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Chapter

Polarizability and Impurity
Screening for Phosphorene

Po Hsin Shih, Thi Nga Do, Godfrey Gumbs
and Dipendra Dahal

Abstract

Using a tight-binding Hamiltonian for phosphorene, we have calculated the real
part of the polarizability and the corresponding dielectric function, Re[e(q, w)], at
absolute zero temperature (T = 0 K) with free carrier density 10'>/cm?. We present
results showing Re[e(q, w)] in different directions of the transferred momentum q.
When ¢ is larger than a particular value which is twice the Fermi momentum kg, Re
[e(q, w)] becomes strongly dependent on the direction of q. We also discuss the case
at room temperature (T = 300 K). These results which are similar to those previ-
ously reported by other authors are then employed to determine the static shielding
of an impurity in the vicinity of phosphorene.

Keywords: phosphorene, polarizability, impurity screening

1. Introduction

Emerging phenomena in physics and quantum information technology have
relied extensively on the collective properties of low-dimensional materials such as
two-dimensional (2D) and few-layer structures with nanoscale thickness. There,
the Coulomb and/or atomic interactions play a crucial role in these complexes
which include doped as well as undoped graphene [1-3], silicene [4, 5],
phosphorene [6, 7], germanene [8, 9], antimonene [10, 11], tinene [12], bismuthene
[13-18] and most recently the 2D pseudospin-1 a — T’ lattice [19]. Of these which
have been successfully synthesized by various experimental techniques and which
have been extensively investigated by various experimental techniques, few-layer
black phosphorus (phosphorene) or BP has been produced by using mechanical
cleavage [6, 20], liquid exfoliation [7, 21, 22], and mineralizer-assisted short-way
transport reaction [23-25].

Unlike graphene, phosphorus inherently has an appreciable band gap. The
observed photoluminescence peak of single-layer phosphorus in the visible optical
range shows that its band gap is larger than that for bulk. Furthermore, BP has a
middle energy gap (~1.5-2 eV) at the I point, thereby being quite different from the
narrow or zero gaps of group-IV systems. Specifically, experimental measurements
have shown that the BP-based field effect transistor has an on/off ratio of 105 and a
carrier mobility at room temperature as large as 103 cm*/Vs. We note that BP is
expected to play an important role in the next-generation of electronic devices
[6, 20]. Phosphorene exhibits a puckered structure related to the sp> hybridization of
(3s, 3p,» 3py, 3p,) orbitals. The deformed hexagonal lattice of monolayer BP has four
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atoms [26], while the group-IV honeycomb lattice includes two atoms. The low-lying
energy dispersions, which are dominated by 3p, orbitals, can be described by a four-
band model with complicated multi-hopping integrals [26]. The low-lying energy

bands are highly anisotropic, e.g., the linear and parabolic dispersions near the Fermi

energy Ej, respectively, along the k, and k} directions. The anisotropic behaviors are
further reflected in other physical properties, as verified by recent measurements on
optical and excitonic spectra [27] as well as transport properties [6, 28].

In this work, we have examined the anisotropic behavior of the static polariz-
ability and shielded potential of an impurity for BP. The calculations for the polar-
izability were executed at T = 0 K and room temperature (T = 300 K). We treat the
buckled BP structure as a 2D sheet in our formalism. Consequently, we present an
algebraic expression for the surface response function of a pair of 2D layers with
arbitrary separation and which are embedded in dielectric media. We then adapt
this result to the case when the layer separation is very small to model a free-
standing buckled BP structure.

The outline of the rest of our presentation is as follows. In Section 2, we present
the surface response function for a pair of 2D layers embedded in background
dielectric media. We then simplify this result for a pair of planar sheets which are
infinitesimally close to each other and use this for buckled BP. The tight-binding
model Hamiltonian for BP is presented in Section 3. This is employed in our calcu-
lations of the energy bands and eigenfunctions. Section 4 is devoted to the calcula-
tion of the polarizability and dielectric function of BP showing its temperature
dependence and their anisotropic properties as a consequence of its band structure.
Impurity shielding by BP is discussed in Section 5 and we summarize our important
results in Section 6.

2. Surface response function for a pair of 2D layers

Let us consider a heterostructure whose surface is in the xy-plane and suppose
that r| denotes the corresponding in-plane translation vector. At time ¢, an external
potential ¢,,,(¢, @) with wave vector g and frequency w will give rise to an induced
potential which, outside the structure, can be written as

d? o .
¢ind (l'”,t) = _/ (27:)12 /_oo dw¢ext<q7w)el(q.r”_wt)g(q7 w>e_qz' (1)

This equation defines the surface response function g(q, ). It has been implic-
itly assumed that the external potential ¢,,, is so weak that the medium responds
linearly to it.

The quantity Im[g(q, w)] can be identified with the power absorption in the
structure due to electron excitation induced by the external potential. The total
potential in the vicinity of the surface (z = 0), is given by

2 ©
¢(r|| ) t) - / d—qz/ da)(ﬂz _g(q7 w)e—qZ)ei(q-r” ﬂut) Q?ngt(qy a)) (2)
(2775) —00
which takes account of nonlocal screening of the external potential.

