

�

�

�

�

¼

¼
τ1�γk

Γ 2� γkð Þ
∑
k�1

j¼0
bj,k �O τð Þ þ O τð Þ

�

�

�

�

�

�

�

�

�

�

¼
τ1�γkk1�γk

Γ 2� γkð Þ
O τð Þ þ O τð Þ

�

�

�

�

�

�

�

�

¼ O τð Þ þO τð Þ ¼ O τð Þ:

The lemma is proven.
Investigation. According to Lemma 2, it can be shown that the explicit finite-

difference scheme (9) has an error ε ¼ O τð Þ. This fact will be used in computer
experiments in determining the computational accuracy of the numerical method.

Lemma3.The sums in the finite-difference scheme (9) have the following representations:

∑
k�1

j¼1
aj,k xk�jþ1 � 2xk�j þ xk�j�1

� �

¼ a1,kxk þ ak�1,kx0

þ ak�2,k � 2ak�1,kð Þ x1 þ a2,k � 2a1,kð Þ xk�1 þ ∑
k�2

j¼2
ajþ1,k � 2aj,k þ aj�1,k

� �

xk�j,

∑
k�1

j¼1
bj,k xk�jþ1 � xk�j�1

� �

¼ b1,kxk � bk�1,kx0 þ b2,kxk�1 � bk�2,kx1

þ∑
k�2

j¼2
bjþ1,k � bj�1,k

� �

xk�j:

(11)

Proof. The representation (11) follows the properties of the sum. Indeed, by
opening the sums in Eq. (9) and grouping the terms properly, we arrive at the
representation (11).

Using Lemma 3, the finite-difference scheme (9) can be rewritten as

x1 ¼ α0 þ τα1,

x2 ¼
2A1

A1 þ B1
x1 �

A1 � B1

A1 þ B1
x0 þ

f 1
A1 þ B1

, k ¼ 1,

xkþ1 ¼
1

Ak þ Bk

Ak 2� a1,kð Þ � Bkb1,kð Þxk � Ak a2,k � 2a1,k þ a0,kð Þ þ Bk b2,k � b0,kð Þð Þxk�1 þ f k
� �

�

�
Ak ak�2,k � 2ak�1,kð Þ � Bkbk�2,kð Þx1 � Akak�1,k � Bkbk�1,kð Þx0

Ak þ Bk

�
1

Ak þ Bk
∑
k�2

j¼2
Ak ajþ1,k � 2aj,k þ aj�1,k

� �

þ Bk bjþ1,k � bj�1,k

� �� �

xk�j, k ¼ 2,…, n� 1,

Or in matrix form

Xkþ1 ¼ MXk þ Fk, (12)

6

Oscillators - Recent Developments



Xkþ1 ¼ x1; x2;…; xN�1ð ÞT, Xk ¼ x0; x1;…; xN�2ð ÞT, Fk ¼ f 0; f 1;…; fN�2

� �T

where the matrix M ¼ mij

� �

, i ¼ 1,…, N � 1, j ¼ 1,…, N � 1:

mij ¼

0, j≥ iþ 1,

Ai�1 2� ai�2, i�1ð Þ � Bi�1bi�2, i�1

Ai�1 þ Bi�1
, j ¼ i ¼ 3,…, N � 1,

�Ai�1 ai�jþ1, i�1 � 2ai�j, i�1 þ ai�j�1, i�1

� �

� Bi�1 bi�jþ1, i�1 � bi�j�1, i�1

� �

Ai�1 þ Bi�1
, j ≤ i� 1,

8

>

>

>

>

>

<

>

>

>

>

>

:

(13)

m1,1 ¼ 1, m2,2 ¼
2A1

A1 þ B1
, mi,1 ¼

Bi�1bi�2, i�1 � Ai�1ai�2, i�1

Ai�1 þ Bi�1
, i ¼ 2,…, N � 1,

mi,2 ¼
Ai�1 2ai�2, i�1 � ai�3, i�1ð Þ þ Bi�1bi�3, i�1

Ai�1 þ Bi�1
, i ¼ 3,…, N � 1:

Theorem 1. An explicit finite-difference scheme (9) converges with the first order
xk � xkj j ¼ O τð Þ if the following condition is satisfied:

τ≤ τ0 ¼ min 1;
2Γ 2� γi�1ð Þ

λΓ 3� βi�1ð Þ

	 
 1
βi�1�γi�1

 !

