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Abstract

Domestication has irrevocably impacted human evolution. The domestication process/
pathways have been the focus of abundant research for plants and vertebrates. Advances 
in genetics and archeology have allowed tremendous progresses in the understanding of 
domestication for these organisms. In contrast, insects’ domestication has comparatively 
received far less attention to date. Yet, insects are the most common animal group on 
Earth and provide many valuable ecosystem services to humans. Therefore, the aims of 
this chapter are (i) to provide an overview of main ancient and recent insect domestica-
tion histories and (ii) to reread them by the light of the domestication process, pathways, 
triggers, and consequences observed in other animal species. Some of the considered 
species (i.e., silkworm and honey bee) have been chosen because they are among the few 
insects commonly acknowledged as domesticated, while others allow illustrating alter-
native domestication patterns. The overview of current literature shows similar human-
directed pathway and domestication syndrome (e.g., increased tameness, decreased 
aggressiveness, modified reproduction) between several insect species.

Keywords: domestication level, domestication pathways, domestication syndrome, 
insect species

1. Introduction

Domestication is one of the most important developments in human history [1]. Beginning 

during the Late Pleistocene with dog domestication [2, 3], it has irrevocably impacted human 

history, demography, and evolution leading to our current civilizations [1, 4–6]. Domesticated 

species play important roles for humans in many aspects of our daily life by providing food, 

biological control agents, pets, sporting animals, basic materials, and laboratory models [1, 7, 8].  

This considerable importance in our culture, survival, and way of life has always aroused the 
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curiosity of scientists and nonscientists. An extraction from the database Scopus of articles and 

reviews published since 1960 in Life Science Area (i.e., agricultural and biological sciences; 

biochemistry, genetics and molecular biology; environmental science; multidisciplinary) for 

which the term “domestication” is cited in the title, the abstract, or the keywords inventories 

6199 documents (database accessed on August 31, 2018). However, despite this profusion of 

literature, significant questions regarding the domestication process, the domesticated spe-

cies notion, or the domestication histories still remain [9–11].

The notions of domesticated species and domestication process are among the most confusing 

and controversial concepts in biology [12–14]. Vivid debates are continually fuelled by clashes 

of conflicting, although complementary, visions of botanists, mammalogists, ornithologists, 
ichthyologists, archeologists, geneticists, and sociologists. The achievement of a consensual 

view is impeded by the complexity of the domestication phenomenon, which involves many 

phylogenetically distant species and occurs in several different social and cultural contexts [1]. 

Nevertheless, there were some attempts to unify the alternative points of view to some extent 
[1, 12, 13, 15–17]. For the purpose of this chapter, domestication can, thereby, be considered as 

the process in which populations are bred in man-controlled environment and modified across 
succeeding generations from their wild ancestors in ways making them more useful to humans 

who control, increasingly during the process, their reproduction and food supply [1, 12, 15–17]. 

This process does not involve all populations of a particular species: some populations can 

undergo domestication, while other populations do not. The domestication process is a con-

tinuum that can be divided into five key steps (the so-called “domestication levels”) based on 
the degree of human control over the population life cycle and the degree of gene flow from 
wild counterparts [12]. This classification had been primarily developed for fish species [12, 18] 

but can be extended to other species (Figure 1). At the early stage (level 1) of the domestication 

process, the first attempts of acclimatization of a wild population to man-controlled environ-

ments are made [12]. These environments can be captive or “ranch” conditions quite isolated 

from wild populations where living conditions, diet, and food are controlled by humans [19]. 

The next stages correspond to an increasing control of the life cycle by humans: level 2—a part 

of life cycle is controlled by humans in man-controlled environments, but “seed” materials 

are collected in the wild to maintain rearing of the species (i.e., capture-based production; e.g., 

[20]); level 3—the life cycle is fully controlled by humans in man-controlled environments, but 

significant gene flow from the wild still occurs due to spontaneous introgressions or inten-

tional wild specimen introductions by breeders [21]; level 4—the life cycle is fully controlled 

by humans in man-controlled environments without wild inputs [12]. The last stage (level 5) 

corresponds to the development of selective breeding programs or organism engineering to 

intentionally modify some traits of the human-controlled populations (e.g., [22–24]). Seen from 

this perspective, a species can be considered as domesticated when it reaches, along this con-

tinuum, a threshold arbitrarily defined according to a particular scientific or legislative context. 
The resulting subjective definition of domesticated species is thus eluded from this chapter.

The domestication process is set during a temporal succession of interactions between a spe-

cies and humans: the so-called “domestication pathways” [10, 25]. An overview of published 

domestication histories allows identifying three main pathways [10, 15, 25, 26]. In the commensal 

pathway, there is no intentional action on the part of humans but, as people manipulated their 
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immediate surroundings, some populations of wild species have been attracted to elements of 
the human niche. The tamer, less aggressive individuals with shorter fight or flight distances 
of a wild species establish a profitable commensal relationship with humans. Later, succeeding 
generations of such individuals shift from cynanthropy to domestication through captivity 

setting up and human-controlled breeding. The dog and the cat are the archetypal commensal 
pathway species [10]. Contrary to the former, the prey pathway begins with human actions, 

but the primary human motive is not to domesticate but to increase food resources. Actually, 

it is initiated when humans modify their hunting strategies into game-management strate-

gies to increase prey availability, perhaps as a response to localized pressure on the supply of 

prey. Over time and with the more responsive populations (e.g., the more docile individuals), 

these game-management/keeping strategies turn into herd-management strategies based on 

Figure 1. Domestication process and insect domestication level. Numbers 0–5 refer to the domestication levels [12, 18]. 

Characteristics of each domestication level are provided on the left. Lines and points near the insect species names show 

the range of domestication degrees observed among populations of the species.
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a sustained multigenerational control over movements, feeding, and reproduction of popula-

tions corresponding to a domestication process. Species that have followed this prey pathway 

are, for instance, large terrestrial herbivorous mammals [26]. At last, the directed pathway is 

the only one that begins with a deliberate and directed process initiated by humans in order 

to domesticate populations of a wild species [26]. Most modern domestic species such as pets 

[27], transport animals [10], and aquatic species [12, 28] have arisen because of this pathway 

[10]. The three pathways are theoretical conceptualizations of domestication process, but many 

species have a more complex history involving several pathways (e.g., pigs [10, 25, 29]).

