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Abstract

In living organisms, all molecular structures are formed, and all events are carried out 
by specific DNA sequences referred to as ‛genes’. However, these genes need to be 
governed and controlled to function properly. In this way, they can participate in bio-
logical processes at the optimal time. Genes are actively controlled by other genes and 
specific proteins called ‛transcription factors’. In addition, there is another mechanism 
that determines gene expression, which can be transmitted from generation to genera-
tion and from cell to cell. This mechanism is referred to as the ‛epigenetic code’. The 
DNA sequence does not undergo any changes during the formation of this code, but the 
relevant part of DNA fragment becomes no longer meaningful. While histone modifica-
tions control expression of DNA in chromosome structure, methylation modifications at 
the gene level are quite effective in controlling expressions the cytosine-end methylation 
seen in mammalian genome often occurs in the nucleotide pairs which are also called 
the CpG dinucleotides. The most common epigenetic modifications are the changes in 
histone proteins and DNA methylation, and the most widely studied and the most well-
established epigenetic mechanism is the latter.

Keywords: epigenetic, methylation, mitochondria, methylation-specific PCR, analysis

1. Introduction

Epigenetic changes in living organisms can basically be grouped under two headings. One 

is protein acetylation, which is an epigenetic modification at the protein level. The other is 

DNA methylation, an epigenetic modification that occurs at the DNA level. In living species, 
all macro-molecular structures are determined by nucleotide sequences in the genome, and 
there is a different mechanism that can be transferred to cell from cell, which has inherent 
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ability to determine gene expression. It is called epigenetic code. During creation of this code, 
DNA sequence does not undergo any change. The genetic and epigenetic alterations men-

tioned above result in the activation of oncogenes or the inactivation of tumour suppressor 

genes. Methylation may occur in any living organism from bacteria to complex species such 

as humans. The most common type of methylation is the methylation of gene promoters. This 

is followed by exon methylation, intron methylation and exon-intron methylations, which 

may be observed quite frequently.

Methylation-specific PCR (MSP) and methylation-sensitive restriction fragment length poly-

morphism (MS-RFLP) are the two most widely utilized methods in DNA methylation studies. 
Also, modified DNA sequencing with bisulphite treatment, known as bisulphite sequencing, 
may also be employed to investigate the conformation of the region of interest. These 3 are 

considerably successful methods. With the advances in technology and reduced costs, methyla-

tion-specific DNA sequencing has become a frequently used method to investigate the methyl-
ated regions identified by means of these methods. Whether a methylation region affects the 
expression of the gene of interest is another aspect to take into account as some genes may not 
yield any products although they are not methylated. In that case, one should consider that the 

gene in question may be activated by other mechanisms. With a better understanding of such 
histone and DNA modifications, they now attract attention as therapeutic targets in cancer and 
various diseases. They have started to create new alternatives especially in cancer treatments. 

Various computer programs have begun to be developed for methylation analysis. This section 

discusses all of the aforementioned conditions separately.

1.1. Histone modifications

The most basic unit of the structure called chromatin is nucleosomes. A nucleosome is a unit of 
146 bp stretch of DNA over H2A, H2B, H3 and H4 central histone proteins and binding of H1 
protein to the structure as a lock. In addition, these constructs provide necessary packaging for 
the DNA molecule, which is quite large, to fit in a small area (Figure 1).

Covalent changes in amino acids are found in tail parts of central histone proteins form the 

epigenetic code. As a result of these changes, chromosome structure constitutes expression con-

trol constructs in DNA by acquiring heterochromatin (expressionally inactive) or by forming 
regions euchromatin (expressionally active regions). Histone modifications can be classified as 
acetylation, methylation and phosphorylation. The modifications are mostly visible and revers-

ible at the amino (NH
3
-) and carboxyl (COO-) ends of central histone proteins. Each of these 

Figure 1. Core histone and nucleosome structure.
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changes to square may cause differentiation by altering histone function. For example, it can 
be seen that one, two and three bases of methyl group are added in methylation of arginine [1]. 

Histone changes are carried out by various enzymes. These include histone acetyl transferases 
(HATs), histone deacetylases (HDACs) and histone methyl transferases. The equilibrium in 
activity of these enzymes and their associated proteins is important when they can perform 
functions of normal cells. These equilibrium distortions can cause problems that can occur from 
loss of cell function to cancer formation.