2.1 Model for phosphorene layer

In this section, we present the surface response function we calculated for a
structure which consists of a pair of 2D layers in contact with a dielectric medium,
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Figure 1.
(Color online) Schematic illustration of a hybrid structure consisting of a pair of 2D layers separated by
distance d,. The background materials ave labeled by dielectric functions e1(w) and €; (o).

as shown in Figure 1. One of the 2D layers is at the top and the other is encapsulated
by materials with dielectric constants €;(w), with thickness d;, and €;(), of semi-
infinite thickness. Calculation shows that the surface response function is given by
[29, 30].

g(q7 w) = (3)

where

N (g, @) = e*{geq(er(w) — 1) — z1(q, ) Hgeo(e1(@) + 2()) — 12(q, @)}

{geo(ex(@) + 1)+ 71(q ) Heeoe1(@) — e2(@) + (@) D

and

D(q, w) = *"{geo(e1(w) +1) — X1(q, ®) Hgeo(er(w) + e2(w)) — X2(q, )}
—{geo(e1(@) = 1) + X1(q, @) }{geo(e1(@) — €2(@)) + Xa(q, @)}

In this notation, q is the in-plane wave vector, w is the frequency and y;(q, ®)
and y,(q, ) are the 2D layer susceptibilities.

When we take the limit d; — 0, i.e., the separation between the two layer is
small, the €; drops out and we have the following result for the surface response
function corresponding to the structure in Figure 2

®)

1
g(q7 Cl)) = 1 - 1+€2(a)) _ }(1(‘17 w)+)(2(q7 (D) ) (6)
2 2qeq

Here, the dispersion equation which is given by the zeros of the denominator
€(q, w) of the second term is expressed in terms of the ‘average’susceptibility for the
two layers. Clearly, this dispersion equation is that for a 2D layer of the Stern form

where we make the identification y — ¢I1°) in terms of the polarizability. This
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Figure 2.
(Color online) Schematic vepresentation of a structure consisting of a pair of 2D layers which ave infinitesimally
close. There is vacuum above the layers and a dielectric below.
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Figure 3.

(Color online) The (a) top view and side view of crystal structuve for BP and (b) its band structure. The
constant-energy diagrams are presented for (c) valence and (d) conduction bands. The values of 2 kg for
different © are given in (d).

result in Eq. (6) clearly illustrates that for the buckled BP structure shown in
Figure 3, the dielectric function can be treated as that for a single layer whose
susceptibility arises from a combination of two rows of atoms making up the layer.



Polarizability and Impurity Screening for Phosphorene
DOI: http://dx.doi.org/10.5772/intechopen.81814

Our calculation can easily be generalized to the case when the monolayer is embed-
ded above and below by the same thick dielectric material (dielectric constant €,)
which corresponds to the free-standing situation which we consider below. For this,

we have e(q, @) = ¢, — €?/(2e0q)11'% (q, @), expressed in terms of the 2D layer
polarizability I1° (q, w).

3. Model Hamiltonian

Phosphorene is treated as a single layer of phosphorus atoms arranged in a
puckered orthorhombic lattice, as shown in Figure 3(a). It contains two atomic
layers of A and B atoms and two kinds of bonds for in-plane and inter-plane P-P
connections with different bond lengths. The low-lying electronic structure can be
described by a tight-binding Hamiltonian, which is a 4 x 4 matrix within the basis
(A4, Ay, By, B), of the form

0 T, + T T, Ty +T.
T: +T; 0 Ty +Ts, Ty
T, T +Ts, 0 Ty + T}
TS +Ts.  Ts T: + T 0

Here, we consider up to five nearest atomic interactions through five independent
terms of T; with i = 1,2, 3, 4,5. These terms are given by the following expressions.

( Tl — tlelk(dl++ dlf)

Tys = tpe' s
T3 = t3elk'(d3++ d;) (7)

T4 — t4€ik. (d4+++ d4j;7+ d;++ d477)

[ Tse = tse’™dse,

In this notation, ¢,, (m = 1,2, 3,4,5) are the hopping integrals, corresponding to
the atomic interactions. They have been optimized as (1; = —1.220, ¢, = 3.665,
t3 = —0.205, t4 = —0.105, t5 = —0.055) in order to reproduce the energy bands

obtained by the density functional theory (DFT) calculations [31-33]. Also, d;i are
the vectors connecting the lattice sites which can be written as

(dix = (b/2 —c,+a/2,0)

dyrr = (£¢,0,h)

dse = (b/2+c,£a/2,0) (8)
day = (£b/2,+a/2,h)

\dsy = {£ (b —c¢),0,—h},

where a = 3.314A, b = 4.376A, ¢ = 0.705A, and /& = 2.131A are the distances
between the BP atoms [34, 35], as illustrated in Figure 3(a).