When the domestication process begins, it results in long-term genetic differentiation and, 
finally, in the evolution of distinct changes in phenotypic traits [16, 30]. The differentiation of 
populations undergoing a domestication process can be initiated early in their domestication 

history and despite persistent gene flow from wild populations [21, 31–34]. The resulting 

specific morphology, physiology, and behavior constitute the “domestication syndrome” 
that tends to be more of less similar among different species of a particular organism group 
[35–40]. Overall, these specificities include domestication traits (i.e., facilitating the early stage 
of domestication) and improvement traits (i.e., appearing at latter stages of domestication) 
[35]. The first are shared by all domesticates and generally fixed during the first stages of 
domestication, while the latter are observed in some domesticated populations when higher 
human impacts on breeding happens [10]. These changes are driven by (i) selection pressures 

created by both unintentional and deliberate human actions as well as by human-modified 
environments and/or by (ii) a relaxation of the selection occurring in the wild [10, 41, 42].

The domestication process, pathways, and consequences on plants (e.g., [1, 37, 43]), mammals 

(e.g., [1, 10, 26]), birds (e.g., [44, 45]), and fishes (e.g., [12, 28]) have been the focus of an abun-

dant research from Darwin’s works [46]. However, insects’ domestication has comparatively 

received far less attention to date [47]. Yet, insects are the most common animal group on Earth: 
they make up about 75% of all animal species [48, 49]. They play an important role in pollination, 

waste bioconversion, biocontrol, raw material supplying, food production, medical application, 

and human cultures. Strangely, major reviews on domestication give the impression that so few 

have been domesticated [10, 11, 15, 25, 26]. An overview of current literature shows how insect 

domestication has been overlooked: the database Scopus inventories only 68 papers that focus 

on it and most of them on only two species (i.e., the silkworm and the honey bee). Actually, most 

insect rearing/breeding/farming histories have not been considered as domestication processes 

although they can be interpreted as such. Therefore, the aims of this chapter are (i) to provide an 

overview of main ancient and recent insect domestication histories and (ii) to reread them by the 

light of the domestication process, pathways, triggers, and consequences observed in other ani-

mal species. Some of the considered species (silkworm and honey bee) have been chosen because 

they are among the few insects commonly acknowledged as domesticated species, while others 

have been considered since they allow illustrating alternative domestication patterns.

2. The silkworm and the sericulture

Silkworm is the caterpillar of the moth Bombyx mori (Lepidoptera, Bombycidae). It is one of the 

most important insects in human economy because the species is the primary producer of silk 
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[50, 51]. Although silk has a tiny percentage of the global textile fiber market (i.e., less than 0.2%; 
the yearly worldwide production is about 200,000 metric tons of silk [51]), the annual turnover 

of the China National Silk Import and Export Corporation alone is more than 2 billion US$ 

[19, 51]. Moreover, silk production provides employments to several million persons in rural 

and semirural areas across the world [19] (e.g., 8 millions in India [51]). Beside its economic 

importance, B. mori is an edible insect [19], a health food [19], a pet [19], and model species for 

basic research because of its short life cycle and adaptation to laboratory culture [52–55].

2.1. Bombyx mori life cycle and production

The silkworm life cycle is strongly controlled by humans in indoor facilities with controlled 

environmental conditions [51]. New eggs are incubated in rearing facilities where their 

hatching can be scheduled and synchronized by humans through chemical treatments and 

photothermal controls (e.g., black boxing practices) [51]. The newly hatched caterpillars are 

transferred to rearing tray (i.e., brushing process) and fed by humans with man-produced 

plants (e.g., mulberry leaves) [51]. After several molts, caterpillars climb on man-provided 

supports and spin their silken cocoons. Then, cocoons are collected and B. mori specimens are 

killed before metamorphosis since proteolytic enzymes released to make a hole in the cocoon 

by the adults are destructive to the silk [51]. Some cocoons are allowed to survive in order 

to produce adults for breeding [51]. In contrast to closely related wild moth species (e.g., B. 

mandarina) that fly for reproduction or evasion from predators, B. mori adults are not capable 

of functional flight due to their too big/heavy body and their small wings [51]. Therefore, B. 

mori completely relies on human assistance in finding a mate and a laying support [51]. The 

B. mori oviposition site selection is also controlled by humans (i.e., egg laying occurs on man-

offered mulberry plant or on filter paper) [51, 56].

2.2. Domestication history and pathway of Bombyx mori

Bombyx mori is one of the few insects commonly acknowledged as truly domesticated and 

as a stunning case in point of insect domestication [47, 52, 57, 58]. Several archeological and 

molecular studies have tried to trace the history of its domestication (e.g., [57, 59–62]). The 

silkworm was domesticated roughly 7500 years ago from Chinese populations of B. manda-

rina, an extant wild silk moth of East Asia [57, 59, 60, 63]. The domestication of the silkworm 

is thought to be a directed pathway [10] starting at a single event [61]. Long-term bidirectional 

significant gene flow occurred between wild and domesticated silkworm populations during 
the first 3500 years of the domestication [59] most likely because of accidental escapes and 

intentional hybridizations by breeders to produce desirable strains [52, 59, 64]. Nowadays, 

low gene flow presumably still exists with B. mandarina [65].

Even though silk spread rapidly across Eurasia, its production remained exclusively Chinese 

for several millennia [62, 66]. Indeed, the sericulture (i.e., the raising silkworms for silk pro-

duction) spread only to Korea and Japan around 2000 years ago [57, 60] and was even later 

introduced to Central Asia and Europe (i.e., the Byzantines acquired the sericulture methods 

by 522 CE) through the Silk Road [57, 66]. This silkworm production expansion is one of the 

most tremendous examples of the direct and indirect consequences of the animal domestica-

tion on the human history [57]. Indeed, the opening of Silk Road has dramatically impacted 
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human history by triggering cultural/technical/good exchanges as well as population move-

ments and disease spread out (e.g., bubonic plague) between Eurasian civilizations while 

its closing forced the merchants to take to the sea to ply their trade triggering the Age of 

Discovery [51, 66]. The industrial revolution and the increasing demand in Europe led to a 

peak of the sericulture by the eighteenth and nineteenth centuries before declining due to 

silkworm disease breakouts and the raising of cotton industry [51].