1.2. DNA modifications—methylations

The underlying transcriptional silencing mechanism of DNA methylation is based on the 
overmethylation of cytosine in CpG-rich islands in the promoter region of a gene. This mech-

anism cooperates with histone deacetylation to suppress the chromatin structure. GC-rich 

DNA sequences in the human genome are often found in the promoter region and exon 1 of 
about 50% of all genes [2]. DNA methylation is the main underlying mechanism that regu-

lates gene expression in mammalian cells, as it happens to be one of the major mechanisms for 

the silencing of genes involved in cell cycle as well as cell growth and death [3].

The most widely studied and the most well-established epigenetic mechanism is DNA meth-

ylation. It is an enzymatic change where cytosines are converted to 5′-methylcytosine. The 

cytosine-end methylation seen in mammalian genome often occurs at the 5’-CpG-3′ dinucleo-

tides, which are also called CpG dinucleotides [4].

Methylation occurs by means of DNA methyltransferase (DNMT) enzymes. The DNMT family 
consists of four members, namely DNMT1, DNMT2, DNMT3A and DNMT3B. These enzymes 
are stratified into two groups: those that protect the methylated region and the ones that add 
new methyl groups. About 70% of all CpG dinucleotides of the human genome are methylated 
[5]. The remaining are the CpG-rich promoter regions of about 200 base pairs or are the first 
exons of genes. These regions are also called CpG islands and are found in 60% of all genes [6]. 

CpG methylation is programmed during the early embryonic period and preserved in later 

periods. CpG methylation is highly important with regard to normal functions of a given cell, 

as it affects the regulation of gene expression. For example, DNA methylation plays an impor-

tant role in gene silencing of the inactive X chromosome as well as the regulation of age-related 

or tissue-specific gene expression [7].

Although the structural changes that occur in DNA are usually termed as mutations, not every 
alteration is actually a mutation. A mutation refers to any change at base level such as purine-
to-pyrimidine (G-A) or pyrimidine-to-pyrimidine (C-T) changes; single or multiple altera-

tions; insertions, deletions and even single nucleotide polymorphisms (SNP). Yet, SNPs differ 
from mutations due to their structure. When methylation is compared with other changes in 
DNA, the methylation process may be considered as another type of mutation, with a change 
in the structure of the base resulting from a chemical change in DNA. However, mutations are 
rare changes compared to methylation, and they may or may not be repaired by DNA repair 
mechanisms [8]. They can be inherited from any ancestor or parent, and they may also occur 

as germline changes. On the other hand, SNPs can be called DNA alterations, which are more 
common in the population and which manifest themselves as susceptibility to disease, rather 
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than resulting in a direct disease phenotype. At this point, methylation is not considered as a 
mutation, despite the fact that it prevents cytosine behaviour by adding a methyl group from 

CpG dinucleotides to cytosine [9, 10].

The most appropriate means of this option are the CpG sequences within the DNA, which 
are bound to their conjugates through an enzymatic process in a stronger manner compared 
to the A-T pairs. This is because ApTs are bound to their complementary pairs in the cor-

responding chain by means of two hydrogen bonds, while CpGs are bound with three. 

Such binding characteristics are expected to provide stability to CpGs compared to ApTs. 
This may explain the greater frequency of methylation in CpGs rather than ApTs in the 
organism.

Methylation usually occurs through the addition of a methyl group to CpG sequence or to 
the C base in these CpG islands. Although such a change normally appears as a mutation, 
it is understood that, unlike mutations, this change is a highly functional mechanism in 
terms of cellular development and quite common across living organisms from bacteria 
to highly complex multicellular species. In this way, the organism can adapt to environ-

mental changes by changing the activation of the desired genes in response to external 

influences when necessary, thereby maintaining vitality and survival. During a methyla-

tion reaction, 5-methylcytosine is formed with the addition of a methyl group to the fifth 
carbon of the cytosine in CpG base pairs by the DNA methyltransferase enzyme (Figure 1). 
Potentially, any CpG base pair or island may undergo methylation. In addition, the fourth 
nitrogen of cytosine and sixth nitrogen of adenine, which are usually not found in multi-

cellular organisms, may also be methylated in addition to the 5-methylcytosine formation 

in bacteria [11].

