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Chapter

Real-Time Particle Radiography
by Means of Scintillating Fibers
Tracker and Residual Range
Detectors

Domenico Lo Presti, Giuseppe Gallo, Danilo Luigi Bonanno,
Daniele Giuseppe Bongiovanni, Fabio Longhitano and
Santo Reito

Abstract

In this chapter, a detailed description of the construction and the procedure for
the measurement of performances of a charged particle imaging system is given.
Such a system can be realized by the combined use of a position sensitive detector
and a residual range detector. The position sensitive detector is made up of two
superimposed and right-angled planes, each of which subsists of two layers of
pre-aligned and juxtaposed scintillating fibers. The selected 500 pm square section
fibers are optically coupled to two silicon photomultiplier arrays adopting a channel
reduction system patented by the Istituto Nazionale di Fisica Nucleare. The residual
range detector consists of 60 parallel layers of the same fibers used in the position
detector, each of which is optically coupled to a channel of silicon photomultiplier
array by means of two wavelength-shifting fibers. The sensitive area of both
detectors is 90 x 90 mm®. The performance of the prototypes was tested in different
facilities with protons and carbon ions at energy up to about 250 MeV and rate up to
about 10° particles per second. The comparison between simulations and measure-
ments confirms the validity of this system. Based on the results, a future develop-
ment is a real-time radiography system exploiting high-intensity pencil beams and
real-time treatment plan verification.

Keywords: real-time particle radiography, innovative detector readout strategy;,
beam monitoring, scintillating optical fibers, treatment plan verification

1. Introduction

Hadron therapy is a promising alternative in treatment of tumors, because it
is one of the most effective techniques of external radiation therapy, which allows
killing tumor cells while leaving almost intact the surrounding issue. In order to
achieve the maximum effectiveness, high precision is needed in dose delivery, which
requires a real-time adequate quality control of the beam parameters (position, pro-
tile, fluence, energy) combined with the precise measurement of patient position-
ing [1, 2]. QBeRT is a particle tracking system [3] and consists of a position-sensitive
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detector (PSD) and a residual range detector (RRD) (see Figure 1). The main parts
of this system are detectors expressly designed to achieve high-resolution imaging,
high-resolution residual range measurement, large sensitive area, and high-rate
beam compliance. The QBeRT system performs all these tasks and, advantageously,
requires a low number of readout channels, making possible the reduction of the
complexity and cost of the electronic data acquisition (DAQ) chain, by means of a
readout channel reduction system patented by Istituto Nazionale di Fisica Nucleare
(INFN) [4]. Both detectors, PSD and RRD, are able to work in imaging conditions,
with particle rate up to 10° particles per second, and in therapy conditions (up to
10 particles per second). In imaging condition, the system is capable to realize a
particle radiography and permits a real-time monitoring of the patient position in
treatment room. In therapy condition, the PSD acts as a profilometer, detecting the
position, the profiles, and the fluence of the beam. The combined use of the infor-
mation measured by the PSD and the RRD allows to check the treatment plan in real
time. The design of both detectors is based on scintillating optical fibers (SciFi) with
500 pm nominal square section.

The working principle of the scintillating optical fibers is schematized in Figure 2.
SciFi consist of a polystyrene-based core and a PMMA cladding. The scintillating
core is a mix of polystyrene and fluorescent dopants selected to produce the scintil-
lation light when a particle releases energy in it and sets the optical characteristics
for light propagation in the fiber. Scintillation light is produced isotropically but
only a portion of these photons, in the two opposite directions along the fiber, can
propagate by total internal reflection (TIR) mechanism. Multi-clad fibers have a
second layer of cladding that has an even lower refractive index and permits TIR at a
second boundary. External EMA is an optional external layer used to eliminate opti-
cal cross talk. SciFi sizes range from 0.25 to 5 mm square or round cross-sections
and available in canes, spools, ribbons, and arrays.