2.3. Consequences and progress of the domestication process in Bombyx mori

Bombyx mori displays significant specificities compared to its phylogenetically nearest wild 
counterpart [67–71]. Some of these traits can be considered as (i) domestication traits rein-

forced by or (ii) improvement traits fostered by selective pressures shaped by unintentional/

deliberate human actions and human-modified environments: an increased cocoon size, larger 
body size, higher silk production, higher growth rate, larger tolerance to human presence/

handling, higher ability to live in crowded conditions, and a better feed efficiency [51, 52, 57]. 

Conversely, other specificities could be explained by a relaxation of the selection occurring in 
the wild (e.g., predation pressure): leucism (meaning the loss of camouflage) and disability to 
fly [51, 68]. These last changes have made B. mori entirely dependent upon humans for sur-

vival, feeding, and reproduction [51, 52]. Moreover, independent selective breeding programs 

and different breeding environments (i.e., from temperate to tropical climate) have led to the 
development of more than 1000 inbred lines or strains of domesticated silkworms across the 

world [51, 57, 60, 72]. Since B. mori (i) has its life cycle fully controlled by humans in captivity, 

(ii) is entirely dependent on humans for reproduction, (ii) and undergoes selective breeding 

and genetic improvement to harvest maximum output, they are one of the few insect species 

at a very advanced domestication stage (Level 5; Figure 1). While they are not as extreme as 

the B. mori case, other moth species used for silk production have their life cycle under human 

control and dependence such as Samia cynthia (i.e., ericulture; see [73, 74]).

3. The honey bees: beekeeping or apiculture?

Honey bees are eusocial insect species distinguished by their production and storage of 

honey and their construction of colonial nests from wax [75]. They belong to the same genus 

(Hymenoptera, Apidae, Apis spp.) that includes 11 species and many subspecies native from 

the Old World [75, 76]. The dwarf honey bees (A. florea and A. andreniformis) are small species 

from southern and southeastern Asia that make small open nests in trees and shrubs [75, 77, 78]. 

These species produce honey that is harvested and eaten by local human populations [77, 79]. 

The giant honey bees (A. binghami, A. breviligula, A. dorsata, and A. laboriosa) are aggressive spe-

cies inhabiting forest areas of South and Southeast Asia [80–82]. They produce honey and wax 

in their open nest on trees, cliffs, or buildings that are harvested by indigenous people [83–85]. 

Apis koschevnikovi and A.nuluensis are cavity-nesting species that occur in the tropical evergreen 

forests of Borneo [86, 87]. Apis nigrocincta is a cavity-nesting species reported in Sulawesi [75]. 

The western honey bee (A. mellifera) and the eastern honey bee (A. cerana) are cavity-nesting 

species native throughout (i) Africa, the Middle East, and Europe and (ii) South and Southeast 

Asia, respectively [75]. All Apis species are important pollinators for many ecosystems [88]. 
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Although other species like A. dorsata or A. cerana can be important for human economy and 

feeding in certain countries, none achieves the crucial economic, agricultural, scientific, and 
environmental importance of A. mellifera [89–91]. Its importance relies on its pollination activity 

as well as on its production of honey, wax, venom, pollen pellets, propolis, and royal jelly [92].

3.1. Apis mellifera life cycle and production

Unlike most of other bee species, honey bees produce perennial colonies with large number 

of individuals that (i) belong to different castes (i.e., workers that are sterile females, drones 
that are males, and queen that is the reproductive female) and (ii) are not able to survive by 

themselves for extended periods [75]. In the nest, there is a labor division between castes: (i) 

the workers harvest pollen and nectar on flowers to feed larvae, queen, and other workers 
as well as to store food as honey [89, 93] and protect the nest from predators and (ii) queen 

ensures the production of new queens, drones, and workers [75]. The colony is considered 

as a superorganism since it is a collection of agents, which can act in concert to produce phe-

nomena (e.g., colony exhibit homeostasis and emergent behavior) governed by the collective 

[94]. When environmental conditions are favorable (i.e., abundance of food), new queens are 

produced while old queen with up to two-thirds of the workers leaves the nest in a swarm to 

find a new location to establish a new nest [89]. In the old nest, new queens compete until only 

one remains and the survivor takes the nest control [89]. Then, the new queen goes on one 

or more nuptial flights and mates with several drones [95]. Once mating is done, the queen 

remains in the hive and lays eggs [89]. The swarming behavior and the takeover of the old 

nest by the new queen can be interpreted as the reproduction of the superorganism.

Humans can control the life cycle of the superorganism by providing man-made hives for the 

colony to live and store food [89]. This allows humans to easily collect honey and other prod-

ucts that hive produces rather than to scavenge these products in the wild. More advanced 

practices allow apiarists to control colony reproduction by restricting swarming behavior and 

controlling mating by artificial insemination [96, 97].

3.2. Domestication history, traits, and pathway of Apis mellifera

Molecular dating suggests that A. mellifera expanded its distribution around 1 million years 

ago [98, 99] from a still debated ancestral range [76, 90, 98–102]. During its range expansion, 

the western honey bee experienced local adaptations [103] and geographic differentiations 
leading to the current substantial phenotypic variation across its extensive geographic range 

[101]. This intraspecific variability has been used to develop an extensive classification of 29 
subspecies (or “races”) [76]. These taxa are now lumped into four major groups based on mor-

phological, genetical, ecological, physiological, and behavioral traits: the African, Western/

Northern European, Eastern European, and Middle East populations (review in [100]). The 

European groups exhibit phenotypic adaptations to survive colder winters, whereas the 

African group is more aggressive and shows a greater tendency to swarm [101].