Genomic imprinting is another example of DNA methylation that is involved in single-allele 
gene expression. Approximately 80 loci are suppressed in this way. The tissue-specific and con-

dition-specific expressions of these genes occur through the regulation of methylation [12]. At 
the end of 1970s, a decrease in methylcytosine numbers was observed in the genome of tumour 
cells [13]. This was referred to as hypomethylation of DNA and was demonstrated in benign 
and malignant tumours [14]. Hypomethylation of DNA may also activate oncogenes. Studies 
have shown hypomethylation in SI00A4, a metastasis-associated gene in colorectal cancers and 
the genes, cyclin-D2 and maspin, in gastric carcinomas [14, 15]. Hypomethylation may cause 

loss of imprinting (LOI), thereby promoting cell proliferation. One of the best examples of this 
process is the loss of imprinting in the IGF2/H19 region, which is seen in about 40% of colorectal 
cancers [1].

2. Bacterial epigenetic mechanisms

Modulation of chromosome organisation is one of the host defence mechanisms against bac-

terial attacks in eukaryotes. The host cell can often resist bacteria through these highly special 
and successful defence mechanisms. However, bacteria also have mechanisms that are devel-

oped against this system. Some bacteria may contain eukaryote-like proteins and eukaryotic 
histone translation proteins, which target the chromosomal machinery. In this way, they can 

activate appropriate enzymes in the host [16].
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Several bacteria contain an N4-methylcytosine base whose function has not been fully charac-

terised. There are studies indicating that these N4C modifications affect global gene expres-

sion in Helicobacter pylori, an example of carcinogenic bacteria [17].

Methylation in bacteria is different from eukaryotes in that it is seen in the fourth carbon of the 
cytosine as well as methylated adenine (N6-methyladenine) in addition to the fourth carbon 
of cytosine. DNA methylation occurs in bacteria by methyl binding to cytosine C-5 or N-4 and 
N6-adenine on the DNA methyltransferase enzyme side. N6-methyladenine is found only in 
bacteria and in less complex eukaryotes, and not in vertebrates [11]. Interestingly, bacteria also 

contain a restriction modification system that digests DNA methylase to provide protection 
against foreign DNA. These consist of the restriction enzyme systems called DcM, which rec-

ognises the 5-C cytosine, and Dam, which recognises methylated adenine. Of these, the Dam 
family is the most well-known protein group. The functional domain of Dam is a DNA MTase 
with an alpha molecule consisting of a polypeptide of 10 amino acids [18].

Similar to eukaryotes, bacteria also have rRNA methylation. The most important aspect of this 
methylation is that it creates targets for bacterial infections that can cause infection in humans. 

While promoter methylation is associated with negative expression, this may not always be the 
case for exon methylation. Still, sometimes exon methylation shows no effect on gene expres-

sion. Investigation on genetic mechanisms affecting cardiomyocyte differentiation includes 
some studies, which show that intragenic methylations create cellular memory through this 

mechanism, particularly in pluripotent cells [11].

3. Mitochondrial methylation

In all eukaryotic cells, mitochondrion is the most important organelle for cellular energy and 
the only organelle containing genomic material apart from the nucleus. Owing to its unique 
and small genome, this organelle exerts certain proteins and RNAs needed for respiratory 
reactions and cell growth. Together with the nucleus, it is one of the two genetic systems 

found in the cell. Mitochondrial DNA (mtDNA) has a circular structure and is located inside 
mitochondrial matrix, bound to the internal membrane. The mtDNA consists of 16,569 base 
pairs in a loop form, containing a heavy chain (H) and a light chain. This chain structure con-

tains 2 rRNA molecules, 22 tRNA molecules, and 13 genes necessary for oxidative phosphory-

lation and electron transport (Figure 2). A healthy mitochondrion exerts adequate functions 
by means of certain proteins that are present in the mechanism of oxidative phosphorylation. 

This genome is about 16.5 kb in humans, and 13 proteins and rRNAs are synthesised from the 
mitochondrial genome in mammals [19, 20]. Therefore, the slightest change in mitochondrial 

genome can potentially affect the life of the cell, and thus the organism [21].