The scintillation light is routed by the SciFi in the PSD, by means of wavelength-
shifting fibers in the RRD, toward two silicon photomultiplier (SiPM) arrays, which
output a proportional electric signal. PSD and RRD employ a DAQ chain divided in
two sections. The first section consists of the front-end (FE) boards, which process
the electric signal from the light sensor and perform the analog-to-digital conversion.

Data from the FE is acquired by a readout (RO) board based on a National
Instrument system on module (SoM) for pre-analysis and filtering. The actual
readout channel reduction scheme applied to the PSD limits the performances of

Position Sensitive Residual Range Detector (RRD)
Detector (PSD)

Figure 1.
Schematic of the QBeRT proton tracking system.
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Figure 2.
Working principle of the scintillating fibers.

the detector when the beam spot size exceeds about 2 cm. Notice that the choice of
the suitable readout channel reduction scheme and the modularity of the detector
architecture allows to resize the sensitive area and the maximum beam spot size in
order to fit any specific requirement. It is possible to obtain a large area detector (up
to 400 x 400 mm”) covering a range up to 250 MeV protons with high spatial and
range resolution (up to 150 and 170 pm, respectively). The detectors described in
this chapter have been intensively tested in imaging and therapy (up to 10° proton/s)
conditions [5] thanks to the collaboration with the colleagues working at CATANA
facility (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate at Laboratori
Nazionali del Sud-Istituto Nazionale di Fisica Nucleare in Catania), at TIFPA (Trento
Institute for Fundamentals Physics Applications) in Trieste, and at CNAO (Centro
Nazionale di Adroterapia Oncologica) in Pavia.

2. The position-sensitive detector

The PSD prototype has a sensitive area of 90 x 90 mm?, which is made of two rib-
bons, layers of pre-aligned BCF-12 SCIFI, manufactured by Saint-Gobain Crystals,
juxtaposed and orthogonally oriented, named the X and Y planes. The SciFi have
500 pm nominal square section. In detail, each single layer is composed of four
ribbons of 40 fibers. The ribbons are optically isolated from each other by means
of 220-pm-thick black adhesive tape to reduce cross talk between adjacent and
overlapped ribbons. Each fiber is coated with white extra mural absorber (EMA)

[6] to further reduce the cross talk between individual fibers. Particles intersecting
the PSD’s sensitive area deposit energy in the fibers which is partially converted in
scintillation light. A fraction of this light is channeled in the core and propagated in
the fiber toward the photo-sensor. When a particle loses suitable energy in all four
SciFi layers, the coordinates of the intersection of its trajectory and the sensitive area
can be measured. A picture of PSD detector is shown in Figure 3.

The PSD has 640 optical channels (four layers of 160 fibers each). The channel
reduction system reduces the number of the readout channels without any data loss
or degradation in the position measurement. The readout is performed in time coin-
cidence, strongly reducing the effect of noise and chance coincidences, enhancing
at the same time the performances of the system. The working principle of channel
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(b)

Figure 3.
(a) Picture of PSD detector during the assembly phase. The dashed ved box highlights the sensitive area of the
detector. (b) A sketch of the arrangement of the four layers is shown.

reduction can be argued by considering a strip detector able to detect one particle at
a time. Each strip can be read from both ends, and the signals are grouped follow-
ing the scheme reported in Figure 4, where a two-dimension 16-strip detector is
illustrated. All strips are read out, on one end, in m groups of 7 neighboring strips,
named NeigSet, while at the other end, the first strips of each group are grouped

in StripSet1, the second strips of each group in StripSet2, and so on to m. The two
numbers are not necessarily the same. The minimum number of total channels,
obtained by choosing 7 = m, is 44/N, where N is the total number of strips per
layer, X or Y. This implies that the number of readout channels on the second side is
equal to the number of fibers per channel on the first side. A particle crossing one