Humans began harvesting wax and honey from honey bee colonies at least 9000 years ago 

[104, 105]. They originally scavenged these products from wild nests [89, 104, 105]. However, 

the demand for honey outgrew its natural availability as human populations became larger and 
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sedentary [106]. This context presumably triggered the beekeeping development by providing 

hives to honey bees that make it easier to harvest their honey and wax by humans [105]. At the 

beginnings of beekeeping, honey bees were not “bred” so much as “kept”: humans provided 

rudimentary containers (often destroyed during honey harvesting) and hoped that wild bee col-

onies would take up residence without later swarming [105]. Over time, humans increased their 

control on bees by developing swarming control device (i.e., queen excluder [96]), reproduction 

control (e.g., artificial insemination [97]), mass breeding (e.g., [107]), selective breeding programs 

(e.g., [108–110]), and new strains (e.g., Buckfast strain [111] or Africanized honey bees [112]).

The honey bees’ domestication concerns only A. mellifera and A. cerana (see details about the 

later species in [89]) most likely because they display intrinsic features that facilitated the 

domestication process: (i) cavity-nesting habit making hives suitable for these species, 

(ii) hygienic behavior (i.e., detection and removal of diseased brood and wastes) limiting 

diseases, and (iii) adaptations to tropical and temperate climate facilitating the apiculture 

development across the world [89, 110], for example, A. mellifera. Moreover, differentiations 
in traits facilitating beekeeping are observed at the subspecies level. Subsequently, some par-

ticular subspecies were preferably domesticated by humans. For instance, non-African sub-

species have been more widely used by most beekeepers since they can survive in temperate 

regions, have a low tendency to swarm, and low aggressiveness [101].

Domestication history of honey bees has been investigated through molecular datasets that high-

light several domestication events followed by introgression between subspecies [90, 113, 114].  

Although the honey bee domestication history has been regarded as a directed pathway 

[10], the evolution from early beekeeping practices to modern apiculture practices can been 

seen as similar to the prey pathway in which game-keeping strategies turns into control over 

movements, feeding, and reproduction. However, it is likely than directed and prey pathways 

occurred during honey bee domestication history since several domestication events hap-

pened [90, 113, 114].

3.3. Is Apis mellifera domesticated?

Many authors acknowledge (often without justification) the domesticated status of A. mellifera 

(e.g., [10, 16, 47, 58, 89, 102, 115–117]). In contrast, A. mellifera has been considered as never 

properly domesticated but only as managed species by other authors (e.g., [110, 114]; however, 

some of these scientists acknowledge an ongoing domestication process) because (i) their biol-

ogy, physiology, and behavior are seen as largely unchanged from their wild counterparts [114], 

(ii) honey bees are able to survive without human’s help [118], (iii) there is extensive gene flow 
between wild/feral and managed bees in native range due to the difficulties to achieve controlled 
mating [119]. However, these points should be reconsidered. First, the comparison of pheno-

types between “wild” and “nonwild” populations is difficult in a large a part of the species 
range. Indeed, colonies that are found in the wild may have escaped from a managed colony, 

and therefore, they may not be wild [120]. In Europe, it is unlikely that there are any truly wild 

subpopulations left due to this gene flow [120]. This means that the differentiation fostered 
by the domestication process can be blurred by the large amount of feral populations in the 

wild. Nevertheless, there are significant behavioral changes observed in man-controlled honey 
bees stocks such as multiple queen colonies (i.e., colonies conserved several queens without 
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deadly competition between them [121]), decreased aggressiveness, higher honey production, 

increased foraging zeal, and disinclination to swarm of some strains [111]. These specificities 
can be interpreted as improvement traits within a domestication syndrome. Second, many other 

species acknowledged as “domesticated” can survive in the wild (e.g., feral populations of rab-

bits, cats, and dogs [122]; although fast initial decline in fitness of domesticated escapees in the 
wild is expected [123]). Moreover, the ability of honey bees to survive in the wild could be over-

estimated since most A. mellifera are not considered to be self-sustaining as veterinary treatments 

against the mite Varroa destructor among other parasites is often provided [120]. Third, gene 

flow between “nonwild” and wild populations is commonly observed during the domestica-

tion process (see [21, 124, 125]). Actually, the debate about the status of domesticated animal for  

A. mellifera exemplifies the subjectivity of the domestic species threshold. Beside this controver-

sial definition, A. mellifera shows that different conspecific populations can be at different stages 
of the domestication process. Indeed, there is no control by humans over the life cycle of wild 

populations that are commonly observed for the African group [126–128]. In contrast, many 

populations belonging to the European groups have a life cycle completed in man-made envi-

ronment (i.e., hives) and controlled by humans (i.e., control of superorganism reproduction), 

feed on domesticated crops (i.e., humans can actively control the honey bee food supply for 

honey production or crop pollination) and/or on artificial food provided by humans (i.e., sugar 
syrup) [129], and some of them undergo selective breeding programs [108–111]. Therefore, the 

domestication levels of A. mellifera range from 0 to 5 according to the population considered.

4. The bumble bees and the stingless bees: the other bee 

domestications

About 90% of world’s plant species are pollinated by animals [130–132], and the main animal 

pollinators in most ecosystems are bees [88]. Although other taxa like butterflies, flies, beetles, 
wasps, or vertebrates can be important pollinators in certain habitats or for particular plants 

[133, 134], none achieves the numerical dominance as flower visitors worldwide as bees 
[130, 131]. The pollination efficiency of bees has been used by humans to improve their crop 
yields. The western honey bees is the most commonly used species in managed pollination 

service [76, 135]. This species pollinates nearly half of the top 115 global food commodities 

and is capable of increasing the yields of 96% of animal-pollinated crops [117, 136]. However, 

the lack of sufficient stocks of honey bees to ensure pollination service [115, 137], the aggres-

siveness of Africanized honey bees (i.e., obtained by man-made hybridization between 

African and European subspecies of A. mellifera to breed a strain of bees that would produce 

more honey and be better adapted to tropical conditions) in Neotropics [138], and the poor 

pollination efficiency of A. mellifera for some plants, as well as the requirement of maintaining 

the honey bee colonies outside the flowering period of valuable crops [139] have triggered or 

restarted the domestication of other bee species: the bumble bees and the stingless bees.