, i ¼ 2,…, N � 1: (14)

Proof. Let Xk ¼ x0;…; xN�2ð ÞT be the exact solution of system (8) and the error

vector ekþ1 ¼ Xkþ1 � Xkþ1, e0 ¼ 0:. Then, system (8), with allowance for Lemma 2,
can be written as follows:

ekþ1 ¼ Mek þ Fe,k þ O τð Þ, (15)

where

Fe,k ¼
1

Ak þ Bk
f x1; tkð Þ � f x1; tkð Þj j;…; f xk; tkð Þ � f xk; tkð Þj jð ÞT

≤
1

Ak þ Bk
L1e1;…;Lkekð Þ ¼ ΔFkek,ΔFk ¼

1

Ak þ Bk
diag L1;…;Lkð ÞT :

We note that for any k, the inequality holds Lkj j≤L. Consider the norm for the

matrix M: Mk k∞ ¼ maxi ∑k�1
j¼1 mij

� �

, we obtain

Mk k∞ ¼ max
1≤ i≤N�1

1þ
B1b0,1 � A1a0,1

A1 þ B1

�

�

�

�

�

�

�

�

þ
2A1

A1 þ B1

�

�

�

�

�

�

�

�

þ
B2b1,2 � A2a1,2

A2 þ B2

�

�

�

�

�

�

�

�

þ
A2 2a1,2 � a0,2ð Þ þ B2b0,2

A2 þ B2

�

�

�

�

�

�

�

�

þ
A2 2� a1,2ð Þ � B2b1,2

A2 þ B2

�

�

�

�

�

�

�

�

þ
A3 2a1,3 � a2,3 � a0,3ð Þ þ B3 b0,3 � b2,3ð Þ

A3 þ B3

�

�

�

�

�

�

�

�

þ…þ
Bi�1bi�2, i�1 � Ai�1ai�2, i�1

Ai�1 þ Bi�1

�

�

�

�

�

�

�

�

þ
Ai�1 2ai�2, i�1 � ai�3, i�1ð Þ þ Bi�1bi�3, i�1

Ai�1 þ Bi�1

�

�

�

�

�

�

�

�

þ
Ai�1 2ai�3, i�1 � ai�2, i�1 � ai�4, i�1ð Þ þ Bi�1 bi�4, i�1 � bi�2, i�1ð Þ

Ai�1 þ Bi�1

�

�

�

�

�

�

�

�

þ
Ai�1 2� ai�2, i�1ð Þ � Bi�1bi�2, i�1

Ai�1 þ Bi�1

�

�

�

�

�

�

�

�

þ…

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(16)
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According to Lemma 1, we note that the inequality holds 2A1

A1þB1
≥ 0. Suppose that

the condition is satisfied Ai�1 ≥ Bi�1, then the second diagonal element satisfies the

inequality 1 ≤ 2A1

A1þB1
≤ 2 in the matrix M, and the remaining diagonal elements are

equal to the inequality 0 ≤
Ai�1 2�ai�2, i�1ð Þ�Bi�1bi�2, i�1

Ai�1þBi�1
≤ 1; these elements with

i ! N � 1, in view of properties 2 and 3, tend to be zero.
The remaining elements of the matrix (16) also possess these properties. We

also note that the matrix M is a matrix with a diagonal predominance for small
values λ.

Therefore, the sum of the elements of the second row in the matrix M satisfies

the condition 1 ≤ 2A1

A1þB1
þ

A1a0,1�B1b0,1
A1þB1

≤ 3. Further, by virtue of properties 2 and 3 of

Lemma 1, it is obvious that the sum of the remaining terms also satisfies these
conditions. Therefore, the following estimate is valid for the norm: 1 ≤ Mk k∞ ≤ 3.

Note that for the values of the parameter λ ≫ 1 the norm Mk k∞ ! 1, however,
the condition number μ Mð Þ ≫ 1 is violated and the diagonal transformation is
violated; therefore, it is necessary to decrease the step τ.