NeigSet NeigSet NeigSet NeigSet
Group Group Group Group
1‘ X 2 X 3 X 4 X

Particle

NeigSet
Group
1Y

NeigSet
Group
2Y

NeigSet
Group
X
NeigSet
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StripSet 4 X [ 1] _

StripSet 3 X -

StripSet 2 X
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Al 328ding
Az wgduag
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Figure 4.
An example of the application of the channel reduction scheme to a two-dimension 16-strip detector.
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strip generates a signal at both ends of the fiber. Then, we have a signal from the i*
NeigSet group and another from the j* StripSet that univocally identifies the Stripy,;,
hit, according to equation (1):

Strippy = G -1 -n+j. (1)

The developed readout scheme reduces the number of readout channels to 16,
instead of 32 channels without the application of the compression. When N is large,
the reduction factor becomes important, allowing a compact and low-cost real-time
acquisition. Notice that to reconstruct the point where the particle crosses the detec-
tor (event), an energy release in both planes is needed. In the PSD, readout occurs in
time coincidence between the two layers of fibers for each plane. The channel reduc-
tion system can read the signal from the whole detector with only 112 channels (less
than a fifth respect to the 640 total channels). Each of the 56 optical channels per
plane is optically coupled to one of the 64 channels of a SiPM array. For a detailed
description of the readout channel reduction system, see Refs. [7-10].

2.1 The PSD DAQ chain

As previously stated, the signals from the SiPM arrays are acquired by a DAQ
chain divided in two main sections. The first section consists of the FE electronics
which operate the analog-to-digital conversion. The digital-encoded data output
from the FE is sent to the RO board which hosts a system on module (SoM) manu-
factured by the National Instrument (NI) for decoding and filtering. The SoM basi-
cally consists of a field-programmable gate array (FPGA) and a real-time processor,
communicating by means of a direct memory access (DMA) data bus. The real-time
processor has gigabit Ethernet connection for data transfer toward a PC, where the
real-time visualization and storage of the results are accomplished.

Two FE boards, one for each direction, are required. Each FE board hosts a
64-channel SiPM array manufactured by Hamamatsu Photonics, mod. S13361-
3050AE-08, with 3 x 3 mm” photosensitive area per channel. These custom designed
boards amplify and filter the analog signals from each SiPM array channel and
compare them, by means of an array of fast comparators, to an individual thresh-
old, remotely settable by a DAC. An individual threshold per channel is useful to
compensate the unavoidable mismatch of the SiPMs gain and of the optical cou-
pling of SiPM to fibers. The output of each FE board is an asynchronous digital data
bus of 56 bits which represents the status of the SiPM signals and is acquired by the
NI SoM on the RO board. The FPGA samples the FE output at high frequency, up to
250 MHz. This data is transferred toward the SoM processor via DMA. The proces-
sor applies real-time filtering algorithms and, after discarding the spurious events,
reconstructs the impact point of the particles. The SoM’s FPGA can be programmed
via a graphical approach by means of the LabVIEW platform. The LabVIEW
platform also manages the entire acquisition chain and data processing in real time.

3. The residual range detector

The RRD prototype is a stack of 60 layers, 90 x 90 mm” area. Any layer is a
ribbon of 180 BCF-12 SciFi. A picture of the detector is shown in Figure 5(a). The
ribbons are oriented horizontally and optically coupled at both ends to 1 mm square
section wavelength-shifting fibers (WLS), see Figure 5(b) and (c). To avoid optical
cross talk between adjacent RRD layers, which would degrade range resolution and
therefore energy measurement, each layer is optically isolated from the others by
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Figure 5.
(a) View of the RRD prototype. (b) Detail of the optical coupling between SciFi and WLS fibers in a RRD
layer. (c) View of the sensitive area of the RRD.

means of 100 pm black adhesive film. The SciFi used in the RRD are not coated with
EMA because cross talk between adjacent fibers in the same layer does not affect
detector resolution. The scintillation light produced in each layer at the passage of
the particle is partially absorbed, reemitted, and channeled by the WLS. The two
WLS coupled to a layer transfer the collected light to a channel of a SiPM array. The
FE output is, then, processed by the DAQ chain. The SiPM array and the DAQ chain
are identical to those used in the PSD described in the previous section.