4.1. The bumble bees

Bumble bees (Hymenoptera, Apidae, Bombus spp.) are social insects with a nearly worldwide 

distribution with their largest species diversity in temperate and cold areas [75, 140]. Except in 
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tropical regions, bumble bees produce annual colonies (i.e., colony dies after the production of 

new queens and males). They have several adaptations such as their ability to “buzz pollinate” 

(i.e., sonication) and their insulated bodies that make them ideal pollinators for many valu-

able crops (e.g., raspberry and tomatoes) for which honey bees are quite inefficient pollinators  
[139–141]. Moreover, bumble bee colonies can be easily shipped and can be maintained without 

specialists’ help in crops fields [139]. However, they do not produce honey or hive material suit-

able for mass market sales [117]. Therefore, their commercial importance is only based on their 

pollination efficiency on particular crops, mainly in greenhouses [117]. First trials of bombiculture 

were attempted by researchers at the beginning of the twentieth century [142, 143], but bumble 

bee mass production started during the 1980s [139, 144]. At least five species have underwent 
domestication process for pollinator production (B. ignites, B. impatiens, B. lucorum, B. occidentalis, 
and B. terrestris) and many more for research purpose [139, 142–145]. Their domestication history 

follows a directed pathway with several domestication events since several bumble bee breeders 

started independently the production of the same taxon [139, 144]. Bombus terrestris is the most 

traded species: more than 2 million colonies are yearly produced and shipped throughout the 

world (review in [146]). The species is mass produced in indoor facilities in which the whole 

life cycle is controlled by humans [139]. The choice of the most effective bumble bee species for 
mass production has been made through the test of several species [139]. Most of them have been 

proved to be poorer choices (e.g., more aggressive, hard to feed, low production success), and 

their domestication programs have been abandoned [139, 144]. This means that the domestica-

tion process of such species (e.g., B. lapidarius [139]) has regressed after a period of human interest.

Although domestication of bumble bees has been acknowledged by various authors (e.g., 

[139, 147]), comparison between breeders’ stocks and wild populations is still lacking to high-

light potential domestication syndrome in Bombus species. Nevertheless, the domestication 

programs of the five most produced species are already quite advanced (Level 4, Figure 1) 

since current bumble bee breeders’ stocks experience low gene flow with their wild counter-

parts. However, no selective breeding program has been reported to date.

4.2. The stingless bees

Stingless bees (Hymenoptera, Apidae, Meliponini) are social bees with perennial colonies (i.e., 

nest can remain active for more than 50 years) occurring in most tropical or subtropical areas 

[75, 148]. They are known for their pollen/honey production and their pollination efficiency for 
several valuable crops (e.g., coffee, Avocado, Strawberry, Rambutan) [138, 148]. Meliponiculture 

dates back to the Maya civilization and is nowadays practiced in Australia and Central/South 

America [148–150]. Nevertheless, their domestication process has not progressed so far (Level 2,  

Figure 1) since most of the meliponiculture is mainly a capture production that consists in 

attracting stingless bee swarms and maintaining the colonies in artificial wooden hives [148, 150].

5. Cochineal insects

Scale insects (Hemiptera, Coccoidea) are the third large insect groups including species that 

are, sometimes, considered as domesticated [47, 58, 151]: cochineals, lac scales, Cerplastes 
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species, and Ericerus species. These species are economically valuable for the substances that 

they produce under proper farming [152]. Dactylopius coccus and Kerria lacca are among the 

most produced scale insects.

5.1. Dactylopius coccus

Cochineal is an important source of red for dyes, lake pigments, cosmetics, and food/phar-

maceutical colorants [151, 153]. Indeed, the red dye is mainly composed of carmine, which 

is a pigment obtained from the scale insects belonging to Dactylopius genus (Hemiptera, 

Dactyloidae) or some Porphyrophora species (Hemiptera, Margarodidae) [151, 153–155]. 

Nowadays, most of the carmine production is based on the farming of D. coccus inhabiting 

(sub)tropical South and Central America [151, 153].

The species is used as a source of carmine in Mesoamerica and South America since the pre-

Columbian times [156]. The earliest known cochineal-dyed textiles dates back to the twelfth 

century, but first evidence of cochineal farming is estimated to the tenth century [155–157]. 

The center of domestication is thought to be in Mexico [157]. Carmine became an impor-

tant export good during the Spanish colonial period [156]. Later, the species was introduced 

in other areas such as Australia, Canary Islands, South Africa, and South Asia [156]. In the 

middle of the nineteenth century, the production of cochineal fell sharply due to the develop-

ment of artificial red dyes. Consequently, the cochineal trade almost totally disappeared in 
the twentieth century. Since the 1970s, cochineal production was restarted due to the discov-

ery of carcinogenic and hazardous properties of synthesized dyes [155].

Dactylopius coccus females are wingless sessile parasites of cacti in the genus Opuntia [151, 

153, 155]. After mating with winged males, females give birth to nymph that are airborne 

transported by the wind to new host plants. Since the D. coccus females depend on Opuntia 

plants, their production takes place in cactus farms producing domesticated plant species 

[156, 158]. Cochineals are produced by infesting cacti plants and harvesting the insects by 

hand 90 days later. During this period, humans actively control potential predators [159]. At 

the end of the process, some cochineals are left to reproduce, while others are collected for 

carmine extraction.

Dactylopius coccus has been considered as a domesticated species [47, 58, 151], since it is reliant 

on human propagation and protection for survival at least in some regions [159]. Moreover, 

most of D. coccus is produced in man-controlled environments (i.e., cactus farms). Nevertheless, 

humans poorly control the species reproduction and gene flow with wild populations is fre-

quent; yet more recent developments are improving this control (e.g., environment-control 

microtunnels in Mexico [58]). Overall, the domestication process of D. coccus (level 3, Figure 1) 

is far behind the ones of silkworms and honey bees. Since comparison between farmed and 

wild cochineals is lacking, potential domestication syndrome is unknown.