As is the case with mutations, methylation is a mechanism that alters the way the genes work 
together with the diet, drugs and oxidative stress. Methylation profile of human mtDNA starts 
from the intrauterine period. With the aid of foetal thyroid hormones, mtDNA copy number 
and mtDNA methylation are regulated by a thyroid-dependent pathway [23]. In addition, 

mtDNA is also affected by airway pollutants. The elemental carbon present in benzene and 
exhaust gas in traffic may influence the number of mtDNA copies by means of ribosomal 
RNA methylation [24].
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Despite the understanding of these methylation changes in mitochondrial genome, the func-

tion of methylated mtDNA has not been fully understood; however, Monique et al. have 
revealed a different situation. Contrary to what is expected with the methylation of CpGs and 
GpCs in mtDNA, they have demonstrated that methylation of CpG base pairs had no effect 
on expression while methylated GpCs were associated with decreased expression [25].

Furthermore, since the mitochondria in humans are entirely of maternal origin, life style of 
the mother may also have effects at mitochondrion level. Habitual behaviour of the mother, 
her diet and excessive consumption of fats and sugars trigger obesity, which may affect epi-
genetics, including that of mitochondria in subsequent generations. A study conducted in 
mice revealed increased methylation leading to alterations in gene expression and suppres-

sion, particularly in the respiratory tract of the offspring of mice that were fed high-fat diets 
[26]. Furthermore, because the structure of mitochondrion is highly similar to that of bacteria, 
some genetic factors and structures may also be the same.

4. Detection of the methylation region

Any DNA region containing a CpG sequence may potentially undergo methylation. For this 
reason, any gene may be subjected to methylation; however, methylation most commonly 
occurs in the promoter region of genes. That is quite reasonable given the fact that the pro-

moter region is the recognition site for RNA polymerases and therefore of critical importance 

Figure 2. Gene structure of mitochondrial genome [22].
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Figure 3. QUMA Web-based program interface.
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for gene expression. Although more rarely, methylation may also be observed in exon 1 and 
other exons of certain genes. One of the ways of finding out whether a gene or DNA region 
may undergo methylation is to investigate that region with sequence analysis programs spe-

cifically developed for this task. There are paid programs by companies such as Fermentas 
(Methyl Primer Express® Software v1.0) serving this purpose as well as Web-based free 
access programs such as ‘MethPrimer’ developed by Li LC and Dahiya R. (available at http://
www.urogene.org/methprimer/) [27]. There is also a Web-based program ‘DiseaseMeth’ 
(available at http://202.97.205.78/diseasemeth/Analyze.html#form3), which offers researchers 
who is interested in using a study of which disease or cancer is associated with a desired gene 

methylation. Another Web-based program is SMS (Sequence Manipulation Suite; available 
at http://www.bioinformatics.org/sms2/) [28]. One of many useful programs at this address 

is program which shows CpG islands in a desired DNA region. Another program is a Web-
based program QUMA (Quantification tool for Methylation Analysis; available at http://quma.
cdb.riken.jp/) (Figure 3) [29]. These programs allow methylation region mapping, designing 

methylation-specific primers, determining bisulphite sequencing primers, identification of 
CpG islands and determination of DNA sequences that are altered or newly formed due to 
bisulphite modifications.

In order to do this, the initial step should be obtaining the FASTA sequence of the sequence in 
question. The Ensembl genome browser 92, available at https://www.ensembl.org/, is a very 

Figure 4. Survivin gene sequence on Ensembl genome browser 92.
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Figure 5. Enter the sequence into Methyl Primer Express. The selection is made for bisulphite sequestration or MSP.

Figure 6. The possible gene region resulting from the analysis.
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good resource that can be utilised for this step. Ensembl is a database that allows access to DNA 
sequences in formats such as BLAST and BLAT for comparative genomic studies, evolution 
studies, sequence variants and transcriptional variants across vertebrate genomes. The relevant 
DNA sequence obtained from such a database is added to the methylation primer program, the 
sites of interest are labelled, and the program is run (Figures 4–8).

Figure 7. Methyl and unmethyl primer sequences and product length for the gene region of interest.
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5. Methylation-specific PCR (MSP)

MSP is an established and the most commonly utilised method to determine the presence or 
absence of methylation in a gene region of interest as well as the extent of methylation, if any 

[30, 31].