A charged particle crossing the RRD passes through a number of layers as a
function of its initial energy, before stopping. The dose deposited in each layer
increases with depth up to the Bragg peak, where the particles produce the maxi-
mum amount of scintillation light. This point corresponds approximately to the end
of the particles’ path in the detector, so, by detecting the layer in which the light
signal is the more intense, it is possible to measure their range. The RRD’s working
principle is reported in Figure 6. A calibration of the detector allows to obtain a

Range

Beam
Pipe

Residual Range Detector (RRD)

Figure 6.
Working principle of the RRD. In this figure, the height of the yellow column is proportional to the energy
released in each layer by a particle crossing the RRD.
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range-energy characteristic curve, which can be fitted by a function Ry = aE¥; In
this way, it is possible to retrieve the initial energy of the particles from the mea-
sured range. For the actual RRD, the maximum measurable range was about 36 mm
in polystyrene/PVC corresponding to the range of protons with 67 MeV initial
energy, but this maximum range can be easily extended up to higher energies by
placing a stack of calibrated water-equivalent range shifters between the beam exit
and the RRD entry window.

4. Experimental results

Measurements at CATANA were carried out to fully characterize the perfor-
mance of the prototypes, with protons up to 58 MeV at the output in treatment
room. During the last year, other measurements have taken place at TIFPA proton
irradiation facility. The spatial resolution of the PSD was measured by means of
a calibrated brass collimator applied at the beam pipe exit in the treatment room
at CATANA. After data analysis, it is possible to estimate the holes’ centers and
compare them with the projection of the collimator holes on the detector plane.
Then, the mean distances between the reconstructed centers and the collimator
hole centers were calculated for each hole, and the mean distance was about
130 pm, comparable with the (a priori) spatial resolution of the PSD, given by
500 pm/+/12. The maximum spatial resolution is an intrinsic characteristic of the
detector, independent of the readout strategy.

In order to calibrate the RRD, several measures of the range have been acquired
changing the initial energy of protons. At CATANA facility, the proton beam energy
can be passively modulated by placing a different calibrated PMMA range shifter at
the beam pipe exit. The energy of the protons at the beam pipe exit was calculated
by means of Monte Carlo simulation. The Bragg peak position is not exactly at the
real end of the particles’ path but just before. It is an experimentally consolidated
practice to assume that the particle range measurement corresponds to the distance
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Figure 7.
Measured values of the vange vs. the corresponding proton energy at TIFPA and vesulting data fit.
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from the entrance window where the intensity of the signal is one tenth of its
maximum value.

This distance corresponds to the layer on the right of the Bragg peak (or the next
layer compared to the incident beam direction). The results of this measurement are
compared with the range values calculated by means of a Monte Carlo simulation of
the response of the detector. Both data sets were fitted with the power law (Eq. (1)):

R =a+h-EY° (1)

where R is the range of the protons in the RRD, E is the kinetic energy at the
entrance of the RRD, and 4 and b are free parameters of fit.

The same measurement was performed at TIFPA with proton energy in the
range between 70 and 250 MeV and with a high-intensity beam, up to 10° protons
per second.

In order to extend the range of the RRD, a series of calibrated water-equivalent
range shifters, 10-mm-thick polystyrene slab phantoms was placed in front of the
entry window of the RRD every time the energy of the beam exceeded the range
of detector alone. In Figure 7, the range vs. energy calibration graph, measured at
TIFPA, is shown.