5.2. Kerria lacca

Lac is an important commercial resin of several utilities (e.g., material construction, cosmet-

ics, medicine). It is a resinous secretion of lac insect species from Asia and Central America 
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[160, 161]. Kerria lacca (Hemiptera, Kerriidae) is one of the main species used for lac produc-

tion [160, 161]. Its life cycle is similar to D. coccus with winged males and wingless sessile 

females that parasite several hundred host plants [161, 162]. For several centuries, lac yields 

were collected from the wild on infested host plants by local human populations [161]. During 

the nineteenth century, the increase of exportation from Asia triggered the development of 

artificial inoculation and mass production [161] through a domestication history that can be 

interpreted as a prey pathway (i.e., human control on the species was triggered by the need 

of increasing lac supply). Similarly to D. coccus, the domestication process of K. lacca is at an 

early stage (level 3, Figure 1) since the current production involved only host plant, lac crop, 

and lac pest management.

6. Farmed edible and medicinal insects

Humans have been eating insects for millennia [58, 163]. However, human entomophagy is a 

long-standing taboo in westernized societies [19, 58, 164]. This can explain why insect farming 

for human food supply has been largely absent from the main agricultural innovations and 

domestications with few exceptions such as honey bees, silkworms (i.e., pupae is a by-prod-

uct of silk production), and scale insects [19, 73]. Yet, more than 2 billion of people eat insect 
regularly since there are a source of protein, fat, vitamins, and minerals frequently stored and 

sold in developing countries (review in [73, 164]). Across the world, more than 2000 insect 

species are considered as edible for human food or animal feed [19, 58, 164, 165]. Beside food, 

insects provide many natural products for drugs to treat human diseases [166, 167].

Overall, the most commonly consumed insects by humans or livestock/pets are beetles 

(Coleoptera) (31%), caterpillars (Lepidoptera) (18%), bees/wasps/ants (Hymenoptera) (14%) 

as well as crickets (Orthoptera) (13%) [19, 58, 73, 163–165]. Most of these insects, as well as 

those used as entomoceuticals, are harvested in the wild [163] but some of these species are 

farmed for sale and profit [19, 73]. Currently, commercially farmed insects include (i) the house 

cricket (Acheta domesticus), the palm weevil (Rhynchophorus ferrugineus), the giant water bug 

(Lethocerus indicus), and water beetles (various species of Coleoptera) for human consumption 

[58, 168, 169] and (ii) bees, wasps, flies, butterflies, moths, and cockroaches for drug pro-

duction [167]. Even in small-scale production in developing countries [19], their production 

implies that their life cycle is controlled by human in captive conditions isolated from their 

wild counterparts in order to meet regulations about human food production (i.e., hygienic 

standards, sterile conditions) as well as limiting pathogen spillover from/to the wild [19, 164, 

169–171]. Such conditions are conductive for an advanced domestication process (Level 4, 

Figure 1) through a directed pathway. Conversely, other species are produced through an 

increasing human manipulation of their environment to increase insect yields and to ensure 

their long-term availability as food [172]. For instance, edible social wasps (Hymenoptera, 

Vespidae, Vespula flaviceps, and V. shidai in Japan) are traditionally managed by keeping wasp 

nests collected in the wild in hive boxes during one season to improve yields [173]. However, 

current attempts to improve the practice involves efforts to maintain new queens in captive 
condition over several generations [173], paving the ways to a prey domestication pathway.
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7. Biological control agents and sterile insect technique

Addressing the needs of the increasing human population will require a 60% increase in 

global food production by 2050 [174]. Insects could aid in achieving this objective by pro-

viding food production [19, 164] as well as pollination service (see Section 4) and biological 

control of pests [175].

Biological control is a method of controlling pests such as arthropods, weeds, and plant dis-

eases using predator (e.g., ladybugs to control aphids [176], herbivorous, or parasite species 

[175]). Parasitoids are among the most widely used biological control agents (e.g., [177, 178]). 

In these species, female deposits its egg inside or outside a host where emerged parasitoid 

larva continues to feed resulting in the host death [178–180]. This parasitic way of life is used 

by humans to target hosts that are pests. Whiteflies parasitoids (Hymenoptera, Aphelinidae, 
Encyrtidae, Eulophidae, Platygastridae, Pteromalidae, and Signiphoridae) are an example 

of insects used in greenhouses to control major crop pests (i.e., the whiteflies; Hemiptera: 
Aleyrodidae) [177, 180]. As many other parasitoids (e.g., fly Eucelatoria, the beetle Chrysolina, 
and the wasp Aphytis), they are massively produced in captive conditions by humans before 

being shipped across the world [180]. The full control of their life cycle by humans is needed 

in order to ensure that the production (i) matches with the appropriate release dates when 

susceptible host species is at a suitable phase of development [181] and (ii) is available on a 

yearlong basis to response to demand across the world [178, 182].

The sterile insect technique (SIT) is an alternative approach to control main pests (e.g., 

[183–185]) or disease vectors (e.g., [186–188]). This method implies to massively release ster-

ile males (sterilized through the effects of irradiation on the reproductive cells) of an insect 
species into a target environment to compete with wild males for reproduction [183–185]. 

Ultimately, mass releases allow limiting offspring production of a particular pest and promot-
ing its eradication (e.g., [184]). Mass-rearing production with a life cycle fully controlled by 

humans is needed to produce the large quantity of insect required by SIT [183].

The required full control of life cycle of pest insects for SIT or biological control agents means 

that an advanced domestication process is reached (up to 5 since some patented strains are 

available [189]). In the context of SIT, several studies have investigated the differences between 
wild and mass-produced males in order to ensure that released sterile males are able to com-

pete with wild males (e.g., [183, 190]). These studies show that the domestication process has 

triggered several ecological and behavioral divergences between produced and wild popula-

tions as well as a decreased fitness of produced populations in the wild (e.g., [183, 190]).

8. Insects as pets

Archeological pieces of evidence show that insects have been used as pets for centuries [191]. 