Further, for any constant С >0 independent of τ, and the error rate, the follow-
ing estimate holds:

ekþ1k k∞ ≤ ΔFk þMk k∞ ekk k∞ þ Cτ≤ 3þ
L

Ak þ Bk

	 


ekk k∞ þ Cτ: (17)

We introduce the notation in Eq. (17): sk ¼ 3þ L
AkþBk

� �

, s ¼ Cτ. Then, we obtain

the following estimate:

ekþ1k k∞ ≤ sk ekk k∞ þ s≤ sk sk�1 ek�1k k∞ þ s
� �

þ s ¼ sksk�1 ek�1k k∞ þ s sk þ 1ð Þ

≤ sksk�1 sk�2 ek�2k k∞ þ s
� �

þ s sk þ 1ð Þ ¼ sksk�1sk�2 ek�2k k∞ þ s sksk�1 þ sk þ 1ð Þ

≤ sksk�1sk�2 sk�3 ek�3k k∞ þ s
� �

þ s sksk�1 þ sk þ 1ð Þ ¼ sksk�1sk�2sk�3 ek�3k k∞ (18)

≤ sksk�1sk�2 sk�3 ek�3k k∞ þ s
� �

þ s sksk�1 þ sk þ 1ð Þ ¼ sksk�1sk�2sk�3 ek�3k k∞

þ s sksk�1sk�2 þ sksk�1 þ sk þ 1ð Þ≤…≤ sksk�1 �… � sk�r ek�rk k

þ s sksk�1 �… � sk�rþ1 þ…þ sk þ 1ð Þ:

Substituting into Eq. (18) r ¼ k� 1, we obtain

ekþ1k k∞ ≤ sksk�1 �… � s1 e1k k þ s sksk�1 �… � s2 þ…þ sk þ 1ð Þ≤C0 e0k k þ O τð Þ:

From the second initial condition (6) it follows: e1k k≤ e0k k and С0 ¼
Q

k

p¼1
sp.

Now according to our assumption Ai�1 ≥ Bi�1, which leads us to the relation

τ ≤
2Γ 2� γi�1ð Þ

λΓ 3� βi�1ð Þ

	 
 1
βi�1�γi�1

, i ¼ 2,…, N � 1: (19)

Condition (19) begins to work at such values λ, when many of conditionalities
arise μ Мð Þ ≫ 1, and for sufficiently small values λ, it suffices that the step satisfies
the inequality τ ≤ 1. Therefore, we arrive at the relation (14). The theorem is
proven.

We note that in [38] the authors used the classical Lax theorem, which holds for
local finite-difference schemes, to prove the convergence of the scheme. For nonlocal
finite-difference schemes, the convergence must be proven independently.
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We consider the stability of an explicit finite-difference scheme (4). Suppose
that Xk and two Yk are different solutions of the matrix Eq. (12) with initial
conditions X0 and Y0.

Theorem 2. An explicit finite-difference scheme (9) is conditionally stable if condi-
tion (14) is satisfied and the estimate holds Yk � Xkj j≤C Y0 � X0j j for any k, where
С >0 does not depend on the step τ.

Proof. We introduce the notation: ekþ1 ¼ Ykþ1 � Xkþ1: Then, Eq. (12) can be
written in the form ekþ1 ¼ Mek þ Fe,k. Here, as it was said in.

Fe,k ¼
1

AkþBk
f x1; tkð Þ � f x1; tkð Þj j;…; f xk; tkð Þ � f xk; tkð Þj jð ÞT ≤ 1

AkþBk

L1e1;…;Lkekð Þ ¼ ΔFkek
According to Theorem 1, we have the following estimate:

Mþ ΔFkk k≤ 3þ
L

Ak þ Bk

	 


¼ sk:

Therefore, the following estimate holds

ekþ1k k∞ ≤ Mþ ΔFkk k ekk k∞ ≤ 3þ
L

Ak þ Bk

	 


ekk k∞

¼ sk ekk k∞ ≤ sksk�1 ek�1k k∞ ≤ sksk�1sk�2 ek�2k k∞ ≤ … ≤ sksk�1 �… � sk�r ek�rk k:

With r ¼ k� 1, we obtain ekþ1k k∞ ≤ С0 e1k k ≤ C0 e0k k and С0 ¼
Q

k

p¼1
sp.