5. Beam profile measurement

The PSD can work as a profilometer at rate up to 10° particles per second therapy
conditions. It is able to measure the size and the position of the beam spot. Asa
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to data.
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consequence of the application of the channel reduction system, the beam profile
can be reconstructed only if the beam spot size is lower or equal to the width of a
ribbon (about 2 cm). The PSD was tested as a profilometer at TIFPA, where the
beam optics causes a reduction of the beam spot size with increasing energy. In the
test, the PSD worked properly at high energies, as shown in Figure 8.

6. The proton radiography

The PSD and RRD have been tested in radiography configuration at CATANA. In
this test, the experimental setup is the one previously described, but the two detec-
tors were simultaneously active.

In order to acquire a radiographic image, a range measurement must be performed
for each particle crossing the PSD at a given position. Then, data acquisition must run
at low beam intensity (imaging conditions, about 10° particles per second on average).
When a particle causes a quadruple time coincidence in the PSD, the crossing position
within the sensitive area is measured, and a trigger signal starts the measurement of
the particle range in the RRD. The software analysis associates the positions mea-
sured by the PSD to the RRD range measurements event by event. At the end of data
acquisition for each pixel, the software analysis calculates the centroid by Gaussian
tit of the range measurements distribution corresponding to that pixel. The result of
this analysis is, therefore, a 160 x 160 matrix, as many as the PSD pixels, in which each
element is the centroid of the range measurement of the particles that have crossed
the corresponding pixel. Note that the use of a single PSD placed before the RRD can
introduce a not negligible error for the fact that the input and output particle crossing
positions through the calibrated target one must necessarily be assumed coincident or

T8
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Figure 9.
The radiography of the ladder target with A12 range shifter.
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undergone a negligible deflection traversing the medium. This error could be mini-
mized using multiple PSD at different depths in the RRD.

A simple PVC target with the shape of a ladder was designed for the radiography
test. Due to the homogeneous density of the target, in the radiography, only the dif-
ferences in thickness traversed by the protons can be distinguished. The radiogra-
phy image reported in Figure 9 refers to a 3.5 cm diameter beam crossing a PMMA
range shifter of about 10 mm thickness.

The z value in Figure 9 is the centroid of the range distribution, expressed in
numbers of RRD layers, pixel by pixel. Notice that the empty quarter-circle sector
refers to the thickest step, 15 mm thick, of the ladder. The 58 MeV protons of the
CATANA beam have insufficient energy to exit after passing through the thickness of
the A12 range shifter and 15 mm of PVC. Moreover, border effects due to the non-
orthogonality of the ladder with respect to the beam axis and the unavoidable diver-
gence of the beam caused by the use of range shifters are visible in the radiography.
The void pixels within the spot correspond to pixels where the range measurement
statistics is too low. Many of these pixels are aligned along the same row or column,
suggesting a correlation to low efficiency of the tracker in those areas. Two different
3D perspectives of the radiography are shown in Figure 10(a) and (b). The last step in
the analysis is the calculation of the relation between the measured range and the AE
energy lost by the particles. The AE calculation must also take into account the energy
lost by the particles in the PSD, which is placed between the target and the RRD. Since
the sensitive areas of both detectors consist of 500 pm layers of SciFi, the PSD can
be considered as an extension of the RRD. The residual proton range in the PSD and
RRD was simulated as a function of the particle initial energy in the tracker E.

The range values thus obtained were fitted to the power law reported below in the
equation, where R is the particle range in the RRD and PSD, expressed as the number of
layers, and the resulting fit parametersare A = —0.191 + 0.311 and B = 0.0370 + 0.0006
(R - square = 0.998). Therefore, the energy loss AE can be easily calculated as

1/1.75

AE[MeV] = 58 - (%)

The final radiography obtained after applying the energy-range conversion
formula is shown in Figure 11.
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Two different perspectives of the 3D representation of the radiography: (a) lateral view and (b) isometric
perspective.
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Figure 11.
The radiography of the ladder with A12 range shifter expressed in energy loss.