Nowadays, crickets, grasshoppers, beetles, cockroaches, silkworms, ants, honey bees, bumble 

bees, mantises, and stick/leaf insects are bred by humans as a pleasing activity or for teaching 

purpose [192–194]. Conversely to vertebrates [8, 195–197], there is no, to my knowledge, scientific 
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literature addressing the domestication of pet insects. However, some of these pet insects are 

produced for other purpose such as honey bees, silkworms, and house crickets for which a 

domestication process is acknowledged (see previous sections). For other species, such as hissing 

cockroach (Gromphadorhina portentosa), mass/small-scale, and/or amateur production are prac-

ticed [198–202]. As for other “exotic” pets (e.g., [18]), these productions involve (i) a full control by 

humans on the life cycle in captive conditions since a large part of the production is completed out 

of the species native range and (ii), thus, an advanced domestication process (level 4, Figure 1).

9. Insects for laboratory research

Animals are widely used as model species in biology and biomedical sciences. Some insect 

species have been used for laboratory experiments for several decades (e.g., silkworms, honey 

bees, and other species [54, 203, 204]), especially the fruit flies (Drosophila spp.) [205–207].

Drosophila species first entered laboratories about 1900 and are now standard laboratory 
animals [208, 209]. As they become an instrument for scientific production, Drosophila have 

been massively produced in laboratory conditions in which life cycle, feeding, and mating 

are highly controlled by humans [208, 210–212]. This human control along with the strain 

development and artificial selection for particular purposes [208, 213–216] reflect an advanced 
domestication process of some populations (level 5, Figure 1), while there are many wild 

populations (e.g., [206, 217, 218]).

Conversely to most other insect species, domestication of Drosophila populations has been 

the focus of several studies since it has been considered as a model system to understand the 

consequences of the domestication process on genomes and phenotypes [219]. Indeed, fruit 

flies are easy and cheaply to bred and have a rapid generation time (i.e., at least a dozen gen-

erations per year) [206, 220]. This allows comparing several populations that have or not been 

subject to different domestication histories (e.g., [221–223]) or even monitoring evolutionary 

trajectories of population undergoing a domestication process since their foundation from 

the wild [219, 224–226]. This has allowed studying domestication process in well-defined 
laboratory experiments with replication and specific environmental controls for several 
Drosophila species. An overview of these experiments allows highlighting the domestication 

consequences for Drosophila taxa. Different studies highlight that “domesticated” populations 
display genetic specificity and accumulation of deleterious mutations, inbreeding depression 
as well as increasing of fertility, tameness, and manageability due to selection for human-

accommodating phenotypes and/or the relaxation of selection on traits adapted in nature 

[219, 220, 222, 227–230]. Moreover, the evolutionary convergence is observed between long-

established laboratory populations [219, 220, 222, 227–230].

10. Conclusions

10.1. Are insect species undergoing domestication processes?

Although few stunning cases (e.g., B. mori) have been the focus of abundant research, scien-

tific literature has poorly investigated insect domestication to date. The main reason of this 
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is that insect domestication for human food supply has been largely absent from the agri-

cultural development with few exceptions [19, 73]. Moreover, it is likely that insect domes-

tication study has been hindered by the complexity and the subjectivity of the definition of 
domesticated species (e.g., for A. mellifera [10, 16, 47, 117–119, 58, 89, 102, 110, 114–116]). The 

difficulty of defining a threshold along a continuous process is a common problem in biol-
ogy (see similar debate about the status and the process for the species status versus specia-

tion in [231–233]). Consequently, the study of the process is often set aside or eluded due to 

debates on a particular threshold. In insects, many scientific articles or books (e.g., [234]) have 

analyzed or reviewed the breeding/productions of various insect species without explicitly 

describing these processes as domestication. Yet, the human control on the life cycle (i.e., on 
individuals’ life cycle in noneusocial species or on superorganism’s life cycle in honey bees) 

of most produced insect species is congruent with a domestication process (Figure 1; sensu 

[12]). Since a large number of insect populations are produced in captive conditions isolated 

from their wild counterparts (Figure 1), many species can be considered as undergoing a 

domestication process. Moreover, new domestication processes can be expected in the near 

future due to current challenges to increase human food/sanitary security (e.g., [19, 164, 175, 

186–188]) or to address new demands for pets (i.e., similar development to the ornamental 

fish trade (e.g., [18, 235–237])).

10.2. Domestication patterns in insects

Domestication events in insects are no less complex than in crops and vertebrates. Domestication 

histories can involve (i) one (e.g., silkworms [61]) or several (e.g., in honey bees and bumble 

bees [113, 139]) domestication events and (ii) one (e.g., bumble bees [139]) or potentially sev-

eral domestication pathways (e.g., honey bees). In most insect species (i.e., except for few 

extreme cases such as silkworms), different populations of a particular taxon can reach dif-
ferent degrees of progress in the domestication process (e.g., from wild status to an advanced 

domestication level in B. terrestris). Gene flow between populations at different domestication 
degrees is commonly observed in insects [59, 65, 119] but they do not hinder development of 

domestication syndrome (see next section).

Some insect species undergo domestication processes for several centuries (e.g., B. mori and 

A. mellifera; [57, 59, 60, 63, 89, 104, 105]), while domestications of most insects produced as 

biological control agents, pets, and laboratory organisms, or for SIT strategies and entomo-

ceuticals’ production have been recently initiated. These recent domestications have been 

made possible thanks to the advances in technology of captive environment control and ani-

mal food production since the nineteenth century [1]. Indeed, most insect domestications are 

thought to follow a directed pathway, which requires rapidly a full control of life cycle by 

humans in man-controlled environments. This implies the use of efficient environment and 
food control technologies. Technological advances have made possible or easier the domesti-

cation of species, which could not be domesticated in the past, paving the way to a new wave 

of domestication (similarly to aquatic species [28]).