In this method, DNA is initially subjected to total bisulphite treatment. In this way, all of the 
unmethylated cytosines in the DNA sequence are transformed into thymine. However, the 
methylated cytosines remain unchanged (Figure 5). This results in a motif change in the meth-

ylated region. Subsequently, spectrophotometric DNA quantification is conducted with DNA 
samples. For this, measurements are made at wavelengths of 260/280 nm and multiplied by the 

Figure 8. Upper row: original sequence. Lower row: bisulphite modified sequence. (For display, assume all CpG sites are 
methylated) ++, CpG sites; ::::, non-CpG ‘C’ converted to ‘T’; M>>>>>>, left methylated-specific primer; M<<<<<<, right 
methylated-specific primer; U>>>>>>, left unmethylated-specific primer; U<<<<<<, right unmethylated-specific primer.
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dilution factor to determine the amount of DNA as nanogram per microlitre; and according to 
these amounts, MS-PCR is performed taking care to include equal amounts of DNA samples in 
the PCR. In this type of PCR, the PCR is conducted in two separate tubes for each sample. While 
the primer specific for the methylated region is added into one tube, the other tube contains the 
primer for the unmethylated region, and PCR is performed as 35–40 cycles. PCR samples are 
then analysed by visualisation with ethidium bromide agarose gel imaging systems.

5.1. Sample reaction: (for the prestin gene promoter region in guinea pigs)

Methylation-specific polymerase chain reaction: DNA purity was measured at wavelengths of 
260 and 280 nm on spectrophotometry, and DNA quantification was performed using the DNA 
(μg/mL) = A260 × Dilution Factor × 50 (coefficient) formula at 260 nm UV. Subsequently, 10 μL 
of DNA was taken from each sample and bisulphite modification was carried out for DNA 
with Millipore CpGenome modification kit according to the manufacturer’s instructions. This 
modification converts the cytosines of the unmethylated region to thymines. For the region 
thought to be altered in this manner, CpG sequences in exon 1 of the prestin gene were detected 
using the MethPrimer V1.1 beta program [30]. MSP was conducted according to the following 
protocols to investigate methylation utilising the PCR primers for exon 1 of the prestin gene 
stated below, and PCR conditions for the methylated and unmethylated regions are as follows:

Methylated region (M: methylated):

M-Forward: ATGTTGAAGAAAATGAAATTTTCGT,

M-Reverse: ACTTATCCCCGATAAAATCCG,

PCR product: 164 base pairs (bp).

Unmethylated region (UnM: unmethylated):

UnM-Forward: TTTATTTTTAGAAGGTTGTGG,

UnM-Reverse: AAACTACCAAACAAAAAACAACATC,

PCR product: 163 bp.

PCR conditions:

PCR buffer 1×, MgCl: 2 2.5 mM, DMSO: 5% (v/v), dNTP: 12.5 mM, Primer Forward: 10 pmol, 
Primer Reverse: 10 pmol, Taq Polymerase: 1 U (5 U/μL), Template DNA: 100 ng and dH2O 
were used to obtain a total of 50 μL, and PCR thermal cycling procedure was as follows:

This investigation allows determining whether the region of interest is methylated and quantify-

ing methylation by measuring the band intensity with any gel analysis system. If desired, results 
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may also be obtained while real-time PCR is performed with SYBR-green or Taqman or similar 
fluorescent probes (the probe must be designed according to the bisulphite DNA sequence).

5.2. Evaluation of agarose gel imaging

The resulting primers were stained with ethidium bromide on 2% agarose gel, and agarose 
gel findings were evaluated by examination under ultraviolet light (Figures 7–10).

Example run:

5.3. MS RFLP

Another method used to detect any DNA methylation is the methylation-specific restriction 
fragment length polymorphism (MS-RFLP) method, which produces methylation-specific 
digestion. This method employs restriction enzymes obtained from bacteria, which recognise 

5’ C ↓ C G G 3’

3’ G G C ↑ C 5’

Figure 9. Results of polymerase chain reaction in all study groups at the time point of second week for prestin (K1–K3: 
Group 1; K3–K6: Group 2; T1–T6: Group 3). Complete methylation is seen in sample 6T, while heterozygous methylation 
is observed in other samples [32].

Figure 10. Imaging of MSP and un-MSP PCRs of survivin exon 1. Well 1: marker, 100 bp marker; well 2: positive control; 
3–4, 5–6, 7–8, 9–10, 11–12, while unmethylated PCR results are found to be at the same (+) intensity in MSP and un-MSP 
sample wells of the same cases, the following methylated PCR results were not observed except the control DNA (+), and 
all samples were accepted as unmethylated. Well 13 is the negative control of the reaction (Figure 10).
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and cut only specific methylated regions. The most commonly used restriction enzymes for 
this purpose are HpaII and MspI.