The last inequality follows the second condition of problem (6). Therefore, if X0

there is a perturbation, then it does not lead to a large increase in the error of the
numerical solution. However, for large values λ, many of conditionalities μ Мð Þ≫ 1
arise, and therefore it is necessary to decrease the step τ; according to Eq. (19), for
small values λ, the estimate is valid τ≤ 1. Then, the system is stable if condition (14)
is satisfied. The theorem is proven.

4. Results of modeling

Consider the work of the explicit finite-difference scheme (9) on specific exam-
ples. We show that the scheme (9) has the first order of accuracy. Since in the
general case, the exact solution of the Cauchy problems (5) and (6) cannot be
written in analytical form, we will use the double conversion method. For this, we
introduce two parameters: ξ ¼ maxi xi � x2ij j—absolute error between the numeri-
cal solution xi in step τ and the numerical solution x2i in step τ=2. Then, the order of
computational accuracy p can be estimated by the formula

p ¼ log 2 ξð Þ= log 2 τ=2ð Þ:

We note that in the case when the fractional parameters in the scheme (9) do
not change and have the following values of βk ¼ 2 and γk ¼ 1, we arrive at the
classical local explicit finite-difference scheme with the second order of accuracy.

The numerical algorithm (9) was implemented in Maple software.
Example 1. Suppose that the right-hand side in Eq. (1) has the form

f x tð Þ; tð Þ ¼ δ sin φtð Þ þ tx tð Þ:

Then, Eq. (5) describes a linear hereditary Airy oscillator, which was considered
in the author’s papers [21, 39] and has the following form.
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∂
β tð Þ
0t x ηð Þ þ λ∂

γ tð Þ
0t x ηð Þ � tx tð Þ ¼ δ cos φtð Þ:

We choose the initial condition (6) for simplicity by homogeneous:

x 0ð Þ ¼ _x 0ð Þ ¼ 0:

Wenote that theAiryoscillator is used in optics in the simulationofAiry laser beams.
In this case, the explicit finite-difference scheme (9) has a more specific form:

x0 ¼ x1 ¼ 0,

xkþ1 ¼
1

Ak þ Bk
2Ak � kτð Þxk � Ak � Bkð Þxk�1ð Þ (20)

�
Ak

Ak þ Bk
∑
k�1

j¼1
aj,k xk�jþ1 � 2xk�j þ xk�j�1

� �

�
Bk

Ak þ Bk
∑
k�1

j¼1
bj,k xk�jþ1 � xk�j�1

� �

þ δ sin φkτð Þ:

For the explicit finite-difference scheme (20), we choose the following values of
the control parameters: T ¼ 1. λ ¼ 1, δ ¼ 5, φ ¼ 10, ω ¼ 10 and
β tð Þ ¼ 1:8� 0:03 sin ωtð Þ, γ tð Þ ¼ 0:8� 0:05 cos ωtð Þ. And during the simulation, we
will change the number of nodes N in the calculation grid.

Note that the values of the selected parameters for Example 1 satisfy the condi-
tions of Theorems 1 and 2, which is indirectly confirmed by the results of modeling
for different values N of the nodes of the computational grid (Table 1).

From Table 1 we can notice that when the number of calculated nodes in the
grid doubles in nodes N, the maximum error in absolute value decreases twice, and
the order of computational accuracy p tends to unite.

This confirms that the explicit finite-difference scheme (9) and in particular the
scheme (20) for Example 1 have the first order of accuracy, and since condition
(14) is satisfied, then convergence with the same order.

In Figure 1 the oscillogram (Figure 1a) and the phase trajectory (Figure 1b) are
shown for Example 1 at the parameter value T ¼ 10, N ¼ 1000: It can be noted that
with time the amplitude of the oscillations is established and as a result the phase
trajectory reaches the limit cycle. Another situation arises in the case of free oscilla-
tions δ ¼ 0 (Figure 2).

The amplitude of the oscillations decays (Figure 2a), and the phase trajectory
twists into a spiral (Figure 2b). The dissipation of energy in this case occurs as a
result of the presence of friction with a coefficient λ and also the “memory” effect,
which gives an additional term in the ratio for the total energy of the oscillatory
system (Figure 3).