As for vertebrate species (see review in [1, 12]), some intrinsic features can hinder the devel-

opment of domestication processes: (i) a diet that cannot be easily supplied by humans (e.g., 

oligolectic bee species feeding only on few plant species), (ii) long life-cycle (e.g., periodical 

cicadas that spend most of their 13- and 17-year lives underground at larval stage), (iii) bad 
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disposition (e.g., some wasp species), or (iv) reluctance to breed in captivity. Nevertheless, 

modern technology could potentially allow domesticating any insect species. Indeed, 

current insect production involves species with very different ecologies (i.e., terrestrial 
taxa, e.g., silkworm [51]; aquatic species, e.g., water beetles [168]), behavior (i.e., solitary 

insects, e.g., silkworm [51]; eusocial species, e.g., honey bees [89]), and development (i.e., 

Endopterygota, e.g., honey bees [89]; Exopterygota, e.g., house crickets [19]); representative 

of the insect biodiversity. However, new domestication processes, which presumably occur 

only through directed or prey pathways for insects, are only initiated by humans to provide 

response to needs or demands of humanity. This means that the domestication of a species 

that could meet human needs/demands already addressed by another produced species is 

unlikely [1, 238]. Instead, all species that have recently undergone a domestication process 

and then have been massively produced are those which provide response to new needs or 

demands of humanity such as bumble bees (i.e., pollination in greenhouses), hissing cock-

roach (i.e., pet), or Drosophila flies (i.e., laboratory organism) [139, 199, 208, 209].

An overview of current insect productions in man-controlled captive conditions shows that 

insect taxa are used to address very different human needs (e.g., food [19], raw materials [234], 

pets [194]). Moreover, many insect taxa that are primary produced to address a specific demand 
tend to be later used to serve several human needs as observed in the domestication histories of 

several mammal species. For instance, A. mellifera that produces honey (i.e., the primary use) 

and edible pupae can be considered as the insect equivalent of dairy cows, which are valued 

not only for their milk but also as meat [19]. Moreover, honey bees provide several raw materi-

als (wax), health food (royal jelly), entomoceuticals (venom), ecosystem service (pollination), 

model specimens for research [204], and pleasure (recreational beekeeping) to humans [92].

10.3. Domestication consequences and their shaping factors

Overall, differentiations between wild populations and their counterparts undergoing a domes-

tication process have been poorly studied in insect species. Yet, such divergences and conver-

gences of various phenotypic traits that differentiate domesticates from their wild progenitors 
can be expected under the domestication syndrome hypothesis [36]. In mammals, the domesti-

cation syndrome tends to comprise changes in tameness, aggressiveness, coat color/pigmenta-

tion, body morphology, reproductive alterations, hormone, neurotransmitter concentrations, 
and brain composition [36]. Some of these changes can be observed when comparing B. mori 

and its phylogenetically nearest wild counterpart [67–71] in tameness (i.e., larger tolerance to 

human presence/handling), aggressiveness (i.e., toward conspecifics since B. mori has higher 

ability to live in crowded conditions), morphology (i.e., leucism, larger body size), and repro-

duction/development (i.e., bigger cocoon and higher silk production, higher growth rate, altered 

premating behavior) [51, 52, 57, 68]. Comparison of silkworm specificities with phenotypes of 
man-produced Drosophila flies and honey bees shows some convergences: higher tameness (i.e., 
fruit flies), lower aggressiveness toward humans and conspecifics (i.e., in A. mellifera), modified 
reproduction (e.g., higher fertility in fruit flies; changes in reproduction, e.g., limited swarming 
in A. mellifera), and morphology (i.e., specific color patterns of man-controlled strains/races) 
[111, 121, 219, 220, 222, 227–230]. These specificities concern domestication traits facilitating the 
domestication by humans (e.g., aggressiveness in honey bees) as well as improvement traits 

(e.g., higher honey production in A. mellifera; higher silk production in B. mori) that increase the 

manageability and the animal production efficiency/profitability for humans.
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Specificities of populations undergoing a domestication process have been most likely shaped 
by unintentional/deliberate human actions, human-controlled environments, relaxation of the 

selection occurring in the wild or both as in other animal species [10, 41, 42]. For instance, the 

inability of B. mori to fly could result from a relaxation of selection in the wild (i.e., silkworm are 
protected and fed in captive conditions by humans) and/or a human pressure for “nonflying” 
insects (i.e., this facilitates the handling by humans). Similarly, the lower aggressiveness of honey 

bees can result from a lower predation pressure (i.e., human protection of hives) as well as from 

human selection for less aggressive populations. Inadvertent human habituation and uninten-

tional conditioning could also be a primary selective agent in insect domestication as suggested 

to explain developmental and reproductive differences between Drosophila strains [220].

From a genetic point of view, animals in captive environment are expected to rapidly display 

genetic changes corresponding to adaptations to captive breeding [239]. Indeed, the specific 
selective pressure occurring in domestication environments promotes selection for domesti-

cation syndrome gene variants [11]. This selection on man-controlled populations can shape 

specific genotypes even when gene flow from the wild still occurs [21, 59]. Changes in traits 

linked to valuable resources for humans or morphology have been showed to have a genetic 

basis (e.g., specificity of silk gland transcriptomes [67] and melanin synthesis [68] of B. mori). 

Similarly, behavior modifications commonly observed in insect domestication syndrome (e.g., 
tameness, aggressiveness, manageability by humans) can be explained by mutations on neuroge-

netic genes affecting overall locomotion and activity as suggested in man-produced populations 
of Drosophila species and mammals [36, 220]. Therefore, large mutational target of neurogenetic 

genes can explain the evolution of specific behavior in animal populations undergoing domes-

tication processes [220]. These neurogenomic loci collectively provide a large genomic substrate 

for variation to accumulate, and then selection and drift to act, to transform behavior [220].

10.4. Future prospects

The study of domestication of insect is still at a nascent stage. Some “model species” such as 

A. mellifera, B. mori, and Drosophila spp. have been the focus of several studies to understand 

domestication process. However, genetic bases of domestication-fostered modifications as 
well as the characterization of these modifications are poorly known. Therefore, further stud-

ies are needed to generalize domestication patterns as well as to understand genomic basis of 
domestication process.
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