This process digests the methylated CpG (if present) in the DNA region of interest. If that 
region is not methylated, digestion occurs via HpaII, an isomer of MspI. Concurrent use of 

these two enzymes provides insight on the methylation status of the region in question.

6. COBRA (combined bisulphite restriction analysis)

COBRA is a method developed by combined use of bisulphite modification and RFLP meth-

ods. In this combined method, DNA is first differentiated in the methylation-dependent DNA 
sequence with sodium bisulphite. As mentioned earlier, in practice, methylase cytosines are not 
affected, while unmethylated cytosines are converted into uracil. PCR is performed with prim-

ers designed specifically for these new DNA sequences obtained by bisulphite method. Unlike 
MS-PCR, primers used in this PCR step should not contain CpG sequences. After this step, diges-

tion step of restriction comes. At this step, PCR products are treated with two restriction enzymes 
with TaqI (TCGA) and BstUI (CGCG). These enzymes form a methylation profile by cutting off 
DNA fragments to properties of whether residues of cytosine are methylated or not (Figure 11).

Methylated regions in DNA fragments digested BstUI and unmethylated homologue of the 
same region digested TaqI enzyme. These new fragments, which are formed according to 
methylation state, can be calculated as percentages of methylation rate for region investigated 

according to patterns and density of band formed by conducting the polyacrylamide gel elec-

trophoresis. It should be noted here that band densities should be determined by a photo 

Figure 11. Calculation of band intensity in survivin exon 1 with ‘Gel Quant Express’.
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image analysis program (e.g., Figure 12). Once these values have been obtained, percentage 
of methylation can be calculated by substituting the following formula [33, 34] (Figure 13).

6.1. Advantages

It is simple, cheap and fast. DNA methylation levels can be shown without needing for any 
extra bisulphite sequencing.

Due to its high specificity, it is very successful even in DNA material, which is obtained from 
paraffin blocks.

It is quite quantitative compared to methylation-specific PCR, which is a qualitative method.

In MS-PCR, only locus-specific methylation information can be obtained, whereas in this 
method, entire region within locus is examined.

6.2. Disadvantages

This method is limited by existing restriction regions in region being investigated.

In addition, incomplete digestions of restriction enzymes can have misleading results for the 
amount of methylation.

Due to cell-type heterogeneity in different cell complexes, methylated CG sequence may be 
transformed into other sequences, such as CA or CT, leading to a change in restriction sites.

Considering all these advantages and disadvantages, the COBRA method emerges as an 
effective method for determining a highly effective level of methylation.

Figure 12. The image of COBRA method and calculation step.

Figure 13. Mathematical calculation of percentage methylation rates in COBRA method.
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7. Conclusion

Many studies after the first discovery of epigenetic changes have shown that epigenetic modi-
fications are quite important in natural flow of life and that many genes are mechanisms used 
for expression and inactivation when needed.

Furthermore, as these mechanisms are understood better, they have been associated with many 
pathological conditions, from cancer to mental retardations such as fragile X and Prader-Willi 
Angelman, to chromosomal instability. In this regard, such diseases have emerged in new 
therapeutic targets. Chemical agents such as 5-azacytidine and 5-aza-2′-deoxycytidine, which 

inhibit methylation by binding to and inhibiting DNMT enzyme, are now being tested in phase 
II-III studies [35–38]. Furthermore, use of oligonucleotides that bind to promoter regions at 
specific gene level and perform gene inhibition is seen as approaches that may contribute to 
cancer treatments [39–41].

In addition, histone acetyltransferase inhibitors, which inhibit formation of epigenetic modifi-

cations at histone level, have emerged as novel cancer treatment agents. For example, H3-H4 
of a soy protein Lunasin has been found to exhibit anticancer properties in mammals by sup-

pressing histone acetylation. Wenyi et al. have shown that YEAST domain, an acetyl lysine-
binding module, is effective in the development of cancer, and this domain appears to be the 
target for anticancer therapies. It seems that such approaches in the future will start to give 

more successful results [42].

In light of the information presented above, one may conclude that methylation is a highly 

important genomic mechanism for the cell from unicellular organisms to multicellular organ-

isms. This mechanism is seen in bacteria, mitochondria and all eukaryotic cells in proportion 
to the complexity and development level of the organism. The identification of methylated 
regions is as important as the methylation process itself, as this may allow identifying several 

potential novel targets related to subject matters such as the development mechanism of dis-

eases, certain roles in cancer development and bacterial resistance.
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