The valence and conduction energy bands present strong anisotropic behaviors,
as illustrated by the energy bands in Figure 3(b) and the constant-energy loops in
Figure 3(c) and (d). As a result, the polarizability and dielectric function are shown
to be strongly dependent on the direction of the transferred momentum q.
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4. Dielectric function

When monolayer BP is perturbed by an external time-dependent Coulomb
potential, all the valence and conduction electrons will screen this field and there-
fore create the charge redistribution. The effective potential between two charges is
the sum of the external potential and the induced potential due to screening
charges. The dynamical dielectric function, within the random-phase approxima-
tion (RPA), is given by [36].

dk,.dk
e(q, o) = ¢, — Vy ) > ¢

2
S 5=y W —c, v J1tBZ  (270)

) F(EY (k+ @) —f (B (k)
B (k+q) — E°"(k) — (0 +il)

(55 15 T+ qle™ s s K)
©)

Here, the n-electronic excitations are described in terms of the transferred
momentum q and the excitation frequency w. €, = 2.4 the background dielectric
constant, V, = 2re?/(&,q) the 2D Fourier transform of the bare Coulomb potential
energy (& = 4neg), and I' the energy width due to various de-excitation mecha-
nisms. f(E) = 1/{1+ exp [(E — p)kgT]} the Fermi-Dirac distribution in which kg is
the Boltzmann constant and u the chemical potential corresponding to the highest
occupied state energy (middle energy of band gap) in the (semiconducting) metal-
lic systems at T = 0 K.

Figure 4(a) and (b) shows the directional/@-dependence of the static polariza-
tion function I1°)(0, q), in which @ defines the angle between the direction of q and

the unit vector k,. For arbitrary 6, the polarization function at lower (g < 0.2 (1/A))
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Figure 4.

(Color online) The static polarizability for BP as a function of wave vector for diffevent directions of the
transferved momentum q at (a) absolute zero and (b) room temperatures. Plots (c) and (d) correspond to the
static dielectric function of BP at T = 0 and 300 K, respectively.
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and higher (g > 0.7 (1/A)) transferred momentum remains unchanged. In general,

1119 (0, q) falls off rapidly beyond a critical value of ¢ (2kz) which depends on 6. For
increasing 6 from 0 to 90°, the specific values are getting larger, as shown in
Figure 4(a). This means that the polarizability is stronger for 0.2 <4 < 0.7 (1/ A).
The main features of the polarizability for BP are quite similar to those for the 2D
electron gas, but different with those for graphene. Temperature has an effect on
the polarization function which is demonstrated in Figure 4(b). At room tempera-
ture, I11%(0, q) exhibits a shoulder-like structure near the critical values of ¢ instead
of step-like structure at T = 0.

Plots of the static dielectric function of BP for various values of 6 are presented
in Figure 4(c) and (d) at absolute zero and room temperatures, respectively. In the
range of 0.2 < ¢ < 0.5 (1/A), there is a clear dependence of the dielectric function
on the direction of the transferred momentum g. The Re €(0, q) is higher with the
growth of 6. The introduction of finite temperature smoothens the g-dependent Re
€(0,9), as shown in Figure 4(d) for T = 30 K.

5. Impurity shielding
Starting with Eq. (2), we obtain the static screening of the potential on the

surface at z = 0 due to an impurity with charge Zje located at distance 2, above the
surface of BP as

Zze ® 2 iqr cos 6 —qz
¢(r,0=0) = dg [ doeT "1 —g(q,@ = 0)]e %
0

27[60 0

T*e © 2r g7 cos0—qz, (10)
=20 / dg | do——

27eg 0 0 G(q, 0 = O)

By employing the generalized form of Eq. (6) for free-standing BP in Eq. (10),
we have computed the screened impurity potential. The screened potentials for
various zo’s are shown in Figure 5 at absolute zero temperature and Fermi energy

0.04

kF,xr||

Figure 5.
(Color online) The screened impurity potential in units of e*kr, ./ (;) is plotted as a function of kg, v for the
chosen parameters in the figure.
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Er = 1.0 eV. There exist Friedel oscillations for sufficiently small 2. Such oscilla-
tions might be smeared out for larger 2, e.g., the green and red curves. It is
noticed that for Er = 1.0 eV, the room temperature of 300 K which is much smaller
than the Fermi temperature (10,000 K) does not have significant effect on the
screened potential. Apparently, V (r,z0) at T = 0 and 300 K (not shown) are
almost equivalent.

6. Concluding remarks and summary

The energy band structure of BP, calculated using the tight-binding method, is
anisotropic and so are its polarizability, dielectric function and screened potential.
To illustrate these facts, we have presented numerical results for the polarizability
in the x and y directions for a range of doping concentrations. The Re[e(q,w = 0)]
of the static dielectric function for BP also reveals some interesting characteristics.
At absolute zero temperature (T = 0) and with free carrier density corresponding to
chosen Fermi energy Ep, we have presented numerical results for Re[e(q, w = 0)] in
different directions of the transferred momentum q. When ¢ is larger than a critical
value which is twice the Fermi momentum kg, our calculations show that Re
[e(q, ® = 0)] becomes substantially dependent on the direction of q. We also dis-
cuss the case at room temperature (T = 300 K). These results are in agreement with
those reported by other authors. We employ our data to determine the static
shielding of an impurity in the vicinity of phosphorene.
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