This fact is confirmed by the results of [2]. Consider the following example of a
nonlinear hereditary oscillator.

Example 2. Let that in Eq. (1) the right-hand side has the form.

f x tð Þ; tð Þ ¼ δ sin φtð Þ � ax tð Þ þ bx3 tð Þ,

N ξ p

640 0.0003331017 1.119146497

1280 0.0001745618 1.102636795

2560 0.0000906971 1.089811915

Table 1.
Results of numerical simulation.
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and we choose the initial conditions (6) to be homogeneous:

x 0ð Þ ¼ _x 0ð Þ ¼ 0:

In this case, Eq. (5) describes the Duffing fractional oscillator [18]:

∂
β tð Þ
0t x ηð Þ þ λ∂

γ tð Þ
0t x ηð Þ þ bx3 tð Þ � ax tð Þ ¼ δ sin φtð Þ:

The explicit finite-difference scheme (9) for this case has the form

Figure 1.
The oscillogram (a) and the phase trajectory (b) for Example 1 with the parameter values T ¼ 10, N ¼ 1000:

Figure 2.
Oscillogram (a) and phase trajectory (b) for Example 1 with initial conditions x 0ð Þ ¼ 0:1, _x 0ð Þ ¼ 0:2, and
δ ¼ 0.
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x0 ¼ x1 ¼ 0,

xkþ1 ¼
1

Ak þ Bk
2Ak þ 1ð Þxk � x3k � Ak � Bkð Þxk�1

� �

(21)

�
Ak

Ak þ Bk
∑
k�1

j¼1
aj,k xk�jþ1 � 2xk�j þ xk�j�1

� �

�
Bk

Ak þ Bk
∑
k�1

j¼1
bj,k xk�jþ1 � xk�j�1

� �

þ δ sin φkτð Þ:

For the explicit finite-difference scheme (21), we take the values of the control
parameters as follows: T ¼ 1, λ ¼ 0:3, δ ¼ 2, and φ ¼ ω ¼ 1.

Remark. Note that this choice of control parameter values is ensured by the
condition (14) for Theorems 1 and 2. The results of numerical simulation for
Example 2 are given in Table 2.

Figure 3.
The oscillogram (a) and the phase trajectory (b) for Example 1 with initial conditions x 0ð Þ ¼ 0:1, _x 0ð Þ ¼ 0:2,
and δ ¼ 0, λ ¼ 0.

N ξ p

640 0.0003619281 1.107545912

1280 0.0001896841 1.092050182

2560 0.0000991471 1.079382204

Table 2.
Results of numerical simulation.
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Note from Table 2 that for Example 2, with an increase in the number of design
nodes N, the maximum error ξ in absolute value decreases and the order of com-
putational accuracy p tends to unite. This indicates that the explicit finite-difference
scheme (21) has the first order of accuracy.

Let’s perform numerical simulation according to the scheme (21) with the values
of the following parameters, T ¼ 100, N ¼ 2000, and δ ¼ 50, and leave the
remaining parameters unchanged. Let us construct an oscillogram and a phase
trajectory (Figure 3).

The oscillogram (Figure 4a) has a constant amplitude of a more complex shape at
its minima and maxima, which is reflected in the phase trajectory (Figure 4b). The
phase trajectory enters a complex two-loop limit cycle. The presence of such loops,
apparently, is associated with the effects of memory in the oscillatory system [40].

Figure 5 shows the case of free oscillations for Example 2. It is seen that the
presence of friction and memory effects in the oscillatory system intensify energy
dissipation, which leads to damping of the oscillations (Figure 5a) and a phase
trajectory—a twisting spiral (Figure 5b). Indeed, if there is no friction λ ¼ 0 in the
oscillatory system, we obtain an oscillogram and a phase trajectory as in Figure 6.