7. Radiograph data analysis

As mentioned earlier, radiography images reconstructed from range measure-
ments are subject to some limitations: (i) lack of knowledge of the effective paths
of the particles crossing the phantom because only one PSD was used. In this
case, particle trajectories cannot be corrected according to the effect of Multiple
Coulomb; (ii) further beam divergence was introduced by the tolerances in the
alignment of the target, not exactly placed at isocenter and perpendicular to the
incident beam direction. The reduction of the error in the calculus of the target
thickness is obtained by the data filtering of range measurements. From the simula-
tions, protons with an initial energy of 58 MeV crossing A12 range shifter, the target
and the tracker, and stopping in the RRD have a maximum range straggling of
Ostr = 0.4 mm, which already includes the effects of initial energy spread (0.3 MeV).
So, in a region of interest (ROI) corresponding to a homogeneous quarter of the
target, a range of measurements around the expected value from the simulation can
be selected plus or minus two layers (equal to six times o).

Subtracting the square of the maximum range straggling value of 6, = 0.4 mm
from the standard deviation of range measurements, it is again possible to find the a
priori range resolution of about 170 pm. These mean range values can be converted
into proton energy loss and subsequently into energy loss.

8. Future developments

The combined use of a pencil beam facility and the radiographic system,
presented in this chapter, could allow the development of a faster real-time

11
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Figure 12.
The real-time reconstructed pattern. The x and y for each point are measured by the PSD. The z is the range
measured by the RRD. The color is proportional to the measuved fluence.

radiographic technique. Furthermore, the acquired radiography will be spatially
correlated with the treatment plan applied to the patient. Exploiting the features of
the described proton imaging system, a new method of quantifying treatment plan
quality will be investigated.

A demonstrative measurement has been performed at CNAO in Pavia. A simple
pattern of point in the field of view of the radiographic system, presented in this
chapter, was covered by the pencil beam. The same pattern was modulated in
energy, in the range of energy compatible with the range in the RRD, in order to
obtain a 3D matrix. Each point in the matrix was covered by the pencil beam in
one spill delivering a fixed dose, up to 10° protons per spill. The PSD measured the
centroid, the FWHM and the fluence of the beam delivered in each position. The
RRD measured the centroid, the FWHM of the range of the protons delivered in
each spill. Figure 12 shows the real-time reconstructed pattern.

The results demonstrate the potentiality of the system. Accurate measurements
will be performed in order to refine these statements in a quantitative way at TIFPA
in a treatment room. In these future tests, a calibrated phantom will be used for the
measurement.

The definition of the optimal parameters for the radiography, e.g., beam
energy and fluence to be chosen in order to obtain the required spatial and density
resolution will allow the definition of the specifications for the design of the final
detectors.

9. Conclusions
This chapter presents the design and characterization of an innovative imaging
system for charged particle beam based on SciFi. The system consists of a position-

sensitive detector and a residual range detector. Both prototypes, with a sensitive
area of 90 x 90 mm®, have cutting-edge performances, which distinguish them from
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all other devices designed for the purposes considered in this chapter. In addition,
improvements in the DAQ chain and the use of SiPM arrays make possible the use
of the PSD as a beam monitoring and quality assurance system, by measuring real
time the center and the shape of the spot, the fluence, and residual energy of the
beam. The verification of this feature was investigated and demonstrated in beam
tests. The performance of the PSD and RRD was tested at CATANA proton therapy
facility with energies up to 58 MeV. Moreover, Monte Carlo simulations of the RRD
detector response and the radiography of a calibrated target were measured by the
system. From the analysis of the results and by a comparison with data from simula-
tions, the architecture and the technology were validated.

Tests at CNAO and TIFPA validated the functionality of these devices with
active beam shaping systems using protons with energies up to 250 MeV. Future
developments concern the real-time qualification of a treatment plan and the
comparison of the results with those provided by the official dose delivery system.
Furthermore, the feasibility of a real-time radiography exploiting pencil beam will
be tested.
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