Example 3. Suppose that in Eq. (1) the right-hand side has the form

f x tð Þ; tð Þ ¼ btþ c ∑
7

n¼1
an sin nx tð Þð Þ � ωβ tð Þx tð Þ, (22)

where b is the spring travel speed; c is the surface adhesion energy; ω is the

frequency of free oscillations; and an ¼ 2n
Ð

1

0

cos πnτð Þdτ
cosh 2 πτð Þ is the coefficients of the

expansion of the Fourier series.
Eq. (5) with the right-hand side of Eq. (22) describes the hereditary stick–slip

effect [20]. The stick–slip effect is encountered in tribology problems, for example,
when the movement of a load on a spring along a surface is investigated. Due to
adhesion, the load adheres to the surface, and due to the tension of the spring, it

Figure 4.
The oscillogram (a) and the phase trajectory (b) for Example 2.
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Figure 6.
Oscillogram (a) and phase trajectory (b) for Example 2 with initial conditions x 0ð Þ ¼ 0:1, _x 0ð Þ ¼ 0:2, and
δ ¼ 0, λ ¼ 0.

Figure 5.
Oscillogram (a) and phase trajectory (b) for Example 3 with initial conditions x 0ð Þ ¼ 0:1, _x 0ð Þ ¼ 0:2,
and δ ¼ 0.
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breaks and slides along it, and its oscillations occur [41, 42]. The stick–slip effect
can also be incorporated into the mechanical model of an earthquake in the sub-
duction zone of lithospheres plates [43].

In [43] it was said that in order to obtain a reliable solution it suffices to take the
first seven coefficients an in the expansion of the function (22). The values of these
coefficients are taken from [43] a1 ¼ 0:436, a2 ¼ 0:344, a3 ¼ 0:164, a4 ¼ 0:058,
a5 ¼ 0:021, a6 ¼ 0:004, and a7 ¼ 0:003. Values of control parameters are
β tð Þ ¼ 1:8� 0:03 sin πtð Þ γ tð Þ ¼ 0:6� 0:04 cos πtð Þ, N ¼ 3000 δ ¼ 50, τ ¼ 0:05,
λ ¼ 0:3, b ¼ 1, ω ¼ 1, and x 0ð Þ ¼ 0, _x 0ð Þ ¼ 0:3.

Figure 7 shows the calculated displacement curves, displacement velocities, and
phase trajectory. Figure 7a shows the oscillogram for Example 3. It can be seen that
during the separation, the load experiences oscillations and the rate of such oscilla-
tions in the potential well attenuates rather slowly (Figure 7b). This effect is the
eradication of the process. The phase trajectory in Figure 7c shows that the poten-
tial wells are stable focuses.

5. Conclusion

A mathematical model characterizing a wide class of hereditary oscillators is
proposed and studied. The model is a differential Cauchy problem with derivatives

Figure 7.
Calculated curves obtained from formula (6) from [20] (curve 1) and formula (9) (curve 2): (a) oscillogram,
(b) oscillator speed, and (c) phase trajectory.
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of fractional-order variables of the Gerasimov-Caputo types (5) and (6). Using the
theory of finite-difference schemes, a nonlocal explicit finite-difference scheme
(9) was constructed with the first order of accuracy. Questions of its stability and
convergence, which are formulated in the form of corresponding theorems, were
studied.

The main result of the paper can be formulated as follows: an explicit finite-
difference scheme is conditionally stable and converges if criterion (14) is satisfied.
With the help of computational examples, it was shown that the scheme (9) has the
first order of accuracy. It is confirmed that in the case of free oscillations, the
presence of friction and heredity increases dissipation of energy, which leads to
attenuation of oscillations.

One of the continuations of the investigation of the Cauchy problems (5) and
(6) is a generalization of it:

∂
β x tð Þ;tð Þ
0t x ηð Þ þ λ x tð Þ; tð Þ∂

γ x tð Þ;tð Þ
0t x ηð Þ ¼ f x tð Þ; tð Þ, x 0ð Þ ¼ α0, _x 0ð Þ ¼ α1:

Another continuation of the research is related to the introduction of other
memory functions K1 t� τð Þ, K2 t� τð Þ into the model Eq. (1), which leads to
different model equations with different derivatives of fractional orders, and also
the Cauchy problems (5) and (6) can be written in terms of the local fractional
derivative [44–46].

The question of the stability of the rest points of dynamical systems described by the
Cauchy problems (5) and (6) is also interesting, by analogywith the papers [47, 48].
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